LogP

http://www.cs.ucsb.edu/~schauser/papers/93-ppopp-tr.ps
· Models a distributed memory machine in which processors communicate by point-to-point messages having a fixed, short size (specific to the machine)

· Model parameters

· L, an upper bound on the latency: delay incurred in communicating a message from the source to the destination processor

· o, the overhead: the length of time that a processor is engaged in the transmission or reception of each message; during this time, the processor cannot perform other operations
· g, the gap: the minimum time interval between consecutive message transmissions or receptions at a processor; the reciprocal of g corresponds to the available per-processor communication bandwidth
· P, the number of processor/memory modules

· w, machine message size (in bytes): an implicit parameter
· L, o, g are measured as multiples of the processor cycle

· Sending a small message (1 byte) between two processors takes o + L + o cycles

· Time for asynchronous (Eager protocol) send-receive of an n byte message =
o + ┌(n –1) / w┐ * max{g , o} + L + o cycles

· Time for synchronous (Rendezvous protocol) send-receive of an n byte message = 3(L + 2o) + ┌(n –1) / w┐ * max{g , o} cycles

· Mapping to the linear model of point-to-point communication

t = to + tB * n

where to = startup time, tB = time per byte

to = L + 2o and tB = g, for w = 1 byte
· Mapping the model to a machine that employs cut-through routing
[image: image1.png]
where Tsnd = send overhead, Trcv = receive overhead, M = message size,

 w = channel width, H = (average) number of hops, r = time per hop

o = (Tsnd + Trcv) / 2, L = Hr and g = M / per-processor bisection bandwidth
[image: image2.png]
· Features of LogP

· g represents the maximum rate at which a processor can inject messages in the network and captures the node to network bandwidth
· The network is assumed as having finite capacity, such that at most

┌ L / g ┐messages can be in transit from any processor to any processor at any time; this encourages balanced communication patterns in which no processor is flooded with incoming messages
· If a processor attempts to send a message that would exceed the capacity of the network, the processor stalls until the message can be sent
· The model is asynchronous, i.e., processors work asynchronously and the latency experienced by any message is unpredictable, but, in an unloaded network, bounded above by L
· The sending and receiving processors are busy only during the o cycles of overhead, the rest of the time they can overlap computation with communication

· The model can be modified to reflect the machine under consideration e.g. ignoring g if o and g are close or o dominates g or time between successive message transmissions exceeds g, ignoring bandwidth and capacity limits if algorithm communicates data infrequently etc.

· Multithreading can be employed in LogP up to a limit of L/g virtual processors (multithreading assigns to each physical processor the tasking of simulating several virtual processors; thus, computation does not have to be suspended during the processing of a remote request by one of the virtual processors and so multithreading is effective at masking latency)
· Shared memory models are implemented on distributed memory machines through an implicit exchange of messages; under LogP, reading a remote location requires time 2L + 4o
· LogP assumes that each node consists of only one processor that is also responsible for sending and receiving messages; machines with a separate communications processor containing a DMA engine for sending long messages can be modeled as two processors at each node
LogGP

http://www.cs.ucsb.edu/~schauser/papers/95-spaa.ps
· Extends LogP with an additional parameter G

· G, the Gap per byte for long messages: the time per byte for a long message; the reciprocal of G characterizes the available per processor communication bandwidth for long messages
· Machines like IBM SP-2, Meiko CS-2, Intel Paragon, Cray T3D etc. have specialized support for long messages and achieve a much higher bandwidth for long messages compared to short messages

· LogGP model

[image: image3.png]
· Time for asynchronous (Eager protocol) send-receive of an n byte message =
o + (n-1)G + L + o cycles

· Time for synchronous (Rendezvous protocol) send-receive of an n byte message = 3(L + 2o) + (n-1)G cycles
· Mapping to the linear model of point-to-point communication

t = to + tB * n

where to = startup time, tB = time per byte

to = L + 2o and tB = G
· Features of LogGP

· For n = 1, LogGP is the same as LogP

· LogGP can be modified to assume that sending an n byte message takes nG + 2o + L

· The gap parameter, g, captures the startup bottleneck of the network
· The sending and receiving processors are busy only during the o cycles of overhead, the rest of the time they can overlap computation with communication

· Unlike the linear model, LogP and LogGP allow the design of algorithms that overlap communication with computation

· LogGP can be modified to model different costs for short and long messages (http://www.cs.wisc.edu/~vernon/papers/poems.99ppopp.pdf)

· LogP and LogGP do not model network topology, routing technique, memory hierarchy, programming style (shared-memory, message-passing and data parallel styles) or contention; instead they focus on interprocessor communication in parallel machines

· LogP and LogGP work well with tightly synchronized algorithms having regular, ordered communication patterns
· LogP and LogGP do not work well with applications having frequent or irregular communication patterns or those using large messages or those with regular communication patterns that are not tightly synchronized as network contention and contention for message passing resources are a significant part of the total execution time for such applications
· LogP and LogGP assume a polling model with relatively expensive sends; thus the o parameter in LogP represents both the cost of a send and the cost of processing an incoming message
LoPC

http://www.cs.wisc.edu/~vernon/papers/lopc.97ppopp.pdf
· LoPC extends LogP by modeling contention for message processing resources in parallel algorithms using the Active Messages message-passing paradigm on the MIT Alewife multiprocessor
· LoPC focuses on contention between different threads for computation resources; the communication patterns studied in LoPC are mostly based on synchronous short messages and contention for processor resources accounts for up to a third of total execution time while network contention is not particularly significant
· LoPC does not include LogP’s parameter g as most current generation machines are balanced, in the sense that they can accept new messages into the network as fast as the processor can compose them
LoGPC

http://www.cag.lcs.mit.edu/~andras/sigmetrics.pdf
· LoGPC extends LogP and LogGP by modeling network contention and network interface DMA behavior for parallel algorithms using the Active Messages message-passing paradigm on the MIT Alewife multiprocessor
· LoGPC models applications where network contention accounts for a significant portion of total runtime

· LoGPC does not include LogP’s parameter g as most current generation machines are balanced, in the sense that they can accept new messages into the network as fast as the processor can compose them
· The basic LoGPC model (without modeling contention) is the same as LogP for short messages
· For long messages, LoGPC uses parameters from LogGP and additionally accounts for the pipelining characteristics of DMA engines which allow the overlap of network and memory access times
[image: image4.png]
[image: image5.png]
[image: image6.png]
· Basic LoGPC model (without modeling contention)

· For messages larger than 1000 bytes,

T = osl + L + (B –1) * G

· For messages smaller than 1000 bytes,

T = osl + L + aG + orl + BGm

· In general, total end-to-end message delivery time is given by

T = osl + L + max (aG + orl + BGm, (B –1) * G)
Brief overview of POEMS

http://www.cs.wisc.edu/~vernon/papers/poems.00tse.pdf
POEMS focuses on end-to-end performance modeling of complex parallel and distributed systems, spanning the domains of application software, runtime and operating system software, and hardware architecture. To enable end-to-end modeling of large-scale applications and systems, the POEMS framework is designed to compose models of system components from these different domains, to integrate multiple modeling paradigms (analytical modeling, simulation, and actual system execution), and to allow different components to be modeled at multiple levels of detail. The key components of the POEMS framework include:

· a generalized task graph model for describing parallel computations,

· automatic generation of the task graph by a parallelizing compiler,

· a specification language for mapping the computation on models for operating system and hardware components,

· a library of analytical and simulation models for components from the different domains, and

· a knowledge base describing the performance properties of widely-used algorithms.

[image: image7.png]
Component models:

1) Analytical models: deterministic task graph analysis, LogP, LogGP, LoPC and customized Approximate Mean Value Analysis (AMVA)

2) Simulation models: SimpleScalar simulator (for processor and memory hierarchy simulation), MPI-Sim (for MPI program simulation), parallel I/O system simulators, interconnection network models using the PARSEC parallel simulation language

3) Direct measurements
Application models: Static and dynamic task graph representation of Sweep3D

Parallel Program Performance Prediction Using Deterministic Task Graph Analysis

http://www.cs.wisc.edu/~vernon/papers/poems.04tocs.pdf

