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Abstract. We propose a new edge detection method that is effective on multivariate irregular
data in any domain. The method is based on a local polynomial annihilation technique and can
be characterized by its convergence to zero for any value away from discontinuities. The method is
numerically cost efficient and entirely independent of any specific shape or complexity of boundaries.
Application of the minmod function to the edge detection method of various orders ensures a high
rate of convergence away from the discontinuities while reducing the inherent oscillations near the
discontinuities. It further enables distinction of jump discontinuities from steep gradients, even in in-
stances where only sparse non-uniform data is available. These results are successfully demonstrated
in both one and two dimensions.
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1. Introduction. Edge detection is of fundamental importance in image anal-
ysis. In particular, a reliable and efficient edge detection method can both provide
the possibility of processing an image with high accuracy, as well as serve to simplify
the analysis of images by drastically reducing the amount of data to be processed.
Among the many common criteria relevant to edge detector performance, there are
two very important issues. The first and most obvious issue is the possibility of fail-
ing to find real edge points and/or falsely identifying non-edge points. Regardless
of specific types of data (regular or irregular) and domains, it is imperative that the
edges occurring in the image should not be missed, and that there be no spurious
responses. This is critical since the edges of the image constitute piecewise smooth
regions. Hence errors in edge identification could also have drastic consequences on
image reconstruction. The second issue is the necessity for simple implementation
and cost efficiency.

To address these issues, this study constructs an edge detection method based
on local Taylor expansions. Indeed, several well-known methods exist in the uni-
variate case (see, e.g. [2], [3], [4], [5], [11] and references therein). However, for
the bivariate case, particularly with irregular points, no successful method has thus
far been developed. Recent developments ([1] and [15]) in essentially non-oscillatory
(ENO) and weighted non-oscillatory (WENO) methods for hyperbolic conservation
laws and Hamilton-Jacobi equations on multi-dimensional unstructured meshes also
utilize Taylor expansions to determine regions of analyticity. For uniform sampling,
we note that while ENO and WENO methods identify stencils yielding the “most”
smooth polynomial interpolations, they do not distinguish between, say, steep gradi-
ents and edges. In our method, Taylor expansions are used for the exclusive purpose
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of determining the true edges of an image by incorporating various orders and stencil
sizes.

In this paper we present an edge detection method for multivariate irregular data
that has the following desirable properties: (I) It can be applied to any irregular data
in any domain; (II) It is independent of any specific shape of discontinuities in both
the univariate and bivariate case; (III) The method depends only on locally sampled
signals making it easy to implement numerically, since for each point our scheme needs
only to solve a simple matrix and no global system of equations needs to be solved;
(IV) It has a fast rate of convergence to zero away from the discontinuities. The benefit
of the last property is that the edge detection method will be able to distinguish jumps
from steep gradients more readily than methods of slower convergence. There will be
additional considerations, as it will become apparent that high order edge detection
methods produce more oscillations in the neighborhoods of the jump discontinuities.
To distinguish true jump locations from neighborhood oscillations, we find from [13]
that the minmod function (see Definition 3.1), typically used for reducing oscillations
in the presence of shocks in numerical solutions for conservation laws (see e.g. [7]),
may help to reduce oscillations in the presence of jump discontinuities. We extend
this idea to our edge detection method for the case of multivariate irregular data, and
moreover provide a proof for its convergence rate to zero away from the discontinuities,
which has previously not been accomplished.

This study is primarily concerned with the detection of jump discontinuities (or
fault detection). While it is important to consider the effects of a noisy environment
on an edge detection method, it is beyond the scope of this introductory paper. Hence
we leave the study of noise for future investigations.

This paper is organized as follows: In Section 2 we present the formulation of the
edge detection method. In Section 3 we use this formulation to construct an edge
detection method for the one dimensional case and employ the minmod function to
the edge detection method. Section 4 is devoted to analyzing the behavior of the edge
detection method in two dimensions. Finally, some numerical algorithms are provided
in Appendices A and B.

2. General Formulation for Edge Detection. Let us first introduce the fol-
lowing notations which will be used throughout this paper:

For x = (x1, · · · , xd) in Rd, |x| := (x2
1 + x2

2 + · · ·+ x2
d)

1/2 stands for its Euclidean
norm. For any finite set of points S in Rd we use the notation KS for the convex
hull of the set S. We denote by N := {1, 2, · · · , } the set of natural numbers and
Z+ := {0, 1, 2, · · · , } the set of non-negative integers. For any α ∈ {(α1, . . . , αd) :
α1, . . . , αd ∈ Z+} := Zd

+, we set |α|1 :=
∑d

k=1 αk, and α! := α1! · · ·αd!. Throughout
α is a multivariate non-negative integer that will change dimension based upon the
dimension under discussion. We denote a uniform grid of density h as hZd := {hα|α ∈
Zd}. We use the usual notation dse to indicate the smallest integer greater than or
equal to s. For any m ∈ Z+, Πm denotes the space of all polynomials of degree ≤ m
in d ∈ N variables where the dimension of Πm is denoted by

md :=
(

m + d

d

)
.(2.1)

We recall the Dirac delta function

δi,j =
{

1, if i = j,
0, if i 6= j.

(2.2)
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Finally, throughout this paper we use A to represent an arbitrary constant that may
change value.

We introduce an edge detection method on the set of irregularly distributed points
in a bounded domain Ω in Rd. Let S be a set of discrete points in Ω and f be a piece-
wise smooth function known only on S. In order to identify the jump discontinuities
of f , we construct a function Lmf , m ∈ N, which can be characterized by the asymp-
totical convergence property,

Lmf(x) −→ 0,

for any x away from discontinuities, with the convergence rate depending in part on
the given positive integer m. The choice of m is user dependent but higher number
m provides a faster rate of convergence in smooth regions of f .

The edge detection method presented here is based on a local polynomial annihi-
lation property. The general form of Lmf is given by the following two step method.
In the first step, for any x ∈ Ω, we choose a set

Sx := Smd,x := {x1, . . . , xmd
},(2.3)

which is a local set of md (2.1) points around x. In practice, though the dimension d
can be arbitrary, we only consider the case d ≤ 2 and note that for d > 2 the method
is the same although the numerical algorithms are more complicated.

In order to annihilate polynomials up to degree m − 1, we solve a linear system
for the coefficients cj(x), j = 1, · · · ,md, given by

∑

xj∈Sx

cj(x)pi(xj) =
∑

|α|1=m

p
(α)
i (x), α ∈ Zd

+,(2.4)

where pi, i = 1, · · · ,md, is a basis of Πm. Note that the solution (2.4) exists and is
unique. Our edge detector Lmf is defined using the solution of (2.4) as

Lmf(x) =
1

qm,d(x)

∑

xj∈Sx

cj(x)f(xj).(2.5)

Here qm,d(x) is a suitable normalization factor depending on m, the dimension d, and
the local set Sx (2.3). In the following sections, we will determine qm,d(x) specifically
for d = 1, 2. Indeed, for the univariate case the normalization factor qm,d(x) is impor-
tant to detect the jump amount at a discontinuity. However, in the multivariate case,
it is no longer meaningful since the jump amount varies depending on the directions
at a discontinuity. In this case qm,d(x) can be used to estimate the magnitude of the
jump in its normal direction, as will be explained later.

It is evident from (2.5) that Lmf is local in the sense that it employs data only
in a small neighborhood of x. It is also apparent that (2.5) detects edges regardless of
the geometrical aspects of the discontinuities. Furthermore, we will show that Lmf(x)
converges to zero away from the discontinuities with a certain rate depending on m
and the local smoothness of the function f .

3. Edge Detection in One Dimension.

3.1. Formulation. Throughout Section 3, let f be a piecewise smooth function
on an interval [a, b], known only at the finite discrete points

S ⊂ [a, b], #S =: N < ∞,
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which we will call “nodes.” Suppose that f has jump discontinuities with well defined
one-sided limits, and let

J = {ξ : a ≤ ξ ≤ b}
denote the set of jump discontinuities of f in [a, b]. We define the local jump function
corresponding to f as

[f ](x) := f(x+)− f(x−),

where f(x+) and f(x−) are the right and left side limits of the function f at x. Clearly,
if f is continuous at x, then [f ](x) = 0 and for any ξ ∈ J , [f ](ξ) = f(ξ+)−f(ξ−) 6= 0.

The ability to find the locations and corresponding amplitudes of the jump discon-
tinuities depends on the accuracy of the approximation to the jump function [f ](x).
Hence we construct Lmf(x) in (2.5) to be an approximation to [f ](x) such that

Lmf(x) −→




[f ](ξ), if xj−1 ≤ ξ, x ≤ xj for ξ ∈ J ,

0, if Ix ∩ J = ∅,
(3.1)

where Ix is the smallest closed interval such that Sx ⊂ Ix, with Sx defined in (2.3). In
this way, a jump discontinuity ξ ∈ J is identified by its enclosed cell, xj−1 ≤ ξ ≤ xj ,
and the convergence rate of the approximation Lmf(x) to the jump function [f ](x) is
given in terms of

h(x) := max{|xi − xi−1| : xi−1, xi ∈ Sx}.(3.2)

Clearly h(x) is dependent upon the density of Sx.
The function Lmf for the univariate case is defined as follows: For the given

positive integer m, we choose a local set Sx of m1 points around x. Here m1 is the
dimension of Πm in R as given by (2.1), i.e., m1 = m + 1. The coefficients utilized in
the edge detection method are determined by the solution of the linear system

∑

xj∈Sx

cj(x)pi(xj) = p
(m)
i (x), i = 1, · · · ,m1,(3.3)

where pi, i = 1, · · · ,m1, is a basis of Πm. Clearly, the coefficients cj(x) are uniquely
determined by the local set Sx, and are of order O(h(x)−m) as h(x) → 0. Fortunately,
an explicit formula exists for cj(x) that will be described later in Theorem 3.2.

Next, by defining

S+
x := {xj ∈ Sx|xj ≥ x} and S−x := Sx \ S+

x ,(3.4)

we set the normalization factor in (2.5) as

qm(x) := qm,1(x) :=
∑

xj∈S+
x

cj(x),(3.5)

such that qm(x) 6= 0. Note from (3.3) that it is clear that qm(x) is of order O(h(x)−m)
as well.

Finally, the edge detection method (2.5) in the one dimensional case is

Lmf(x) =
1

qm(x)

∑

xj∈Sx

cj(x)f(xj).(3.6)
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There is no restriction in choosing the sets S+
x and S−x in (3.4), but from a practical

point of view, a good choice is to put almost the same numbers of nodes on each side
of x. For instance, if m is odd, one may choose S+

x and S−x such that #S+
x = #S−x .

These sets will have to be adjusted near the boundary of the domain, and naturally
will become more one-sided.

In order for Lmf in (3.6) to be successful, it should approximate the jump function
[f ](x) with high accuracy. Theorem 3.1 shows that Lmf(x) converges to zero away
from the jump discontinuities of f with a certain rate depending on m and the local
smoothness of f .

Theorem 3.1. Let m ∈ N and Lmf(x) be defined as in (3.6) using a local set Sx

with #Sx = m1 = m + 1. Then, we have

Lmf(x) =





[f ](ξ) +O(h(x)), if xj−1 ≤ ξ, x ≤ xj,

O(hmin(m,k)(x)), if f ∈ Ck(Ix) for k > 0,

where h(x) is given in (3.2) and Ix is the smallest closed interval such that Sx ⊂ Ix.
Proof. Assume first that f ∈ Ck(Ix) for some k > 0. Denote km := min(k, m) > 0

and let Tkm−1f be the Taylor expansion of f of degree km − 1 around x, namely,

Tkm−1f(·) =
km−1∑
α=0

(· − x)αf (α)(x)/α!.

Since Tkm−1f is a polynomial of degree less than m, the definition of cj(x) in (3.3)
implies that

∑

xj∈Sx

cj(x)Tkm−1f(xj) = 0.(3.7)

By rewriting f = Tkm−1f + Rkm−1f , where Rkm−1f is the remainder of Taylor ex-
pansion, it follows from (3.7) that

|Lmf(x)| =
∣∣∣∣

1
qm(x)

∑

xj∈Sx

cj(x)Rkm−1f(xj)
∣∣∣∣

=
∣∣∣∣

1
qm(x)

∑

xj∈Sx

cj(x)(xj − x)kmf (km)(ζj)/km!
∣∣∣∣

≤ Ahkm(x)
1

|qm(x)|
∑

xj∈Sx

|cj(x)|

for some ζj between x and xj , where the last inequality is implied since |x − xj | ≤
mh(x) for any xj ∈ Sx and |f (km)(x)/km!| is bounded for x ∈ Ix. Since both cj(x)
and qm(x) are O(h−m(x)), it is clear that |Lmf(x)| ≤ Ahkm(x).

Next, consider the case that xj−1 ≤ ξ, x ≤ xj for ξ ∈ J and xj−1, xj ∈ Sx. With-
out loss of generality, assume that ξ is the only discontinuity of f in a neighborhood
Iξ and Sx ⊂ Iξ. Invoking the notations S+

x and S−x in (3.4), we have

Lmf(x) =
1

qm(x)

∑

xj∈S+
x

cj(x)f(xj) +
1

qm(x)

∑

xj∈S−x
cj(x)f(xj)
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=
1

qm(x)

∑

xj∈S+
x

cj(x)
[
f(ξ+) + (xj − ξ)f ′(ζ+

j )
]

+
1

qm(x)

∑

xj∈S−x
cj(x)

[
f(ξ−) + (xj − ξ)f ′(ζ−j )

]

for some ζ+
j and ζ−j . Since (2.4) implies that

∑
xj∈Sx

cj(x) = 0, it follows that

∑

xj∈S+
x

cj(x) = −
∑

xj∈S−x
cj(x).

Utilization of (3.5) yields

Lmf(x) = (f(ξ+)− f(ξ−)) +O(h(x))

to complete the proof.

Next, Theorem 3.2 establishes the relationship between the edge detection method
(3.6) and Newton divide differences, which are frequently employed to determine
smooth regions in finite difference schemes (see for example [6], [9], and [12]). This
beneficial relationship provides an explicit formula for the coefficients cj(x) without
solving the linear system (3.3). Denoting Sx =: {x1, · · · , xm1} with m1 = m+1, recall
the definition of the mth

1 degree Newton divided difference for a smooth function f(x)
on Sx:

f [Sx] := f [x1, x2, . . . , xm1 ] =
f [x1, x2, . . . , xm1−1]− f [x2, x3, . . . , xm1 ]

x1 − xm1

(3.8)

=
m1∑

j=1

f(xj)
ωj(Sx)

=
f (m)(ξ)

m!
,

where ξ ∈ (x1, xm1) and

ωj(Sx) :=
m1∏
i=1
i6=j

(xj − xi).(3.9)

Theorem 3.2. Under the same conditions and notations of Theorem 3.1, the
coefficients cj(x) can be directly solved as

cj(x) =
m!

ωj(Sx)
, j = 1, · · · ,m1,(3.10)

with ωj(Sx) in (3.9). Furthermore, the Lmf(x) in (3.6) can be expressed as

Lmf(x) =
m!

qm(x)
f [Sx].

Proof. Since the coefficients cj(x) that solve (3.3) are independent of the basis
of Πm, it is enough to consider the basis pi(x) = xi−1 for i = 1, · · · ,m1. The mth

derivative of these basis functions satisfies

p
(m)
i (x) = m!δi,m1 for all x ∈ R.(3.11)
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By (3.8), it is possible to conclude that pi[Sx] = δi,m1 , yielding m!pi[Sx] = p
(m)
i (x),

i = 1, · · · ,m1. Hence by (3.8) we have

m!
m1∑

j=1

pi(xj)
ωj(Sx)

= p
(m)
i (x), i = 1, · · · ,m1,

indicating that the coefficients cj(x) can also be formulated by (3.10).
Given the direct representation (3.10) of the coefficients cj(x) as the solution of

the linear system (3.3), the edge detection method (3.6) can be expressed as

Lmf(x) =
1

qm(x)

∑

xj∈Sx

cj(x)f(xj),

=
m!

qm(x)

∑

xj∈Sx

f(xj)
ωj(Sx)

=
m!

qm(x)
f [Sx],

finishing the proof.

Remark. Let x ∈ (a, b) be fixed and I+
x be the smallest closed interval such that

S+
x ⊂ I+

x . Choosing f = χI+
x

with χI+
x

the characteristic function on I+
x , Theorem

3.2 implies that the normalization factor qm(x) in (3.5) can be written as

qm(x) =
∑

xj∈S+
x

cj(x)

=
∑

xj∈Sx

cj(x)χI+
x

(xj) = m!χI+
x

[Sx].

Thus, the assumption qm(x) 6= 0 is reasonable.

Remark. As discussed above, for any given data (S, f |S), the evaluation of Lmf(x)
involves only finite local data (Sx, f |Sx) around x. Accordingly, if S is a set of irregular
points, the coefficients cj(x) may vary depending on the location x. However, if the
given set S is uniform, say,

S := {a + nh | n = 0, · · · , N}, h =
b− a

N
> 0,(3.12)

then there exists only one set of coefficients cj(x) = cj , j = 1, · · · ,m1, which are
independent of the position x inside [a, b] (but away from the boundary). Specifically,
(3.10) can be directly applied to obtain the coefficients

cj =
m!

ωj(Sx)
=

m!
h

∏m1
i=1,i6=j(j − i)

, j = 1, · · · ,m1,

which in turn yields the normalization factor qm = qm(x) in (3.5). Hence cj

qm
in (3.6)

is bounded and independent of both h and x, and consequently the numerical com-
putation of (3.6) is further simplified, while keeping the same convergence properties
in Theorem 3.1

To demonstrate the efficacy of the edge detection method Lmf(x), let us consider
the following example:
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Fig. 3.1. (a) Graph of f1(x). (b) Random sampling of f1(x) on N = 64 points.

Example 3.1.

f(x) :=





cos(3πx) −1 ≤ x < 0,

2
1+3e−50x+25 − 1 0 < x ≤ 1.

(3.13)

The function f(x) has an edges at x = 0 and corresponding jump function

[f ](x) =




−2, if x = 0,

0, else.
(3.14)

We wish to approximate [f ](x), based on the scattered grid point values generated
randomly by MATLABr and depicted in Figure 3.1(b). Figure 3.2 demonstrates the
application of Lmf(x) for m = 1, 3, 4, and 6.
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Fig. 3.2. The edge detection method Lmf(x) given by (3.6) for (a) m = 1, (b) m = 3, (b)
m = 4 , and (d) m = 6.

Observe in Figure 3.2 that the application of (3.6) encounters some problems in
the approximation of jump functions. Specifically, as m increases, oscillations that
occur in the neighborhood of a jump discontinuity can be misidentified as true edges.
On the other hand, for smaller m, there is a risk of identifying a steep gradient as
an edge, especially in regions where the scattered grid points are far apart. We wish
to avoid the possibility of misidentification due either to the low resolution problems
associated with the low order edge detection or to the oscillations inherent in the high
order case. Presented in the following section is the minmod edge detection method
that helps to prevent the edge detection method (3.6) from misidentifying edges.
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3.2. Minmod Edge Detection in One Dimension. It was observed in [13]
that the the minmod function, typically used in numerical conservation laws to reduce
oscillations (see e.g. [7]), could also be applied to distinguish true jump discontinuities
from neighborhood oscillations. In what follows we describe the oscillating behavior
near the jump discontinuities that results from using our local edge detector (3.6).
Thus motivated, we extend the use of the minmod function and incorporate various
orders of m for non-uniform grids. Moreover, we provide the proof of its convergence
rate to zero away from the discontinuities. We will refer to this technique as the
minmod edge detection method.

The next theorem describes the behavior of the edge detection method (3.6) in
the neighborhoods of discontinuities, and motivates the need for further refinement
by the minmod function.

Theorem 3.3. Let m ∈ N and Lmf(x) be defined as in (3.6) using Sx with
#Sx = m1, and let

Qm(ξ, x) :=
∑

xj∈S+
ξ

cj(x)(3.15)

with S+
ξ := {xj ∈ Sx|xj ≥ ξ} as given in (3.4). Then

Lmf(x) =





Qm(ξ,x)
qm(x) [f ](ξ) +O(h(x)), if Ix ∩ ξ 6= ∅ for ξ ∈ J,

O(hmin(m,k)(x)), if f ∈ Ck(Ix) for k > 0,

Here, Ix is the smallest closed interval such that the local set Sx ⊂ Ix.
Proof. Assume first that Ix ∩ J = ∅ and therefore f ∈ Ck(Ix) for some k > 0. It

is therefore possible to conclude by Theorem 3.1 that Lmf(x) = O(hmin(m,k)(x)).
Next, let us consider the case that Ix ∩ J 6= ∅. Without loss of generality, assume

that ξ is the only discontinuity of f in a neighborhood Ix. Invoking the notations S+
ξ

and S−ξ in (3.4), we see that

Lmf(x) =
1

qm(x)

∑

xj∈S+
ξ

cj(x)f(xj) +
1

qm(x)

∑

xj∈S−ξ

cj(x)f(xj)

=
1

qm(x)

∑

xj∈S+
ξ

cj(x)
[
f(ξ+) + (xj − ξ)f ′(ζj)

]

+
1

qm(x)

∑

xj∈S−ξ

cj(x)
[
f(ξ−) + (xj − ξ)f ′(ζj)

]

with ζj between xj and ξ. Here, from the condition
∑

xj∈Sx
cj(x) = 0 in (3.3), it is

clear that

Qm(ξ, x) :=
∑

j∈S+
ξ

cj(x) = −
∑

j∈S−ξ

cj(x).

Hence

Lmf(x) =
Qm(ξ, x)
qm(x)

(f(ξ+)− f(ξ−)) +O(h(x)),
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which completes the proof.

The behavior characterized in Theorem 3.3 is visible in Figure 3.2 as m increases
in (3.6). Specifically, the edge detection method approximates the jump function with
high order outside the neighborhoods of the discontinuities. Unfortunately, inside the
neighborhoods of the discontinuities the edge detection method oscillates according
to the fraction Qm(ξ,x)

qm(x) [f ](ξ).
The minmod edge detection method, as defined below, uses the minmod function

to exploit the characteristics of the edge detection method of various orders both inside
and outside the neighborhoods of the discontinuities to ensure the highest order of
convergence possible away from the discontinuity, as well as to reduce the oscillations
inside the neighborhoods of discontinuities.

Definition 3.1. For a given finite set M⊂ N of positive integers, consider the
set LMf = {Lmf : R→ R |m ∈M}. The minmod function is defined by

MM

(
LMf(x)

)
=





min
m∈M

Lmf(x), if Lmf(x) > 0, ∀m ∈M,

max
m∈M

Lmf(x), if Lmf(x) < 0, ∀m ∈M,

0, otherwise.

(3.16)

Theorem 3.4 characterizes the convergence of the minmod function applied to
the set of edge detectors Lmf of various order m, and demonstrates its ability to
distinguish jump discontinuities from neighborhood oscillations.

Theorem 3.4. If M = {1, 2, . . . , µ}, we have

MM

(
LMf(x)

)
=





[f ](ξ) +O(h(x)), if xj−1 ≤ ξ, x ≤ xj,

O(hmin(Mx,k)(x)), if f ∈ Ck(Ix),

where Ix is the smallest closed interval such that Sx ⊂ Ix with #Sx ≤
(Mx+1

1

)
, and

Mx is defined by

Mx := max
{
m ∈M|#Sx = m1, Ix ∩ J = ∅}.(3.17)

Proof. For x ∈ [a, b], assume without loss of generality that xj−1 ≤ x ≤ xj for
some xj−1, xj ∈ S. If there exists ξ ∈ J such that xj−1 ≤ ξ ≤ xj , then by Theorem
3.1 we have

Lmf(x) = [f ](ξ) +O(h(x))

for any m ∈M. Therefore, it is possible to conclude that

MM

(
LMf(x)

)
= [f ](ξ) +O(h(x)).

If J ∩ [xj−1, xj ] = ∅, then by definition we have Mx ≥ 1. Also from the definition
of Mx, for any m ∈ M such that m ≤ Mx and #Sx = m1 we have Ix ∩ J = ∅.
Therefore, Theorem 3.1 implies that Lmf(x) = O(hmin(m,k)(x)) yielding

MM

(
LMf(x)

)
= O(hmin(Mx,k)(x))
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to complete the proof.

By including 1 ∈ M in Theorem 3.4, first order convergence is ensured at edges,
even in the case where edges are in neighboring centers. Large values are also in-
cluded in the set M so that there will be a high order of convergence away from the
discontinuity.

The minmod edge detection method relaxes the assumption for edge resolution
in Theorem 3.1, specifically that edge detection is possible only if a maximum of one
edge is contained in each local set, or equivalently

#
(

[xj , xj+m1 ] ∩ J

)
≤ 1, for j = 1, . . . , N −m1,(3.18)

where J is the set of discontinuities of f on [a, b]. In this case, only a certain density of
edges can be resolved, i.e., only one discontinuity can be resolved for each m1 points.
Furthermore, the order of the method is restricted to the “closeness” of the edges in
terms of their grid point location. Theorem 3.4 relaxes this assumption so that edge
resolution is possible if J , the set of discontinuities of f on [a, b], satisfies

#
(

[xj , xj+1] ∩ J

)
≤ 1, for j = 1, . . . , N − 1,(3.19)

i.e., the edges can occur at neighboring grid point values. If this requirement is not
satisfied, the problem is clearly under-resolved.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 3.3. The minmod edge detection method, MM
(
LMf(x)

)
, for Example 3.1. Here M =

{1, 2, . . . , 6}.

The superior convergence properties of the minmod edge detection method for
Example 3.1 with M = {1, 2, . . . , 6} are evident in Figure 3.3. Of particular interest
is the ability of the minmod edge detection method to resolve the local jump function
even when the first order approximation, as displayed in Figures 3.2(a), detect edges in
smooth regions that are artifacts of the variability of the function and sparse sampling.
Residual small oscillations that are still evident can be removed by a thresholding
process.

The algorithm in Appendix A details the one dimensional edge detection compu-
tation of Examples 3.1, where the particular choice of local sets, reconstruction grid
points, and basis functions are specified.
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4. Edge Detection in Two Dimensions.

4.1. Formulation. Throughout Section 4, let f be a piecewise smooth function
on a domain Ω ⊂ R2 known only on the set of discrete nodes

S ⊂ Ω, #S =: N < ∞.

Though d indicates an arbitrary dimension, here we only consider the bivariate case.
The higher dimensional case can be similarly constructed with more complicated
numerical algorithms.

In two dimensions a jump discontinuity at x = ξ is identified by its enclosed points
(i.e., triangular points) and is characterized by the convergence property away from
the discontinuities. Specifically, the enclosed points can be defined by the Delaunay
triangulation for S that consists of the set of lines connecting each point to its natural
neighbors [10]. These sets of lines form elementary triangles whose vertices consist of
points in S. A triangle is considered elementary if every combination of vertices pairs
are natural neighbors. Let the number of elementary triangles of the set S be defined
as NT . We denote the set of vertices of all elementary triangles in the Delaunay
triangulation of S as

TS =
{

Tj

∣∣∣∣Tj := {xj
1, x

j
2, x

j
3} ⊂ S for j = 1, · · · , NT

}
,(4.1)

where Tj is the set of vertices for an elementary triangle.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

(a)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

(b)

Fig. 4.1. A region of the Delaunay triangulation of 256 randomly sampled points on [−1, 1]×
[−1, 1] (The region is enlarged for visibility purposes). (a) The elementary triangle Tj that satisfies
x ∈ KTj

, represented by circles. (b) Pictorial representation of the local set Sx := Tj ∪ STj
, where

#Sx = 10.

Since discontinuities are identified at specific points by their enclosed cells, the
local sets Sx are chosen to include points that characterize these cells. For arbitrary
x ∈ Ω, we can assume without loss of generality that x ∈ KTj ⊂ Ω. Recall that KTj is
the convex hull of the set of vertices Tj ∈ TS . Therefore the local set Sx for arbitrary
x ∈ Ω can now be defined specifically to include the set that characterizes its enclosed
points as

Sx := Tj ∪ STj ,(4.2)
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where Tj ∈ TS , x ∈ KTj
, and STj

is the set of the m2 − 3 closest points to x in
the set S \ Tj . To illustrate how Sx is chosen, Figure 4.1 depicts a region of the
Delaunay triangulation of 256 randomly sampled points on [−1, 1] × [−1, 1]. Figure
4.1(a) displays a point x and the elementary triangle Tj that satisfies x ∈ KTj

. Figure
4.1(b) exhibits a local set Sx as defined in (4.2), where #Sx = 10.

In order to quantify the convergence rate of the edge detection method, we define

h(x) := max
x∈KSx

min
xj∈Sx

|x− xj |,(4.3)

which is dependent upon the density of the local set Sx.
Recall that for a given positive integer m, the dimension of Πm in R2 is denoted

by m2 (2.1). If Sx is a local set of m2 points around x, the function Lmf is given by

Lmf(x) =
1

qm,2(x)

∑

xj∈Sx

cj(x)f(xj),(4.4)

where the coefficients cj(x), j = 1, · · · ,m2, are dependent upon the local set Sx and
satisfy the linear system

∑

xj∈Sx

cj(x)pi(xj) =
∑

|α|1=m

p
(α)
i (x), i = 1, · · · , m2, α ∈ Z2

+.(4.5)

Here pi, i = 1, · · · ,m2, form a basis of Πm. Further illustration of the application of
(4.5) for a particular basis of Πm is detailed in Appendix B. It is easy to check that
cj(x) = O(h(x)−m), implying that qm,2(x) = O(h(x)−m) as well. Recall that in the
one dimensional case, the constant qm,1 is used to determine the jump amplitude at
a discontinuity. In the bivariate case, the jump amplitude may vary depending on
the paths through a given discontinuity, so quantifying the jump amount at such dis-
continuity points is not meaningful. However, in the case where jump discontinuities
arise locally along a simple curve, we can estimate the jump magnitude in the normal
direction with a suitable qm,2(x), and then apply the minmod edge detection method
from (3.16) to pinpoint the edges. This will be discussed further in Section 4.2. For
now we limit our discussion to detecting edges without consideration of their jump
amounts.

Since cj(x) = O(h(x)−m), it is possible to bound Lmf uniformly by defining

qm(x) = qm,2(x) :=
∑

xj∈Px

cj(x),(4.6)

where Px can be a suitable subset of Sx such that qm(x) 6= 0. This will be discussed
later following Definition 4.1, where we will see that the versatility of Px can be utilized
to provide a good approximation to the jump magnitudes in the normal directions of
the edges in the multivariate case.

Theorem 4.1 establishes the convergence rate of Lmf(x), defined in (4.4), away
from the discontinuities of f .

Theorem 4.1. Suppose f is a piecewise smooth function on a domain Ω in R2

known only on a discrete nodes S. Let J denote the set of jump discontinuities of f
in Ω, and Lmf be defined as in (4.4) with m ∈ N. Then if f ∈ Ck(KSx) for some
k > 0, we have

Lmf(x) = O(hmin(k,m)(x)).
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Proof. The technique of proving Theorem 3.1 is adapted in a straightforward
fashion to prove this theorem. Assuming that f ∈ Ck(KSx) for some k > 0, we define
km := min(k, m) and then separate f into two parts:

f = Tkm−1f + Rkm−1f,

where Tkm−1f is the Taylor polynomial of f of degree (km − 1) around x, namely,

Tkm−1f(y) =
∑

|α|1≤km−1

(y − x)αD(α)f(x)/α!,(4.7)

and Rkm−1f is its remainder. Then from the definition of cj(x) in (4.5) we see that
∑

xj∈Sx

cj(x)Tkm−1(xj) = 0,

leading to the relation

Lmf(x) =
1

qm(x)

∑

xj∈Sx

cj(x)Rkm−1f(xj)

=
1

qm(x)

∑

xj∈Sx

cj(x)
∑

|α|1=km

(xj − x)αD(α)f(ζj)/α!

for some ζj between xj and x. Since cj(x) and qm(x) are both O(h(x)−m), we obtain
the relation Lmf(x) = O(hkm(x)), which completes the proof.

Remark. As in the univariate case, if the data is given on a uniform grid S, we can
find a unique set of coefficients cj(x) = cj , j = 1, · · · ,m2, with m2 given in (2.1), and
apply it to construct Lmf(x), regardless of the position x (away from the boundary
of Ω) and the density h(x) of points. Let U be a set of integers around the origin
with #U = m2, and assume that for any x, the shape of the stencil of Sx is same as
U, i.e., there exists ν(x) ∈ hZ2 ∩ Ω such that

Sx = ν(x) + hU, h > 0.(4.8)

Solving the linear system

∑

j∈U

cj
jα

α!
= δm2,|α|1 , α ∈ Z2

+, |α|1 ≤ m2,(4.9)

we define Lmf as follows:

Lmf(x) =
1

qm

∑

j∈U

cjf(ν(x) + jh),(4.10)

where qm is also independent of x. Note that cj and qm are bounded by a constant,
while if Sx is a scattered data set they are O(h−m(x)). A straightforward application
of the proof in Theorem 4.1 shows that for the uniform case with h = h(x), we have

Lmf(x) = O(hmin(k,m)).
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4.2. Minmod Edge Detection in Two Dimensions. As in the one dimen-
sional case, the utilization of the minmod edge detection method increases the area
of convergence away from the discontinuities of f . Theorem 4.1 establishes that for
a certain order m, the edge detection method Lmf(x) defined in (4.4) converges to
zero away from the discontinuities if KSx ∩ J = ∅. Here J denotes the set of jump
discontinuities of f in Ω. Theorem 4.2 demonstrates that the minmod edge detection
method converges to zero away from the discontinuities if KTj ∩J = ∅, where Tj ∈ TS
is defined in (4.1). Clearly this is an improvement since KTj

⊂ KSx
.

Theorem 4.2. If x ∈ KTj
and KTj

∩ J = ∅ for some Tj ∈ TS (4.1), then the
minmod edge detection method (3.16) for the set M = {1, 2, . . . , µ} has the property

MM

(
LMf(x)

)
= O(hmin(Mx,k)(x)),

where Mx is defined as

Mx := max
{
m ∈M : KSx ∩ J = ∅, #Sx = m2

}
,(4.11)

and f ∈ Ck(KSx
) for some k > 0 with #Sx ≤

(Mx+2
2

)
.

Proof. Assume that x ∈ KTj and KTj ∩J = ∅ for some Tj ∈ TS . Since KTj ∩J = ∅
we have Mx ≥ 1. Then for any m ∈ M such that m ≤ Mx, the corresponding
local set Sx such that #Sx = m2 will satisfy Sx ∩ J = ∅. Theorem 4.1 then gives
Lmf(x) = O(hmin(m,k)(x)). Therefore

MM

(
LMf(x)

)
= O(hmin(Mx,k)(x)),

which finishes the proof.

As in the case of one dimension, the choice of M in Theorem 4.2, an arbitrary
set of positive integers, is purposeful. By including 1 ∈ M, first order convergence is
ensured at the neighboring cells of discontinuities. Large values are also included in the
set M so that there will be a high order of convergence away from the discontinuities.

Recall that for any particular point x ∈ Ω, the normalization factor qm(x) in (4.6)
is defined for a subset Px ⊂ Sx such that qm(x) 6= 0. Theorem 4.3 demonstrates that
for a particular Px the minmod edge detection method will provide a good approxi-
mation to the jump magnitudes in the normal directions of the edges. To accomplish
this approximation, we provide the following definition:

Definition 4.1. For an arbitrary point x ∈ Ω of a piecewise smooth function f ,
define the subset Px of the local set Sx ⊂ S as

Px = arg max
P
{#P|P ⊂ Sx, and f ∈ Ck(KP) for some k > 0}.(4.12)

Therefore Px is the largest subset of the local set Sx such that f ∈ Ck(KPx) for some
k > 0. (A technique for approximating this particular Px is provided in Appendix
B.)

As in the one dimensional case, qm(x) can be considered as a generalized version of
divided differnce for the characteristic function χPx

on Sx (see the ‘Remark’ following
Theorem 3.2). Hence, the condition qm(x) 6= 0 is reasonable. Further, it is assumed
without loss of generality in the following analysis that for a small enough local set, if
Px 6= Sx then f ∈ Ck(KPc

x∩Sx) for some k > 0. Here Pc
x indicates the complement of
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the set Px. This assumption is similar to the one dimensional case where it is assumed
that each local set contains at most one discontinuity. If this assumption is not true,
the problem is clearly under-resolved.

Theorem 4.3 characterizes the minmod edge detection method for the two di-
mensional edge detection function |Lmf | in (4.4). In this case, we use the absolute
value of (4.4) since the jump amplitude may vary depending on paths through a given
discontinuity.

Theorem 4.3. For each m ∈ N, define Lmf as in (4.4) with qm(x) given in
(4.6). If x ∈ KTj

for some Tj ∈ TS , then the minmod edge detection method (3.16)
for the set M = {1, 2, . . . , µ} has the property

MM

(∣∣∣∣LMf(x)
∣∣∣∣
)

=





[F ](x) +O(h(x)), if KTj
∩ J 6= ∅,

O(hmin(Mx,k)(x)), if KTj
∩ J = ∅,

where Mx is defined in (4.11), f ∈ Ck(KSx) for some k > 0 with #Sx ≤
(Mx+2

2

)
,

and

[F ](x) := max
{|f(u)− f(v)| : u ∈ KPx

∩KTj
, v ∈ KPc

x∩Sx
∩KTj

}
.(4.13)

Proof. For any given integer m ∈M, choose the local set Sx such that #Sx = m2.
Assume first KTj ∩J 6= ∅. Then clearly Px,Pc

x∩Sx 6= ∅. Now, for some βj , γj ∈ (0, 1),
we have

|Lmf(x)| =
∣∣∣∣

1
qm(x)

∑

xj∈Px

cj(x)f(xj) +
1

qm(x)

∑

xj∈Pc
x∩Sx

cj(x)f(xj)
∣∣∣∣

=
∣∣∣∣

1
qm(x)

∑

xj∈Px

cj(x)
[
f(u) +

∑

|α|1=1

(xj − u)αDαf(u + βj(xj − u))
]

+
1

qm(x)

∑

xj∈Pc
x∩Sx

cj(x)
[
f(v) +

∑

|α|1=1

(xj − v)αDαf(v + βj(xj − u))
]∣∣∣∣

for any u ∈ KPx ∩KTj and v ∈ KPc
x∩Sx ∩KTj . From the condition

∑
j∈Sx

cj(x) = 0,
we see from (4.6) that

qm(x) =
∑

xj∈Px

cj(x) = −
∑

xj∈Pc
x∩Sx

cj(x),

and therefore

|Lmf(x)| = |f(u)− f(v)|+O(h(x)).

Since u and v are arbitrary points in the sets KPx∩KTj and KPc
x∩Sx∩KTj respectively,

we obtain that |Lmf(x)| = [F ](x)+O(h(x)), where [F ](x) is defined in (4.13), yielding

MM

(∣∣∣∣LMf(x)
∣∣∣∣
)

= [F ](x) +O(h(x)).

Next, assume that KTj ∩ J = ∅. By definition, Mx ≥ 1. Then for any m ∈ M
such that m ≤ Mx, the corresponding local set Sx such that #Sx = m2 will satisfy
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Sx ∩ J = ∅. Theorem 4.1 then gives Lmf(x) = O(hmin(m,k)(x)). Clearly it can be
concluded that

MM

(∣∣∣∣LMf(x)
∣∣∣∣
)

= O(hmin(Mx,k)(x)),

which finishes the proof.

(a) (b)

Fig. 4.2. (a) f1(x) from Example 4.1 sampled on random points with #S = 1282. (b) The

minmod edge detection method of MM
(
LMf1(x)

)
, for M = {1, 2, 3, 4}.

To demonstrate the efficacy of the minmod edge detection method in two dimen-
sions we consider the following example.

Example 4.1.

f1(x) := f1(u, v) :=





uv + cos (2πu2)− sin (2πu2), if u2 + v2 ≤ 1
4
,

10u− 5 + uv + cos (2πu2)− sin (2πu2), if u2 + v2 > 1
4
,

for −1 ≤ u, v ≤ 1.
Note that the edges comprise of the circle u2+v2 = 1

4 with the exception of u = 1
2

where the function is smooth. Figure 4.2(a) shows f1(x) sampled on a MATLABr

randomly generated data set S with #S = 1282. Figure 4.2(b) displays the results of
applying the minmod edge detection method to Lmf1 with m ∈ M = {1, 2, 3, 4}. Of
particular interest is the ability of the minmod edge detection method to resolve the
positions and magnitudes in the normal direction of the edges even in areas of sparse
sampling and steep gradients.

Let us now turn our attention to a practical example often used as a benchmark
test for edge detection in magnetic resonance imaging (MRI).

Example 4.2. The so-called Shepp-Logan phantom, f2(x), defined in Appendix
C.

Note that the edges of the Shepp-Logan phantom comprise of various ellipses of
different sizes and orientations, some of which overlap. Figure 4.3(a) shows Shepp-
Logan phantom (denoted as f2(x)), sampled on a MATLABr randomly generated
data set S with #S = 1282. Figure 4.3(b) displays the results of applying the minmod
edge detection method on Lmf2(x) with m ∈ M = {1, 2, 3, 4}. Of particular interest
is the ability of the minmod edge detection method to resolve edges that reside in
neighboring centers.
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(a) (b)

Fig. 4.3. (a) f2(x) from Example 4.2 sampled on random points with #S = 1282. (b) The

minmod edge detection method, MM
(
LMf2(x)

)
, for M = {1, 2, 3, 4}.

The algorithm in Appendix B details the two dimensional edge detection compu-
tation for Examples 4.1 and 4.2, where the particular choice of local sets, reconstruc-
tion points, and basis functions are specified. Although no formal computational cost
studies were conducted, our experiments indicate that the two dimensional algorithm
experiences minimal increase in computational effort.

5. Concluding Remarks. In this paper we have introduced an edge detection
method (2.5) based on a local polynomial annihilation property on a set of irreg-
ularly distributed points in a bounded domain Ω ⊂ Rd. The method successfully
captures discontinuities that are identified by their enclosed cells by characterizing
the convergence away from the discontinuities. Although the convergence of the edge
detection method can be of high order away from discontinuities, there are problem-
atic oscillations in the neighborhoods of discontinuities. The minmod function (3.6)
for one-dimensional global edge detection methods, enables the distinction of jump
discontinuities from neighborhood oscillations by the effective use of the information
intrinsic to the edge detection approximation. The resulting minmod edge detection
method ensures the highest rate of convergence up to the enclosed points of disconti-
nuities.

The edge detection method described in our study is local, numerically cost ef-
ficient, and entirely independent of any specific shape or complexity of boundaries.
Furthermore, it demonstrates the ability to detect edges of piecewise smooth functions
with steep gradients as well as in low resolution environments with sparse, non-uniform
sampling. For uniformly distributed points, the cost of computation is significantly
reduced since the coefficients in the edge detection method are constant for every type
of local stencil.

This study is concerned with the detection of jump discontinuities. Our future
work will focus on integrating this method to real signals and images in various sci-
entific disciplines, where noise, poor resolution, and numerical efficiency all become
critical issues. We also are currently generalizing our method to determine jump
discontinuities in the derivatives, critical for resolving texture in images.

Appendix A. One Dimensional Edge Detection Algorithm.

For any x ∈ [a, b], let Sx be the closest m1 = m + 1 points to x in S. As
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a basis of Πm, choose pi(x) = xi−1 for i = 1, · · · ,m1. The minmod function for
M = {1, 2, . . . , µ} will be reconstructed on the points xj+ 1

2
= 1

2 (xj+1 + xj) with
j = 1, · · · , N − 1.

for m = 1 to µ and j = 1 to N − 1
step 1. For each xj+ 1

2
, define S+

x
j+ 1

2
= {xn|xn > xj+ 1

2
} and set r = #S+

x
j+ 1

2
.

step 2. Calculate the coefficients

ci(xj+ 1
2
) =

m!

ωi(Sx
j+ 1

2
)
, i = 1, · · · , m1,

where ωi(Sx
j+ 1

2
) is defined as in (3.9).

step 3. Calculate the normalization factor

qm(xj+ 1
2
) =

m1∑

i=m1−r+1

ci(xj+ 1
2
).

step 4. Compute the jump function

Lmf(xj+ 1
2
) =

1

qm(xj+ 1
2
)

m1∑

i=1

ci(xj+ 1
2
)f(xi+j+r−m1 ).

end (m, j)

step 5. Apply minmod edge detection method MM
(
LMf(xj+ 1

2
)
)
.

Appendix B. Two Dimensional Edge Detection Algorithm.

Let S := {xj := (uj , vj) | j = 1, · · · , N} ⊂ Ω and choose pα(x) = uα1vα2 for
x = (u, v) and α = (α1, α2) ∈ Z2

+ such that |α|1 ≤ m as a basis of Πm. The minmod
function for M = {1, 2, . . . , µ} will be reconstructed on the set

DTS =

{
x̄j

∣∣∣∣∣x̄j =

∑3
i=1 xj

i

3
where Tj = {xj

1, x
j
2, x

j
3} ∈ TS for j = 1, · · · , NT

}
.(B.1)

for m = 1 to µ and j = 1 to NT

step 1. For x̄j in (B.1), determine Sx̄j as in (4.2) with #Sx̄j = m2 =
(m+2

2

)
. Set Sx̄j =

{x1, . . . , xm2} such that f(x1) ≤ f(x2) ≤ . . . ≤ f(xm2 ).
step 2. Solve the linear system

∑

xi∈Sx̄j

ci(x̄j)pα(xi) =





0, if α1 + α2 < m,

α1!α2!, if α1 + α2 = m,

for α1, α2 = 0, · · · , m, such that α1 + α2 ≤ m.
step 3. Calculate qm(x̄j) as in (4.6). Here the subset Px (4.12) of Sx̄j is computed as

Px = {x1, . . . , xr},
where

|f(xr+1)− f(xr)| = max
i=1,...,m2−1

|f(xi+1)− f(xi)|.

If such r is not unique, choose the smallest one.
step 4. Calculate Lmf(x̄j) = 1

qm(x̄j)

∑
xi∈Sx̄j

ci(x̄j)f(xi).

end (m, j)
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step 5. Apply minmod edge detection method MM
(
LMf(x̄j)

)
.

Appendix C. Shepp-Logan Phantom Algorithm.

The Shepp-Logan phantom is a piecewise smooth function on the domain Ω =
[−1, 1]×[−1, 1] in R2. For any arbitrary point (u, v) ∈ Ω the value of the Shepp-Logan
phantom z = f(u, v) is calculated as:

for each point (u, v)
let z = 0, ξ1 = (u − .22) cos(.4π) + v sin(.4π), η1 = −(u − .22) sin(.4π) + v cos(.4π),

ξ2 = (u + .22) cos(.6π) + v sin(.6π), and η2 = −(u + .22) sin(.6π) + v cos(.6π).
if ( u

.69
)2 + ( v

.92
)2 ≤ 1,

then z = 2.
if ( u

.06624
)2 + ( v+.0184

.874
)2 ≤ 1,

then z = z − .98.
if ( ξ1

.31
)2 + ( η1

.11
)2 ≤ 1 or ( ξ2

.41
)2 + ( η2

.16
)2 ≤ 1,

then z = z − .02.
if (u−.35

.3
)2 + ( v

.6
)2 ≤ 1, or ( u

.21
)2 + ( v−.35

.25
)2 ≤ 1, or ( u

.046
)2 + ( v−.1

.046
)2 ≤ 1, or ( u

.046
)2 +

( v+.1
.046

)2 ≤ 1, or (u+.08
.046

)2 +( v+.605
.023

)2 ≤ 1, or ( u
.023

)2 +( v+.605
.023

)2 ≤ 1, or (u−.06
.023

)2 +

( v+.605
.023

)2 ≤ 1,
then z = z + .01.

end.
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