
Abstract: As enterprise integration increases, developers face increasingly complex prob-
lems related to interoperability. When enterprises collaborate, a common frame of refer-
ence or at least a common terminology is necessary for human-to-human, human-to-
machine, and machine-to-machine communication. Ontology engineering offers a direc-
tion towards solving the inter-operability problems brought about by semantic obstacles
related to the definitions of business terms and software classes. Ontology engineering is a
set of tasks related to the development of ontologies for a particular domain. This paper is
aimed at presenting the approach of ISO 18629, i.e. the Process Specification Language
(PSL), to this problem. In the first part, the architecture of the standard is described, with
the main features of the language. Then, the problems of the interoperability with PSL and
the conformance to the standard are presented. The paper ends with an example showing
the use of the standard for interoperability. Copyright © 2005 IFAC.
Keywords: standards, manufacturing processes, ontologies .

ISO 18629 PSL : A STANDARDISED LANGUAGE FOR SPECIFYING AND
EXCHANGING PROCESS INFORMATION

L.C. Pouchard (+), A.F. Cutting -Decelle (*), J.J. Michel (**),
M. Grüninger (++)

(*) University of Evry, IUT-Dept OGP, F,
(**) Idpiconseil, F

(+) Oak Ridge National Laboratory (ORNL), USA,
(++) National Institute of Standards and Technology (NIST), USA

1. INTRODUCTION

As enterprise integration increases, developers face
increasingly complex problems related to interopera-
bility (Pouchard, et al. 2000, 2002), (Ray, et al.
2003). Independent contractors and suppliers who
collaborate on demand within virtual supply chains
to bring to market new products must share product-
related data. Legacy vendor applications that are not
designed to inter-operate must now share processes.
When enterprises collaborate, a common frame of
reference or at least a common terminology is neces-
sary for human-to-human, human-to-machine, and
machine-to-machine communication. Similarly,
within a core enterprise where distributed collabora-
tion between remote sites and production units take
place, a common understanding of business and
manufacturing-related terms is indispensable. How-
ever, this common understanding of terms is often at
best implicit in the business transactions and soft-

ware applications and may not even be always pre-
sent. Misunderstandings between humans conduct-
ing business-related tasks in teams, and ad-hoc
translations of software applications contribute to
the rising costs of interoperability in manufacturing.

Ontology engineering offers a direction towards
solving the inter-operability problems brought about
by semantic obstacles, i.e. the obstacles related to
the definitions of business terms and software
classes. Ontology engineering is a set of tasks re-
lated to the development of ontologies for a particu-
lar domain. An ontology is a taxonomy of concepts
and their definitions supported by a logical theory
(such as first-order predicate calculus). Ontologies
have been defined as an explicit specification of a
conceptualization (Gruber, 1993). Ontology engi-
neering aims at making explicit the knowledge con-
tained within software applications, and within

enterprises and business procedures for a particular
domain. An ontology expresses, for a particular do-
main, the set of terms, entities, objects, classes and
the relationships between them, and provides formal
definitions and axioms that constrain the interpreta-
tion of these terms (Gomez-Perez, 1998). An ontol-
ogy permits a rich variety of structural and nonstruc-
tural relationships, such as generalization, inheri-
tance, aggregation, and instantiation and can supply
a precise domain model for software applications
(Huhns and Singh 1997). For instance, an ontology
can provide the object schema of object-oriented
systems and class definitions for conventional soft-
ware (Fikes, et al., 1999). Ontological definitions,
written in a human readable form, can be translated
into a variety of logical languages. They can also
serve to automatically infer translation engines for
software applications. By making explicit the im-
plicit definitions and relations of classes, objects,
and entities, ontology engineering contributes to
knowledge sharing and re-use (Gomez-Perez 1998).

ISO 18629 is the newest in the family of standards
aimed at facilitating interoperability for industrial
data integration (of products and processes) in in-
dustrial applications in TC 184. Standardized within
a joint committee, ISO TC 184 SC4/SC5, PSL pro-
vides a generic language for process specifications
applicable to a broad range of specific process repre-
sentations in manufacturing and other applications.
PSL is an ontology for discrete processes written in
the Knowledge Interchange Format (KIF)
(Genesereth and Fikes 1992) itself an ISO candidate
in (ISO/JTC1 1999), (Common Logic 2004). Each
concept in the PSL ontology is specified with a set
of definitions, relations, and axioms all formally
expressed in KIF. Relations specify types of links
between definitions or elements of definitions; axi-
oms constrain the use of these elements. In addition,
the PSL ontology is based on set theory, first order
logic, and situation calculus (Etchemendy 1992).
Because of this reliance on theories, every element
in the PSL language can be proven for consistency
and completeness (Gruninger 2003). At the time of
this writing, approximately half of the PSL defini-
tions, relations and axioms have been proven to be
consistent with the base theories.

The ISO TC184 is one of the one two hundred com-
mittees managed by the ISO (International Stan-
dardization Organization, Geneva, CH), its scope is :
“Standardization in the field of industrial automa-
tion and integration concerning discrete part manu-
facturing and encompassing the applications of mul-
tiple technologies, i.e. information systems, ma-
chines and equipments and telecommunications”.
This means that the standards developed are applica-
ble to manufacturing and process industries, applica-
ble to all sizes of business, applicable to extending
exchanges across the globe through e-business.

PSL is an international standard for providing se-
mantics to the computer-interpretable exchange of
information related to manufacturing and other dis-
crete processes. Taken together, all the parts con-
tained in PSL provide a language for describing
processes throughout the entire production within
the same industrial company or across several indus-
trial sectors or companies, independently from any
particular representation model. The nature of this
language makes it suitable for sharing process infor-
mation during all the stages of production. The proc-
ess representations used by engineering and business
software applications are influenced by the specific
needs and objectives of the applications. The
use of these representation models varies from one
application to another, and are often implicit in the
implementation of a particular application. One of
the manufacturing models on which the PSL ontol-
ogy is built is provided by the information models of
the ISO 15531 MANDATE standard
(standardization of manufacturing management in-
formation) (Cutting-Decelle et al., 2000-1), particu-
larly for resource management.

A major purpose of PSL is to enable the interopera-
bility of processes between software applications
that utilize different process models and process
representations. As a result of implementing process

interoperability, economies of scale are made in the
integration of manufacturing applications.

ISO Numbers Names
ISO IS 18629-1 Overview and Basic Principles
ISO IS 18629-
11

PSL-Core

ISO IS 18629-
12

Outer Core

ISO CD 18629-
13

Duration and ordering Theories

ISO CD18629-
14

Resource Theories

ISO WD
18629-15

Actor and agent Theories

ISO 18629-2x Mappings to EXPRESS, UML,
XML

ISO DIS 18629-
41

Activity extensions

ISO DIS 18629-
42

Temporal and state extensions

ISO CD 18629-
43

Activity ordering and duration
extensions

ISO CD 18629-
44

Resource extensions

ISO WD
18629-45

Process intent extensions

Table 1: Organization of ISO 18629.

All parts in ISO 18629 are independent of any spe-
cific process representation or model used in a given
application. Collectively, they provide a structural
framework for interoperability. PSL describes what
elements should constitute interoperable systems,
but not how a specific application implements these
elements. The purpose is not to enforce uniformity
in process representations. As objectives and design
of software applications vary the implementation of
interoperability in a application must necessarily be
influenced by the particular objectives and processes
of each specific application.

PSL currently aims at specifying technical processes
for achieving interoperability among various soft-
ware tool representations used throughout industrial
companies. Although mappings to EXPRESS,
XML and UML are planned in the future, PSL is not
fundamentally based nor fundamentally makes use
of Web services. As such, the approach followed,
and the use of the language is different from the use

of PSLX (PSLX, 2005) and BPEL4WS (BPEL4WS,
2005).

2. ARCHITECTURE AND CONTENT OF
ISO18629

PSL (ISO 18629-1, 2004) is organized in a series of
parts using a numbering system consistent with that
adopted for the other standards developed within
ISO TC184/SC4. PSL contains Core theories (Parts
1x), External Mappings (Parts 2x), and definitional
extensions (Parts 4x). This discussion focuses on
Parts 1x and 4x ; these parts contain the bulk of ISO
18629, including formal theories and the extensions
that model concepts found in applications. Parts 1x
are the foundation of the ontology, Parts 4x contain
the concepts useful for modeling applications and
their implementation. Table 1 presents the organiza-
tion of ISO 18629. Table 2 presents primitive con-
cepts found in PSL Core. Except noted otherwise,
PSL version 2.2 is presented.

PSL Core Primiti-
ves

Type Informal definitions and axioms

activity relation Everything is either an activity, an activity occur-
rence, a timepoint, or an object. Objects, activities,
activity occurrences, and timepoints are all distinct
kinds of things (disjoint classes).

activity_occurrence relation An activity occurrence is associated with a unique
activity. But there are activities without occur-
rences.

timepoint relation Given any timepoint t other than inf-, there is a
timepoint between inf- and t. Given any timepoint t
other than inf+, there is a timepoint between t and
inf+.

object relation An object participates in an activity at a given time-
point and only at those timepoints when both the
object exists and the activity is occurring.

before relation The before relation only holds between timepoints.
It is a total ordering, irreflexive, and transitive rela-
tion.

occurrence_of relation Every activity occurrence is the occurrence of some
activity and associated with a unique activity.

participates_in relation The participates_in relation only holds between
objects, activities, and timepoints, respectively.

beginof function The beginning of an activity occurrence or of an
object are timepoints.

endof function The ending of an activity occurrence or of an object
are timepoints.

inf+
constant Every other timepoint is before inf+.

inf- constant The timepoint inf- is before all other timepoints.

Table 2: Concepts in PSL Core (ISO IS 18629-11).

Core theories (Parts 12 - 15):
Core theories include PSL Core, PSL Outer-Core,
Duration and Ordering theories, Resource theories,
and Actor and Agent theories. Actor and Agent
Theories have not been dealt with at present, thus
will not be studied here. The core theories are based
on first-order logic. They model basic entities nec-
essary for building the PSL extensions. The PSL
Core and Core Theories pose primitive concepts
(those with no definition), function symbols, indi-
vidual constants, and a set of axioms written in the
language of PSL. These primitives and all the defi-
nitions in PSL are written in KIF for computer inter-
operability. For the sake of readability, KIF defini-
tions are not reproduced here; the reader is referred
to the PSL Ontology Web site (PSL Ontology, 2005)
for more details.

Core theories are required to formally prove that
extensions are consistent with each other, and with
the core theories. The core theories are at the root of
the PSL ontology against which every item that
claims to be PSL compliant must be tested for con-
sistency.

Core Theories are a unique feature of PSL as no
other standard in SC4 lends itself to formal, logic-
based proof. Figure 1a illustrates concepts in the
PSL Outer Core. Figure 1b shows Duration and
Ordering. Figure 1c shows Resource Theories.

Domain-specific Definitional Extensions (Parts 41
- 45): The extensions to the Core and Outer-core are
the constructs used in PSL to represent processes in
an application. The Core and Outer Core alone are
not sufficient to meaningfully represent the seman-
tics of applications for the purpose of interoperabil-
ity. They are necessary but have little expressivity
by themselves. All terms in the extensions are given
definitions using concepts specified and axiomatized

in the Core theories. This ensures that definitional
extensions are conformant to PSL. A software ap-
plication will typically use the concepts defined in
the extensions. Concepts in the Core and Outer
core.

Table 3 presents definitional extensions, and indi-
cates upon which Core theories an extension relies.
One must note that the assignment of an individual
concept to a specific extension is relatively flexible;
it is there for readability and ease of use of the stan-
dard. A concept may be moved from one extension
to another without affecting the definitions of con-
cepts and the PSL ontology. In other words, exten-
sions do not need to belong to one rather than an-
other of the categories in the left column. However,
each concept must conform to the Core Theories in
the middle column. Definitional extensions may use
concepts defined in other extensions. Figure 2 illus-
trates how a concept X in a definitional extension is
expressed using PSL Core and Core Theories. Con-
cepts such as X help expressing processes used by
applications with the semantics of PSL.

As an example, here is Definition 1 (English) for
expressing for the concept of Resource Path (PSL
version 0.5) about the activity occurrence occ2:
“An activity occurrence occ2 is the next processor
subactivity occurrence after occ1 in an activity ?a if
and only if the output material of occ1 is the input
material of occ2, and there is no other processor
subactivity of ? a which consumes the output mate-
rial from occ1, and which occurs between occ1 and
occ2.”

3. INTEROPERABILITY WITH PSL AND
CONFORMANCE TO THE STANDARD

Sub-activity
Occurrence
Ordering

Occurrence
Tree

Automorphism

Envelopes
and Um-

brae

Iterative
Activities

Duration
Theory
State

Occur-
rence Tree

Discrete
State

Complex
Activity

Atomic
Activity

Activity
Occurrence

Sub-
Activity

Figure 1a: PSL Outer Core.

Figure 1b: Duration and Ordering.

Resource
Requirement

Theory
Resource Sets

Figure 1c: Resource Theory.

The main purpose of PSL is to establish a computer
language for exchanging processes between soft-
ware applications such as CAD, and project design
software.

As a specification language, PSL can be considered
as a specification tool of the information and knowl-
edge related to manufacturing management, as mod-
eled by the MANDATE standard (ISO IS 15531-1,
2002).

3.1 The challenges of interoperability

The obstacles to the interoperability of software ap-
plications are common, and usually dealt with pars-
ers. Obstacles due to semantic problems, i.e. prob-
lems about the “meaning” of a software object or
entity, are less visible than those due to syntactic
incompatibilities. The lack of formal specifications

for the development of parsers may introduce errors
even if syntax mapping is correct.

The semantic conflict presented in Figure 3 is the
example of a “resource” in two software applica-
tions A and B: “resource” represents physical re-
sources in: application A and human resources in

application B. Without a formal specification of
processes in a common formal language, poorly
designed parsers for semantic mapping can lead to
semantic errors that remain undetected. Syntactic
interoperability does not resolve these conflicts.
Another type of semantic conflict exists when con-
straints on a concept in applications A and B are
different: For instance, an occurrence of an activity
in application A is always possible (no constraints),
whereas the occurrence of the activity for applica-

Names of Definitional
Extensions

Core Theories being
depended upon

Examples of concepts

Activity Extensions
(ISO DIS 18629-41)

Complex Activities Deterministic and non-deterministic activities
Concurrent activities
Spectrum of activities

Temporal and State
Extensions
(ISO DIS 18629-42)

Complex Activities,
Discrete States

Preconditions, Effects
Conditional activities
Triggered activities

Activity Ordering and
Duration Extensions
(ISO CD 18629-43)

Sub-activity Occur-
rence Ordering, Iter-
ated Occurrence Or-
dering, Duration

Complex sequences and branching
Iterated activities
Duration-based constraints

Resource Extensions
(ISO CD 18629-44)

Resource Require-
ments
Resource set theory
Sub-activity Occur-
rence Ordering
Resource Require-
ments

Reusable, consumable, renewable, and deterio-
rating resources, substitutable resources
resource pools, Resource paths
Processor activities

Table 3: Examples of PSL concepts defined in extensions.

Figure 2: Illustration of the specification of Con-
cept X.(shown as a cylinder).

Core Theories

Definitional Extensions

PSL CORE

Figure 3: Semantic conflict for
resource.

Resource

tion B is possible only after another activity occur-
rence. The task of initiating a process that may or
may not require user permissions is a good example.

A benefit of specifying processes using PSL is to
formally encode each application’s concept in a rig-
orous representation language that is machine read-
able and not leave semantic reconciliation to subjec-
tive, sometimes rushed decisions.

Another benefit in a domain where interoperability
between applications has becoming ubiquitous is to
reduce the burden of developing parsers for each
translation between two applications. The PSL ap-
proach reduces the number of translators from O (n2)
to O (n) by requiring that an application maps its
concepts to PSL concepts only, rather than mapping
to all the other applications.

3.2 Interoperability and conformance

From the point of view of ISO 18629, two applica-
tions can interoperate if they are conformant with
the same set of ISO 18629 extension. Software ap-
plications that claim conformance to PSL will:
Specify application entities into the KIF language.

(Entities are the “things” used by applications to
refer to processes, relations among these proc-
esses, functions, etc...),

provide translation definitions between their proc-
esses represented in KIF and PSL definitions,

implement syntactic translators between their appli-
cations and PSL process descriptions,

Write a grammar using the using the Backur Naus
notation (BNF). The PSL grammar written with
BNF can be found on the PSL Ontology Web
site (PSL Ontology, 2005).

3.3 User defined extensions

User defined extensions of PSL are extensions that
introduce new concepts. Typically, current exten-
sions are sufficiently rich to express processes in
existing software applications. However, the case
where an application concept is not represented may
arise. In this case, PSL can be extended to include a
new extension by expressing new concepts using
ISO 18629 parts 11-14 (PSL Core and the Core
theories). Any new extension must also satisfy the
constraints and axioms of ISO 18629. User-defined
extensions and new definitions may be needed if an
application contains a concept not included in PSL
or for new domains. This is what “the PSL ontology
is extensible” means.

4. USE OF THE STANDARD FOR INTEROP-
ERABILITY.

In practice, ISO 18629 Parts 4X are what software
applications will utilize to specify and exchange

their processes using PSL. In order to facilitate
specification, the National Institute of Standards and
Technology has implemented the 20 Question Wiz-
ard (PSL 20 Question Wizard, 2005), a utility that
points to the appropriate definitions. A user specifies
a process in details by answering questions and
checking boxes for their process. The wizard returns
the PSL definition for this process written in the KIF
syntax.

4.1. Steps to follow in using PSL

The use of PSL for developing a high level transla-
tion between the source and target applications (A
and B) is now explored. Two applications do not
necessarily exchange all their processes for interop-
erability. Only one or a set of processes may be
translated. After identifying the concepts to be ex-
changed, the translation is performed in three steps
and outlined in Figure 4 (Pouchard, 2000) :

a. Syntactic translation : the native syntax of an

application is parsed to PSL syntax (KIF). This
parser keeps the terminology of the application.

b. Semantic translation to PSL : keeping the KIF
syntax for the terminology of the application of
interest, KIF definitions are written for that ap-
plication using PSL definitions. These defini-
tions are found within the concepts of the PSL
extensions. The question wizard facilitates the
attribution of definitions to the terminology and
concepts of an application to PSL definitions.
Translation definitions between an application
and PSL ontology can be derived from the onto-

Application
entities are
given KIF
definitions

Application
entities are ex-
pressed with
KIF syntax

Application Native
Syntax and Termi-

nology

Application ex-
pressed using PSL

concepts

Figure 4: Exchange of processes.

logical definitions and axioms provided in the
different parts of ISO 18629.

c. Semantic translation from one application to
another : At this point, the processes of the
source and target applications have been ex-
pressed using PSL terms and KIF syntax. Each
should have a one-to-one correspondence be-
tween each process definition and a PSL defini-
tion. The concepts of the source application are
mapped to concepts of the target application us-
ing PSL as the intermediate language. On this
basis, data for the relevant process can be ex-
changed.

Following this procedure is not sufficient to claim
conformance to PSL according to ISO 18629, but it
is sufficient for process exchange with another ap-
plication. (In order to claim full conformance to the
standard, the grammar of the processes used in the
application must be written using the BNF notation
as seen in section 3.2.)

4.2. Translation definitions

Step a: A resource for A, {resourceA: inject_mold
(r)}, written in KIF, is shown in Figure 5:

Step b: The entities and structural relationships (the
ontology of A) is then specified (Figure 6). Techni-
cal documentation supplemented by interviews are
often used. The ontology of A specifies what kind

of resource is implied by resourceA. Here resour-
ceA (a machine-tool) is a resource that can be used
by a process after another process that also requires
resourceA completes its occurrence..In Figure 6, ?r
is a resource variable.. Once a definition of resource
has been provided for A using A terminology, the
next step is to look for possible mappings between
resourceA and PSL concepts. Three cases occur: 1)
a one-to-one mapping exists, 2)a one-to-one map-
ping is possible under certain conditions, 3)PSL
does not contain the concept in question and needs
to be extended to accommodate A. Examples for
Case 1 and 2 are given here. This mapping is to be
done for every concept and relation contained in A.
The question wizard is of help for this task.

We must note here that the concept of “resource”, as
dealt with by the PSL language is taken with a

meaning different from its usual interpretation in
production management. However, a “resource” for
PSL is close to the analogous concept defined within
the ISO/IEC 62264 standard (ISO/IEC 62264-1,
2003).

Case 1) PSL contains a concept of resource defined

as -- a resource is any object that is required by
some activity -- where “activity” ?a and “requires”
are defined elsewhere in PSL (Figure 7).

PSL also specifies complex resources and defines

the concept of a reusable resource -- a resource ?r is
reusable by an activity ?a if any other activity that
also requires ?r is still possible to perform after ?a
completes its occurrence, in every possible future
(Figure 8). The PSL concepts, ‘common,’
‘occurs_over,’ ‘legal_interval,’ ‘legal,’ and
‘legal_activity’ in Figure 8 are defined elsewhere in
PSL. In our example, a mapping appears to exist,
but more information about A is needed before de-
ciding for a one-to-one mapping.

This information must be obtained from the docu-
mentation for Application A, and other sources
(vendors). PSL specifies that a reusable resource is
such that, as soon as one activity occurs, it is always
possible to perform the next activity. An example of
reusable resource according to PSL is a machine that

Figure 5: Resource concept for A in KIF.

(forall (?r)
(=> (inject_mold)

(resourceA ?r))))

forall (?r ?a
(<=> (resourceA ?r)

(exists (?a)
(reusable ?r ?a)))

Figure 6: Ontology of A

(defrelation resource (?r) :=
 (and (object ?r)
 (exists (?a)
 (requires ?a ?r))))

Figure 7: PSL definition for a resource.

(defrelation reusable (?r ?a1) :=

(forall (?a2 ?occ)

(=>(and (common ?a1 ?a2 ?r)
(occurs_over ?a1 ?
occ))

(forall (?b)

(=> (forall (?s3)
(=> (and
(legal_interval ?b)
(situation_during ?s3 ?b)
(occurs_during ?occ

(legal ?s3))
)

(legal_activity ?a2?s3)
)
)))))

Figure 8. PSL definition for a reusable resource

does not require setup between activities. If the re-
source in application A satisfies this condition, we
have a one-to-one mapping between the Application
A concept, resourceA, and PSL definitions of re-
source and reusable (Figure 9). :

Similar steps are followed in the translation of Ap-
plication B’s concepts into PSL. An index provides
an inverse table where the relevant PSL concepts are
mapped to the concepts of B. A and B are now in-
teroperable. A model for a manufacturing task using
A represented with PSL may be imported into Ap-
plication B.

Case 2) A conditional mapping between a PSL and
an application concept is required. The prototype
implementation of ILOG TM , a scheduler, contained
the concept ilcActivity. ilcActivity is narrower than a
PSL activity. How much narrower must be defined
for ilcActivity using PSL constraints. IlcActivity
maps to a PSL non-deterministic activity applied to
a set of resources. A PSL activity is non-
deterministic if and only if -- it is a nondeterministic
selection activity with respect to some resource set.
The conditional mapping of A to PSL is shown
(Figure 10).

Other research work has been done or is currently
on-going, showing examples of interoperability
among software tools using PSL, notably at the Uni-
versity of Stanford (CIFE) (Law 2001,) (Cheng et
al., 2003), and at the University of Loughborough
(Cutting-Decelle et al., 2000), (Cutting-Decelle et
al., 2002), (Cutting-Decelle et al., 2004),
(Tesfagaber et al., 2002).

5. SUMMARY

This paper was aimed at showing to what extent
standards based approaches can be helpful to facili-
tate information sharing and interoperability among

software applications commonly used in manufac-
turing, and in manufacturing management. Most of
the time, technical terms handled by those applica-
tions look similar, or, even worse, are exactly the
same – however their meaning is different. This is
particularly true of applications for which PSL was
designed, “built” more or less on the same
“manufacturing-flavoured” vocabulary, but with
very different and multiple interpretations of the
same terms. Given its properties, and its structure,
the ISO 18629 standard can be considered as a pow-
erful interoperability “tool” for the information sys-
tems of the enterprises.

ACKNOWLEDGEMENTS

The contribution of Line Pouchard, PhD., to this
submitted manuscript is sponsored by the US De-
partment of Energy, Office of Science of the Oak
Ridge National Laboratory, managed for the U. S.
DOE by UT-Battelle, LLC, under contract No. DE-
AC05-00OR22725. The work of Michael Gruninger
was supported in part by the Manufacturing Engi-
neering Laboratory at NIST, Grant Number
60NANB1D0058. Accordingly, the U.S. Govern-
ment retains a non-exclusive, royalty-free license to
publish or reproduce the published form of this con-
tribution, or allow others to do so, for U.S. Govern-
ment purposes.

REFERENCES

BPEL4WS : Available from http://www-

128.ibm.com/developerworks/library/
specification/ws-bpel/ .

Cheng J., Gruninger M., Sriram R.D., Law, K.H.
(2003). Process specification language for pro-
ject scheduling information exchange. Interna-
tional Journal of IT in AEC, 1:4.

Common Logic Web site. Available from http://
philebus.tamu.edu/cl/ .

Cutting-Decelle A.F., C.J. Anumba, A. N. Baldwin,
N.M. Bouchlaghem, G. Tesfagaber (2003). Ex-
changes of process information between software
tools in construction : the PSL language, Interna-
tional Conference ECPPM02, Portoroz, Slove-
nia, September.

Cutting-Decelle A.F., R.I.M Young, B.P. Das, C.J.
Anumba, A.N. Baldwin, N. M, Bouchlaghem.
(2004). A multi-disciplinary representation of
the supply chain information in construction : an
innovative approach to project management.
TMCE Conference.

Cutting-Decelle A.F., J.J Michel, C. Schlenoff.
(2000). Manufacturing and construction common
process representation : the PSL approach.
CE2000, Lyon, France, October.

Cutting-Decelle A.F., J.J Michel, C. Schlenoff.
(2000). Integration of industrial management
information and interoperability : MANDATE +

(forall (?r)

(<=> (resourceA ?r)
 (and (resource ?r)
 (reusable ?r)

Figure 9: Direct mapping.

(forall (?a)
(=> (and
(nondet_res_activity ?a)
(primitive ?a))

(<=> (ilcActivity ?a)

(activity ?a))))

Figure 10: Conditional mapping for ilcActivity.

PSL a combined approach. MICAD2000.
Etchemendy J. (1992) The language of first-order

logic. CSLI Lecture Notes, 34.
Fikes, R. and A. Farquahr. (1999). Distributed Re-

positories of Highly Expressive Reusable On-
tologies. IEEE Intelligent Systems and their Ap-
plications, 14:2.

Genesereth, M. and R.E. Fikes. (1992). Knowledge
Interchange Format, Version 3.0. Reference
Manual. Technical Report Logic-92-1. Com-
puter Science Department, Stanford University,
Stanford, CA.

Gomez-Perez, A. (1998). In: The Handbook of Ap-
plied Expert Systems (J. Liebowitz, Ed.),
Knowledge Sharing and Re-Use. Chapter 10,
pp.. 1-36. Boca Raton, Florida.

Gruber, T. (1993). A Translation Approach to Port-
able Ontology Specifications. Knowledge Acqui-
sitions 5, 199-220.

Gruninger, M. (2003) In: Hand-book on Ontologies
in Information Systems (R. Studer and S. Staab
Eds.), A guide to the ontology of the Process
Specification Language. Springer-Verlag,
Frankfurt.

Hunhs, M. N. and M. P. Singh. (1997). Ontologies
for Agents. IEEE-Internet Computing 1: 6.

ISO IS 10303-1. (1994) Industrial automation sys-
tems and integration – product data representa-
tion and exchange – part 1: overview and funda-
mental principles.

ISO IS 15531-1. (2002). Industrial automation sys-
tems and integration – Industrial manufacturing
management data – part 1 : general overview.

ISO IS 18629-1. (2004). Industrial automation sys-
tems and integration – Process specification
language – Part 1: Overview and basic princi-
ples.

ISO IS 18629-11. (2004). Industrial automation
systems and integration – Process specification
language – Part 11: PSL-Core.

ISO IS 18629-12 (2004). Industrial automation sys-
tems and integration – Process specification
language – Part 12: Outer Core.

ISO CD 18629-13 (2004). Industrial automation
systems and integration – Process specification
language – Part 13: Duration and ordering
theories.

ISO CD 18629-14 (2004). Industrial automation
systems and integration – Process specification
language – Part 14: Resource theories.

ISO DIS 18629-41 (2004). Industrial automation
systems and integration – Process specification
language – Definitional extensions: Part 41 :
Activity extensions.

ISO DIS 18629-42 (2004). Industrial automation
systems and integration – Process specification
language – Definitional extensions: Part 42 :
Temporal and state extensions.

ISO CD 18629-43 (2004) Industrial automation
systems and integration – Process specification

language – Definitional extensions: Part 43 :
Activity ordering and duration extensions.

ISO CD 18629-44 (2004). Industrial automation
systems and integration – Process specification
language – Definitional extensions: Part 44 :
Resource extensions.

ISO/IEC FDIS 62264-1 (2003). Enterprise-control
system integration – Part 1 : Models and termi-
nology.

ISO TC 184 / SC4 Web site. (2005). Available
from http://www.tc184-sc4.org.

ISO Web site. (2005). Available from http://
www.iso.ch.

Knowledge Interchange Format (1999). Part 1 :
KIF-Core, ISO/JTC1/SC32/WG2, WD.

Law, K.H. (2001). Process specification and simu-
lation. PSL quarterly progress report (CIFE).
Stanford, California..

Pouchard, L., N. Ivezic, C. Schlenoff (2000). Ontol-
ogy engineering for distributed collaboration in
manufacturing. AIS, Tucson, Arizona.

Pouchard, L., O. Rana. (2002). The Role of Ontolo-
gies in Agent-oriented Systems. Sixth Joint Con-
ference on Information Sciences, Computational
Semiotics Workshop. Research Triangle Park,
North Carolina.

PSL Twenty Questions Wizard. (2005). Available
from http://www.mel.nist.gov/
psl/20questions.html.

PSL Ontology Web site. Available from http://
www.mel.nist.gov/psl/ontology, 2005.

PSL Web site. (2005). Available from http://
www.mwel.nist.gov.

PSLX Consortium (2005). Available from : http://
www.pslx.org/en/.

Ray S. R. and A. T. Jones. (2003). Manufacturing
interoperability, Concurrent Engineering: En-
hanced Interoperable System. Proceedings of
the tenth ISPE International Conference, pp.535-
540.

Tesfagaber G., A. F. Cutting-Decelle, C.J. Anumba,
A. N. Baldwin, N.M. Bouchlaghem. (2002). Se-
mantic process modelling for applications inte-
gration in AEC. International workshop on infor-
mation technology in civil Engineering, ASCE.

