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Abstract

The Gegenbauer image reconstruction method, previously shown to improve the
quality of magnetic resonance images, is utilized in this study as a segmentation
pre-processing step. It is demonstrated that, for all simulated and real magnetic res-
onance images used in this study, the Gegenbauer reconstruction method improves
the accuracy of segmentation. Although it is more desirable to use the k-space data
for the Gegenbauer reconstruction method, only information acquired from MR
images is necessary for the reconstruction, making the procedure completely self
contained and viable for all human brain segmentation algorithms.

Key words: Segmentation, Brain Extraction, Edge Detection, Gegenbauer
Reconstruction, Noise.

1 INTRODUCTION

Magnetic resonance imaging (MRI) is a noninvasive procedure that has proven
to be an effective tool in the study of the human brain. The information that
MRI provides has greatly increased knowledge of normal and diseased anatomy
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for medical research, and is a critical component in diagnosis and treatment
planning.

Image segmentation algorithms for the delineation of 3D anatomical struc-
tures, or tissue types, play an important role in numerous research and clini-
cal studies, involving the visualization and quantitative analyzes of anatomical
and functional cortical structures (Worth et al., 1997; Dale et al., 1999; Van
Essen et al., 1999; Joshi et al., 1999). Guided neural surgery using segmented
magnetic resonance images has grown in popularity in treating brain-related
diseases such as epilepsy and stroke (Khoo et al., 1997; Roux et al., 1997; Le
Bihan, 2000; Taylor, 1995). Functional visualization, in which a segmented
brain can provide an anatomical framework, has emerged as a promising ap-
proach in neuroscience research and in neurosurgical planning owing to the
advancement of brain function studies using functional MRI (fMRI) (Kwong
et al., 1992; Ogawa et al., 1992; Liu et al., 2000; Logothetis et al., 2001) and
Positron Emission Tomography (PET) (Chen et al., 2001). The segmenta-
tion of brain images is also widely used in cortical surface mapping, volume
measurement, tissue classification and differentiation, functional and morpho-
logical adaptation assessment, and characterization of neurological disorders
such as multiple sclerosis, stroke, and Alzheimer’s disease (Rusinek et al., 1991;
Suckling et al., 1999; Le Goualher, 2000). Moreover, brain segmentation is also
a required preliminary step for many other image-processing procedures, such
as brain registration, warping (Lemieux, 1998; Ghanei et al., 2000; Joshi et al.,
1997), and voxel-based morphometry (Ashburner and Friston, 2000). The fact
that many applications depend on accurate brain segmentation has inspired
much work for its improvement.

The focus of this study is to improve segmentation through the use of the
Gegenbauer reconstruction method as a pre-processing step. The Gegenbauer
reconstruction method is a high resolution method, introduced in (Gottlieb et
al., 1992), and established as an effective reconstruction method for magnetic
resonance imaging in (Archibald and Gelb, 2002a). Using simulated brain
phantom data (Brainweb, 2003) and data from real patients, this study shows
that the Gegenbauer reconstruction method improves the quality of the MRI
data and the subsequent brain tissue maps generated by SPM (SPM Website,
2003) segmentation algorithm.
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2 METHODS

2.1 Segmentation Preprocessing Using the Gegenbauer Reconstruction Method

The Gegenbauer reconstruction method, introduced in (Gottlieb et al., 1992),
is a high resolution image reconstruction technique which is capable of recon-
structing images with exponential accuracy, including the edges of structures
in the image, without blurring features, hence mitigating a common problem
associated with image filtering. Since the locations of the edges are needed
to determine the regions of smoothness in which the images can be recon-
structed (Gottlieb and Shu, 1997) , a critical first step in all high resolution
reconstruction is edge detection. Edge detection is achieved by a combina-
tion of the edge detection procedure designed in (Gelb and Tadmor, 1999)
and (Gelb and Tadmor, 2000), with the minimization procedure introduced
in (Archibald and Gelb, 2002a). The edge detection and Gegenbauer recon-
struction methods are briefly outlined in the appendix in sections 6.1 and 6.2.
As described in these sections, the employment of the FFT algorithm for the
both the edge detection and Gegenbauer reconstruction method ensures that
the speed of computation is of the order of conventional FFT image recon-
struction.

2.2 Windowed Reconstructed Data

Given the Fourier reconstruction of an image it is possible to determine the
edges via the concentration method (Gelb and Tadmor, 1999). Once the edges
are known, high resolution image reconstruction of the entire image is achieved
by using the Gegenbauer reconstruction method in each smooth region. Typ-
ically the edge detection and Gegenbauer reconstruction procedures require
knowledge of the original Fourier coefficients (or k-space data) which are
imbedded (Liang and Lauterbur, 2000) in RF signal collected during a MR
acquisition. However, often what is available to the researchers/physicians are
the windowed (or filtered) Fourier reconstruction data, i.e. the conventional
MRI data. Although less desirable, this still provides sufficient information for
both the edge detection and Gegenbauer reconstruction procedures. Proofs of
the previous statement are given in the appendix in order to demonstrate the
broad application of the Gegenbauer reconstruction method to MR imaging
segmentation. This study will only use windowed reconstructed data in or-
der to demonstrate the effectiveness of the edge detection and Gegenbauer
reconstruction procedures on conventional MRI data.
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2.3 Segmentation

Segmentation is performed using the well known Statistical Parametric Map-
ping (SPM) program developed by the methodology group at the Wellcome
Department of Cognitive Neurology (SPM Website, 2003). Statistical Para-
metric Mapping is publically available software used to test hypotheses about
[neuro] imaging data from Single Photon Emission Computed Tomography
(SPECT), PET and fMRI. Of particular interest to this study is the segmen-
tation program bundled in this software. SPM segments spatially normalized
images into gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF), using a modified mixture model cluster analysis technique (Ashburner
and Friston, 1997), and is extended to include a correction for image intensity
nonuniformity (Ashburner and Friston, 2000) that arises from various sources
in MR imaging.

The current version of SPM used in this study is SPM2b. The default settings
were used in segmentation and brain extraction. This version, as compared
to previous versions, has improved segmentation and brain extraction utili-
ties, for which details are outlined on the SPM website (SPM Website, 2003).
We note that other segmentation algorithms (Liang et al., 1994; Schroeter et
al., 1998; Aizenberg et al., 1998; Wu et al., 1998) when used in conjunction
with Gegenbauer reconstruction as a pre-processing step, including SPM99,
produce similar results as those presented in this study (Archibald, 2002).
Therefore we conclude that the accuracy of general segmentation is improved
by using the Gegenbauer method as a pre-segmentation step.

3 EXPERIMENTAL METHODS

3.1 Data Acquisition: MNI Digital Brain Phantom

The effect of the Gegenbauer reconstruction method on the results of brain
tissue segmentation was evaluated for simulated MRI scans (Brainweb, 2003)
of a MNI digital brain phantom (Kwan et al., 1996; Cocosco et al., 1997;
Collins et al., 1998). Brainweb is maintained by the Brain Imaging Center at
the Montreal Neurological Institute. The simulated MRI data was generated
with noise levels of 5%, 7%, and 9%, with intensity non-uniformity (INU)
of 20%, and 40%. Ten images were generated for each combination of noise
and intensity non-uniformity for a total of sixty random images generated by
Brainweb (Brainweb, 2003). Each generated image simulated a T1 weighted
single channel MRI scan using the SFLASH (Spoiled FLASH) pulse sequence
collected in the transverse direction. The parameters for each generated image
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were as follows: TR, 18 ms; TE, 10 ms; flip angle, 30o; FOV, 256 mm ×
256 mm; number of slices (contiguous), 256; slice thickness, 1 mm; in-slice
resolution 1 mm × 1 mm.

3.2 Data Acquisition: Real Data

We used real MRI data from six consenting normal healthy subjects. Their
MR data was acquired using a 1.5 T Signa system (General Electric, Milwau-
kee, WI) and T1 weighted, three-dimensional pulse sequence (radio-frequency-
spoiled gradient recall acquisition in the steady state (SPGR), repetition time
=33 msec, echo time = 5 msec, α = 30◦, number of excitations= 1, field
of view= 24cm, imaging matrix= 256 × 192, slice thickness= 1.5mm, scan
time= 13 : 36 min). The MR data set consisted of 124 contiguous horizontal
slices with in-plane voxel dimension of 0.94 by 1.25mm.

3.3 Validation: MNI Digital Brain Phantom

The probability maps for gray matter (GM) and white matter (WM) for each
MNI digital brain phantom that is generated by SPM segmentation are com-
pared to the corresponding ‘true’ tissue probability map using the average
absolute value norm over all voxels, where the norm is defined for an arbitrary
image A ∈ RNx × RNy × RNz as

| A |= 1

NxNyNz

Nx∑

ix

Ny∑

iy

Nz∑

iz

| aix,iy ,iz | . (1)

An error measurement is calculated for a given segmented tissue probability
map, PS, and the Brainweb ‘truth’ tissue probability map PT as

E(PT , PS) =| PT − PS | . (2)

Note that in addition to tissue probability maps, Brainweb also provides a
discrete tissue index map. Using the tissue index map as ground truth is most
appropriate in the evaluation of binary segmentation. This study analyzes the
probability maps generated by SPM, where it is appropriate to use Brainweb’s
tissue probability maps as ground truth.

The κ index (Dice coefficient) is a parameter that has frequently been reported
in the literature (Collins et al., 1999; Van Leemput et al., 1999; Shattuck et
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al., 2001) to evaluate the similarity of two images. Given two binary images,
S1 and S2, the κ index is calculated as

κ(S1, S2) =
2 | S1 ∩ S2 |
| S1 | + | S2 | . (3)

Since probability maps are not binary images, a threshold is applied in order
to use the κ index as a method to compare the SPM segmented tissue maps
to ground truth. For a given segmented tissue probability map, PS, and the
Brainweb ‘truth’ tissue probability map, PT , two binary images that represent
the body of the tissue are generated by setting each pixel, p, of both probability
maps to a new threshold value, stb, as

stb =





1, if p ≥ .95

0, else.
(4)

For these two binary images the κ index (3) is calculated, which, in this case,
measures how well the segmented tissue probability map approximates the
body of the tissue.

Similarly for a given segmented tissue probability map, PS, and the Brainweb
‘truth’ tissue probability map, PT , two different binary images that represent
the boundary or partial volume region are generated by setting each pixel, p,
of both probability maps to a new threshold value, spv, as

spv =





1, if .05 ≤ p < .95

0, else.
(5)

The κ index (3) is calculated for these two binary images and in this case
measures how well the segmented tissue probability map approximates the
partial volume region of the tissue.

The thresholds defined above allow comparisons of the core and partial value
regions of the gray/white tissue matter more specifically. Therefore, we refer
to this method as the local measurement. Different thresholds, other than .95
and .05, have been applied yielding similar results.
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3.4 Validation: Real Data

Since ground truth tissue maps are not available for real MR data, the quality
of the SPM segmented tissue probability maps via Gegenbauer reconstruction
pre-processing were assessed by visually inspecting the quality of the extracted
brain cortical surface. The SPM brain extraction utility relies exclusively on
segmented data to estimate the brain cortical surface. It is assumed in this
study that visually apparent artifacts in brain extraction, that are reduced
through the utilization of the Gegenbauer reconstruction method as a pre-
segmentation step, demonstrate the ability of this method not only to improve
brain extraction but also to improve segmentation. Thus the Gegenbauer re-
construction method as a pre-segmentation step is validated for real data in
this study by analyzing visually apparent brain extraction artifacts.

4 RESULTS

4.1 Global Error Measurements

Table 1 displays the average tissue probability map error measurement (2) for
each combination of noise and intensity non-uniformity for both gray matter
and white matter tissue. Using the Gegenbauer reconstruction method as a
segmentation pre-processing step reduces the error measurement for each com-
bination of noise and intensity non-uniformity for both tissue types. As the
level of noise increases, so does the average amount of error reduction between
the original reconstruction and the Gegenbauer reconstruction. The segmenta-
tion improvement using Gegenbauer reconstruction is statistically significant
for each noise level and inhomogenity level combination (p < 0.05 paired t-
test). The p-values decreased with the level of noise, and are of the order 10−5

for the 9% noise level.

Depicted in figures 1 and 2 are gray matter and white matter segmented
probability maps for the original and Gegenbauer image reconstruction of a
particular randomly generated MNI digital brain phantom with 9% level of
noise and 40% intensity non-uniformity. Visually it can be seen that there is
a difference in the accuracy of the probability maps when Gegenbauer recon-
struction is used as a segmentation pre-processing step.
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Fig. 1. Gray matter segmented probability maps for the original and Gegenbauer
image reconstruction of a particular randomly generated MNI digital brain phantom
with a 9% level of noise and 40% intensity non-uniformity.

Table 1
Tissue probability map error measurement (2) statistics for randomly generated
MNI digital brain phantoms.

Tissue

Gray Matter White Matter

Noise INU Original Gegenbauer Original Gegenbauer

5% 20% 4.181± 0.009 3.302± 0.008 2.831± 0.008 2.023± 0.007

40% 4.253± 0.011 3.391± 0.01 2.905± 0.011 2.054± 0.009

7% 20% 5.291± 0.017 3.649± 0.011 3.872± 0.013 2.352± 0.011

40% 5.431± 0.024 3.711± 0.017 3.943± 0.018 2.372± 0.015

9% 20% 6.247± 0.021 4.118± 0.015 4.571± 0.018 2.548± 0.016

40% 6.347± 0.032 4.131± 0.02 4.588± 0.019 2.579± 0.017
Comparison between each segmented probability map for original and Gegenbauer
image reconstruction. All values are multiplied by ×10−2 and are written in the
format of mean ± standard deviation.

4.2 Local Error Measurements

Table 2 displays the average tissue probability map error measurement (2) for
each combination of noise and intensity non-uniformity for both gray matter
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Fig. 2. White matter segmented probability maps for the original and Gegenbauer
image reconstruction of a particular randomly generated MNI digital brain phantom
with a 9% level of noise and 40% intensity non-uniformity.

and white matter tissue, where each probability map is restricted to its partial
volume region, which is defined in (5). The results mirror table 1 in the sense
that it is evident that by using the Gegenbauer reconstruction method as a
segmentation pre-processing step, the error measurement is reduced for each
combination of noise and intensity non-uniformity for both tissue types. Sim-
ilarly, it is noticed that as the level of noise increases, the average amount of
error reduction between the original reconstruction and the Gegenbauer recon-
struction for the partial volume region grows. The segmentation improvement
using Gegenbauer reconstruction is statistically significant for each noise level
and inhomogenity level combination (p < 0.01 paired t-test). The p-values
decreased with the level of noise, and are of the order 10−6 for the 9% noise
level.

4.2.1 Similarity Measurement

In order to determine the κ index (3), binary images must be generated from
each segmented probability map. The tissue body region (4) and partial vol-
ume region (5) are the generated binary images used to calculate the similarity
coefficients. Depicted in figures 3 and 4 are gray matter and white matter par-
tial volume region binary images of the segmented probability maps for the
original and Gegenbauer image reconstruction of a particular randomly gen-
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Table 2
Tissue probability map restricted to the partial volume region (5) error measurement
(2) statistics for randomly generated MNI digital brain phantoms.

Tissue

Gray Matter White Matter

Noise INU Original Gegenbauer Original Gegenbauer

5% 20% 6.916± 0.011 5.893± 0.01 4.273± 0.008 2.745± 0.006

40% 6.935± 0.012 5.897± 0.011 4.289± 0.011 2.753± 0.008

7% 20% 7.925± 0.016 5.985± 0.014 5.386± 0.012 2.849± 0.009

40% 7.941± 0.024 5.991± 0.021 5.403± 0.018 2.869± 0.011

9% 20% 8.461± 0.023 6.191± 0.021 5.994± 0.017 2.994± 0.012

40% 8.498± 0.03 6.201± 0.026 6.001± 0.018 3.011± 0.012
Comparison between each segmented probability map restricted to the partial vol-
ume region (5) for original and Gegenbauer image reconstruction. All values are
multiplied by ×10−2 and are written in the format of mean ± standard deviation.

. .

..

Brainweb

Boundary Region

Original

Boundary Region

Boundary Region
With Gegenbauer
Pre−Processing

Fig. 3. Gray matter partial volume region binary image (5) generated from the
segmented probability maps for the original and Gegenbauer image reconstruction
of a particular randomly generated MNI digital brain phantom with a 9% level of
noise and 40% intensity non-uniformity.

erated MNI digital brain phantom with a 9% level of noise and 40% intensity
non-uniformity. There is a visual difference in the accuracy of the binary im-
ages of the probability maps when Gegenbauer reconstruction is used as a
segmentation pre-processing step.
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Fig. 4. White matter partial volume region binary image (5) generated from the
segmented probability maps for the original and Gegenbauer image reconstruction
of a particular randomly generated MNI digital brain phantom with a 9% level of
noise and 40% intensity non-uniformity.

Table 3 displays the κ index for the partial volume region binary images
generated from both gray matter and white matter segmented probability
maps. Similarly, Table 4 displays the κ index for the tissue body region bi-
nary images generated from both gray matter and white matter segmented
probability maps. Typically it is considered that κ > .7 indicates excellent
agrement (Bartko, 1991) in binary images. It is noted that in many instances,
particularly for white matter tissue, the use of Gegenbauer method as a pre-
processing step improves the κ index beyond the critical value of .7, establish-
ing that this pre-processing step has the ability to improve similarity between
the segmented tissue probability maps and ground truth so that it is possible
to conclude excellent agrement.

The κ index also has merit in the fact that it provides a value that can be used
to compare the similarities between two measurement pairs (Zijdenbos et al.,
1994), which is the primary reason it is used in this study. It can been seen
that there is significant improvement in the κ index coefficient for each tissue
type and for all combinations of noise and intensity non-uniformity. Further-
more, the improvement of both similarity coefficient between the original and
Gegenbauer reconstruction increases with the noise level. The improvement is
even more dramatic for the similarity coefficients than for the error measure-
ments. Using a Wilcoxon signed rank test, the significance level is p < .01 for
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every combination of noise and intensity non-uniformity.

Table 3
κ index (3) statistics for tissue partial volume region binary images (5) generated
from tissue probability maps of MNI digital brain phantoms.

Tissue

Gray White

Noise INU Original Gegenbauer Original Gegenbauer

5% 20% 0.484± 0.003 0.573± 0.003 0.551± 0.001 0.739± 0.001

40% 0.481± 0.003 0.571± 0.003 0.543± 0.001 0.732± 0.001

7% 20% 0.276± 0.004 0.529± 0.004 0.482± 0.002 0.714± 0.002

40% 0.271± 0.004 0.526± 0.004 0.474± 0.002 0.708± 0.002

9% 20% 0.104± 0.005 0.495± 0.005 0.427± 0.003 0.701± 0.003

40% 0.101± 0.005 0.492± 0.005 0.417± 0.003 0.697± 0.003

Comparison between each tissue partial volume region binary images (5) gen-
erated from the segmented probability map for original and Gegenbauer image
reconstruction. All values are written in the format of mean ± standard deviation.

Table 4
κ index (3) statistics for tissue body binary images (4) generated from tissue prob-
ability maps of MNI digital brain phantoms.

Tissue

Gray White

Noise INU Original Gegenbauer Original Gegenbauer

5% 20% 0.577± 0.002 0.698± 0.002 0.767± 0.001 0.896± 0.001

40% 0.571± 0.002 0.695± 0.002 0.762± 0.001 0.895± 0.001

7% 20% 0.342± 0.003 0.689± 0.003 0.634± 0.001 0.863± 0.001

40% 0.334± 0.003 0.681± 0.003 0.629± 0.002 0.861± 0.002

9% 20% 0.218± 0.004 0.638± 0.004 0.642± 0.002 0.829± 0.002

40% 0.212± 0.004 0.635± 0.004 0.635± 0.002 0.823± 0.002

Comparison between each tissue body binary images (4) generated from the seg-
mented probability map for original and Gegenbauer image reconstruction. All
values are written in the format of mean ± standard deviation.

4.3 Real Data Evaluation

It has been reported that artifacts in brain extraction include non-brain tis-
sue such as scalp in the final extracted image. In our study, we find that four
out of six extractions presented this artifact, with severity varying from sub-
ject to subject. Figure 5 displays the results of SPM brain extraction of one
particular subject, where the view on the right utilized the Gegenbauer re-
construction method as a pre-segmentation step. It is demonstrated that all
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visually apparent artifacts are reduced by using the Gegenbauer method. Sim-
ilar results were obtained with all subjects in this study with visually apparent
artifacts. Additionally for all six subjects, no new visually apparent artifacts
were generated.

Fig. 5. SPM brain extraction of one particular subject, where the picture on the
right used the Gegenbauer reconstruction method as a pre-segmentation step.

5 DISCUSSION AND CONCLUSION

As is demonstrated in section 4, the use of the Gegenbauer reconstruction
method as a segmentation pre-processing step significantly improves the qual-
ity of the probability maps generated from SPM segmentation for both gray
and white tissue. This improvement can be understood in terms of the dif-
ferences in filtered Fourier reconstruction, which is the traditional method of
reconstruction for MRI, and the Gegenbauer reconstruction.

The filtered Fourier method is the image reconstruction technique used for the
real and simulated data in this study. Filters are often introduced to dampen
the high frequency modes which reduce the effects of Gibbs ringing artifact
and noise. Filtering is a violation of the data-consistency constraint, but is
tolerated in order to reduce the Gibbs ringing artifact (Liang and Lauterbur,
2000) and suppress noise.

There is important information that is carried in the high frequency modes
that pertain to finer features of the reconstructed image. The Gegenbauer
reconstruction method, introduced in (Gottlieb et al., 1992), does not violate
the data consistency constraint and is capable of reconstructing piecewise
smooth functions in smooth intervals with exponential accuracy up to the
edges of the interval without blurring the features at the boundaries. This is
reflected in section 4.2, in the improvement of both the tissue partial volume
region and the tissue body region. The Gegenbauer reconstruction method’s
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ability to reconstruct sharp boundaries is suggestive of the minimization of
visual artifacts in brain extraction in section 4.3.

Noise prevalent in MRI spectral data is an impediment to image reconstruc-
tion. This noise is difficult to quantify and can not be systematically removed.
A preliminary investigation was conducted in (Archibald and Gelb, 2002b) to
address the effects of noisy spectral data on the ability of the concentration
method to locate edges and the Gegenbauer method to reconstruct images.
As demonstrated throughout section 4, the application of the edge detection
and high resolution reconstruction methods discussed in this paper not only
recovers images with very high accuracy, but is also robust in the presence of
noise, and additionally reduces the effects of noise.

Figure 6 depicts the method for implementing Gegenbauer reconstruction as a
pre-segmentation step. In order not to violate the data-consistency constraint,
k-space data should be used for both edge detection and Gegenbauer recon-
struction prior to segmentation. Often it is the case that only reconstructed
data is available, thus this study demonstrates the viability of using recon-
structed data for edge detection and Gegenbauer reconstruction to improve
the results of segmentation.

Fig. 6. Flow chart of the Gegenbauer reconstruction method as a segmentation
pre-processing step.

This research opens new directions in the application of high resolution tech-
niques in the field of MRI.
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6 APPENDIX

Section 2.1 discuses the boundary detection and high resolution reconstruc-
tion method used in this paper, which are described in greater detail below
in sections 6.1 and 6.2. Both the edge detection and reconstruction method
require the knowledge of k-space data. Often, as is the case with this study,
what is known are the windowed reconstructed data, and therefore it is proven
in section 6.3 that using the windowed reconstructed data will only minimally
effect the the results of the Gegenbauer reconstruction method. However we
stress that knowledge of the unfiltered k-space data is preferable in order to
satisfy the data-consistency constraint (Liang and Lauterbur, 2000).

6.1 Edge Detection

The concentration edge detection method is first described for one dimension.
Define the jump function [f ](x) for a piecewise smooth function as [f ](x) =
f(x+)−f(x−), where f(x±) are the right and left side limits of the function at
x, f(x±) = limx→x±f(x). Note that [f ](x) is zero away from a discontinuity,
and is the value of the jump at a discontinuity.

It is shown in (Gelb and Tadmor, 1999) that the concentration method for
detecting jump discontinuities is easily implemented in the discrete case as

T τ
N [f ](x) := iπ

N∑

k=−N

sgn(k)τ

( |k|
N + 1

2

)
f̃ke

ikπx −→ [f ](x), as N −→∞.

(6)

Here f̃k are the discrete Fourier coefficients computed using the Fast Fourier
Transform (FFT) algorithm from given discrete data f(xj), xj = −1 + j

N
,

j = 0, . . . , 2N − 1, as

f̃k =
1

2Nck

2N−1∑

j=0

f(xj)e
−iπkxj , ck =





2, if k = ±N,

1, otherwise,
(7)

and τ(ξ) is determined in (Gelb and Tadmor, 1999) as

τ(ξ) = σ(ξ)
2 sin(ξπ)

ξπ
, (8)
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where σ(ξ) is a continuous concentration factor that satisfies

σ(ξ)

ξ
∈ C2(0, 1),

and normalized so that ∫ 1

0

σ(ξ)

ξ
dξ = 1.

There are several examples of admissible concentration factors discussed in
(Gelb and Tadmor, 1999). The exponential concentration factor,

σ(ξ) = cξe
1

αξ(ξ−1) , (9)

where

c =
∫ 1−ε

ε
exp

( −1

αη(η − 1)

)
dη, (10)

is particularly effective, as it takes full advantage of the spectral data by
rapidly converging away from the discontinuities. The parameter α is freely
chosen, with a typical value α = 6. We note that when the data given are k-
space data, the edge detection method (6) can be directly applied and easily
calculated with the FFT algorithm.

In order to determine the exact intervals of smoothness, which is impera-
tive for high resolution reconstruction, the concentration method (6) must be
further enhanced to “pinpoint” the edges exactly. For this purpose, an edge
enhancement procedure based on a separation of scales, has been constructed
in (Gelb and Tadmor, 2000),

EN(T τ
N [f ](x)) =





T τ
N [f ](x), if |N q/2(T τ

N [f ](x))q| > Jcrit,

0, if |N q/2(T τ
N [f ](x))q| < Jcrit.

(11)

Here Jcrit is an O(1) global threshold parameter signifying the minimal ampli-
tude for the jump discontinuity not to be negligible. Since (6) actually locates
the neighborhoods of the discontinuities, the exact jump locations are deter-
mined as the corresponding locations of the largest amplitudes |E| > Jcrit in
each neighborhood of admissible jumps (i.e. where |E| > Jcrit). Note that Jcrit

should be chosen to be consistent with the variation and scaling of the function.
Experiments show that the parameter q = 2 is adequate for enhancement.
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The nonlinear enhancement procedure (Gelb and Tadmor, 2000) works well
when the discontinuities are located “far enough” from each other. (Experi-
mentally the neighborhood of a discontinuity is approximately 5∆x.) When
the discontinuities are extremely close together, as is the case for MRI scans,
where two neighboring pixels may contain discontinuities, a more refined pro-
cedure near the locations of the discontinuities must be employed. We adopt
a minimization procedure (Archibald and Gelb, 2002a) given by

min
M,ai,bi

max
x
|T τ

N [h](x)| := min
M,ai,bi

max
x
|T τ

N [f ](x) +
M∑

i=1

ai

2
T τ

N [g](x; bi)|, (12)

where

h(x) := f(x) +
M∑

i=1

ai

2
g(x; bi) (13)

and

g(x; bi) =





x + 1, if −1 ≤ x ≤ bi,

x− 1, if bi < x ≤ 1.
(14)

Since h(x) is a smooth function, T τ
N [h](x) −→ 0, and therefore the correct

minimization of (12) yields the number of discontinuities, M , with the as-
sociated positions, bi, and magnitudes, ai, for i = 1, . . . , M , of the function
f .

The edge detection method and minimization process can be extended to de-
tect the size and position of discontinuities of a multiple dimensional function
by holding all but one dimension fixed and determining the edges as a func-
tion of the fixed coordinates. This three dimensional procedure is used for all
images processed in this paper. The employment of the FFT algorithm for the
boundary detection procedure ensures that the speed of computation is of the
order of the three dimensional FFT.

6.2 Gegenbauer Reconstruction Method

The Gegenbauer reconstruction method was developed in (Gottlieb et al.,
1992) and extended in a litany of articles (consult Gottlieb and Shu (1997) for
references). It is a powerful tool that recovers piecewise smooth functions with
spectral accuracy up to the edges in each smooth interval, and can therefore be
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used to completely eliminate the Gibbs ringing artifact without compromising
high resolution at the edges.

Let us first introduce the Gegenbauer reconstruction method for a one di-
mensional piecewise smooth function f(x). The Gegenbauer reconstruction
method is performed on each smooth interval [a, b] ⊂ [−1, 1]. Specifically,
define a local variable η ∈ [−1, 1] such that x(η) = εη + δ, where ε = b−a

2

and δ = b+a
2

. The Gegenbauer reconstruction is then based on the Fourier
approximation of f(x) in [a, b],

fN(x(η)) = fN(εη + δ) =
N∑

k=−N

f̃ke
ikπ(εη+δ), (15)

where f̃k is defined in (7), and is computed by

gλ
m(x(η)) =

m∑

l=0

g̃λ
ε (l)Cλ

l (η), (16)

where the Gegenbauer polynomial Cλ
n(x) is an orthogonal polynomial of order

n that satisfies

∫ 1

−1
(1− x2)λ− 1

2 Cλ
k (x)Cλ

n(x)dx =





hλ
n, k = n,

0, k 6= n,
(17)

where (for λ ≥ 0)

hλ
n =

√
πCλ

n(1)Γ(λ + 1
2
)

Γ(λ)(n + λ)
, (18)

with

Cλ
n(1) =

Γ(n + 2λ)

n!Γ(2λ)
. (19)

The approximate Gegenbauer coefficients,

g̃λ
ε (l) =

1

hλ
l

∫ 1

−1
(1− η2)λ− 1

2 fN(x(η))Cλ
l (η)dη, (20)

are computed by the FFT algorithm as
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g̃λ
ε (l) =

k=N∑

k=−N

c̄λ,l,ε
k eikπδf̃(k), (21)

where

c̄λ,l,ε
k =





1, if k = 0,

Γ(λ)il(l + λ)Jl+λ(πkε)
(

2
πkε

)λ
, if k 6= 0.

(22)

Here Jl+λ(πkε) is the Bessel function. It is noted here that some smooth inter-
vals may consist of too few points to construct an approximation. The Gegen-
bauer reconstruction requires at least a theoretical minimum of π points to
form an approximation (Gottlieb and Orszag, 1977). Therefore, in these in-
tervals, the values at each grid point are assumed constant and equivalent to
the values determined at the edges by the edge detection method (Archibald
and Gelb, 2002a).

The parameters m and λ depend upon the number of points, NI , in the subin-
terval that is reconstructed. A specific requirement is that m ≤ NI . Recent
work demonstrates how the parameters m and λ can be optimized for a par-
ticular subdomain (Gelb, In Press). For simplicity, we choose the parameters
such that λ = m with

m = max

{
1, min

{
mmax,

[
NI

4

]}}
, (23)

where
[

NI

4

]
is the nearest integer to NI

4
, and mmax = 12.

The Gegenbauer reconstruction method can be directly extended to multiple
dimensions by performing reconstruction in smooth regions. The reconstruc-
tion will have exponential accuracy up to the edges of each smooth region.
Three dimensional Gegenbauer reconstruction is used for all the images pro-
cessed in this paper. The computational cost of the Gegenbauer reconstruction
method is of the order of the three dimensional FFT. We note that different
values can be chosen for λ and m in each dimension, which can be optimized
by the size of the particular subdomain as demonstrated in (Gelb, In Press).
However, for simplicity we adopt the parameters for each dimension accord-
ing to (23). Convergence analysis of the Gegenbauer reconstruction method
for the one dimensional case is provided in the next section.

19



6.3 Windowed Transformed Data in Edge Detection

One factor contributing to the Gibbs ringing artifact for piecewise smooth
functions is the slow decay rate of the Fourier expansion coefficients (Gottlieb
and Orszag, 1977). A window (or filter) increases the rate of decay by atten-
uating the higher order coefficients which in turn controls the effects of the
Gibbs oscillations. The windowed discrete Fourier reconstruction is computed
as

fw
N(x) =

N∑

k=−N

wkf̃ke
iπkx, (24)

where wk = w

(
|k|
N

)
is a window function. Given reconstructed data on equally

spaced points the inverse transform will result in the spectral data

f̃w
k = wkf̃k, (25)

where w is the widow function used in reconstruction.

An edge detection procedure designed in (Gelb and Tadmor, 1999) and (Gelb
and Tadmor, 2000), and briefly outlined in section 6.1, uses Fourier coefficients
to determine boundaries. In this study, the k-space data is not available but
rather the windowed k-space data are known (25). Theorem 6.1 proves that the
information required for high resolution reconstruction, namely the position
of edges, is preserved if windowed k-space data are used in the edge detection
procedure provided that the window function satisfies two basic requirements.
The first requirement is that the window function, w, is

w(ξ) ∈ C2(0, 1).

This is the case with all commonly used widowed functions used to eliminate
the Gibbs ringing artifact (Gottlieb and Shu, 1997). The second requirement
is that ∫ 1

0

w(ξ)σ(ξ)

ξ
dξ 6= 0,

where σ is the concentration factor used in the edge detection method. The
flexibility in the choice of the concentration factor, allows admissible window
functions. In this paper the window function used by Brainweb is a sinc func-
tion (Kwan et al., 1999), and we use a exponential concentration factor (9) in
edge detection, which together satisfy both requirements.

Theorem 6.1 Using spectral data (25) in the concentration method (6) pre-
serves the positions of the jump discontinuities, provided that
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Cw :=
∫ 1

0

w(ξ)σ(ξ)

ξ
dξ 6= 0, (26)

and

w(ξ) ∈ C2(0, 1) (27)

Proof.

Using the spectral data (25) the concentration method (6) will become

T τ,w
N [f ](x) := iπ

N∑

k=−N

sgn(k)τ

( |k|
N + 1

2

)
f̃w

k eikπx

= iπ
N∑

k=−N

sgn(k)wkτ

( |k|
N + 1

2

)
f̃ke

ikπx. (28)

Define the function

τw(ξ) =
w(ξ)τ(ξ)

Cw

, (29)

where Cw is defined in (26). Since w ∈ C2(0, 1) and τ is a concentration
factor,

w(ξ)τ(ξ)

Cwξ
∈ C2(0, 1),

and

∫ 1

0

w(ξ)σ(ξ)

Cwξ
dξ =

1

Cw

∫ 1

0

w(ξ)σ(ξ)

ξ
dξ = 1. (30)

Thus τw is a concentration factor. Hence

iπ

Cw

N∑

k=−N

sgn(k)wkτ

( |k|
N + 1

2

)
f̃ke

ikπx −→ [f ](x). (31)

and

T τ,w
N [f ](x) −→ Cw[f ](x) (32)

¤

Thus it is possible to determine the position of the discontinuities. The size
of the jumps will be off by a factor of Cw, but is acceptable since only the
positions of the jumps are necessary in Gegenbauer reconstruction.
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6.4 Filtered Transformed Data in the Gegenbauer Reconstruction Method

As shown in (Gottlieb et al., 1992), if f(x) is an arbitrary L2-function on
[−1, 1], then the error in the max norm

max
−1≤x≤1

∣∣∣f(x)−
m∑

l=0

g̃λ(l)Cλ
l (x)

∣∣∣≤ max
−1≤x≤1

∣∣∣f(x)−
m∑

l=0

f̂λ(l)Cλ
l (x)

∣∣∣

+ max
−1≤x≤1

∣∣∣
m∑

l=0

f̂λ(l)Cλ
l (x)−

m∑

l=0

g̃λ(l)Cλ
l (x)

∣∣∣

≡RE(λ,m) + TE(λ,m, N), (33)

is exponentially convergent for λ = m = βN , where β < 2
27

πe. The proof pro-
vided in (Gottlieb et al., 1992) shows that both the regularization error (RE)
and the truncation error (TE) are exponentially convergent. If it is assumed
that what is known is the windowed reconstruction (24), then the error in the
max norm becomes

max
−1≤x≤1

∣∣∣f(x)−
m∑

l=0

g̃λ,w(l)Cλ
l (x)

∣∣∣ ≤ max
−1≤x≤1

∣∣∣f(x)−
m∑

l=0

f̂λ(l)Cλ
l (x)

∣∣∣ +

max
−1≤x≤1

∣∣∣
m∑

l=0

f̂λ(l)Cλ
l (x)−

m∑

l=0

g̃λ,w(l)Cλ
l (x)

∣∣∣,

(34)

where

g̃λ,w(l) =
1

hλ
l

∫ 1

−1
(1− x2)λ− 1

2 fw
N(x)Cλ

l (x)dx. (35)

If the error in (34) remains exponentially convergent, then the Gegenbauer
reconstruction method utilizing the coefficients (35) generated from the win-
dowed Fourier reconstruction will still yield high accuracy.

The following theorem is a slight modification of the theorem in (Gottlieb et
al., 1992) that proves the exponential convergence of the truncation error in
(34). Specifically all of the original arguments for the exponential convergence
proof are the same.

Theorem 6.2 If f(x) is an L2-function on [−1, 1], then there exists a con-
stant A which is independent of λ, m and N , such that the truncation error
defined as
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TE(λ, m,N) ≡ max
−1≤x≤1

∣∣∣∣∣
m∑

l=0

(
f̂λ(l)− g̃λ,w(l)

)
Cλ

l (x)

∣∣∣∣∣, (36)

satisfies the following estimate:

TE(λ, m,N) ≤ A
(m + λ)Γ(m + 2λ)Γ(λ)

(m− 1)!Γ(2λ)

(
2

πN

)λ−1

, (37)

where w is a window (or filter) function.

Proof.

Before we prove the theorem for an arbitrary L2-function on [−1, 1], consider
the special function f(x) = einπx with |n| ≥ N . For this special case
fw

N(x) = 0 and we obtain

(
f̂λ(l)− g̃λ,w(l)

)
Cλ

l (x) =
Cλ

l (x)

hλ
l

∫ 1

−1
(1− x2)λ− 1

2 einπxCλ
l (x)dx. (38)

In (Bateman (1953); p.213) there is an explicit expression for (38) given by

1

hλ
l

∫ 1

−1
(1− x2)λ− 1

2 einπxCλ
l (x)dx = Γ(λ)

(
2

πn

)λ

il(l + λ)Jl+λ(πn). (39)

Here Jν(x) is the Bessel function. Since |Jν(x)| ≤ 1 for all x and ν ≥ 0
(Abramowitz and Stegun (1970); p.362), we have, for 0 ≤ l ≤ m,

(
f̂λ(l)− g̃λ,w(l)

)
Cλ

l (x)≤Cλ
l (1)Γ(λ)

(
2

π|n|

)λ

il(l + λ)

=
(l + λ)Γ(l + 2λ)Γ(λ)

l!Γ(2λ)

(
2

π|n|

)λ

=
(m + λ)Γ(m + 2λ)Γ(λ)

m!Γ(2λ)

(
2

π|n|

)λ

, (40)

where in the second step we used the formula

Cλ
l (1) =

Γ(l + 2λ)

l!Γ(2λ)
, λ ≥ 0, (41)

and in the last step we used the fact that (l + λ)Γ(l + 2λ)/l! is a increasing
function of l.
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We now return to the general function f(x), which by (Gottlieb and Shu,
1997) satisfies

f(x)− fw
N(x) =

∑

|n|>N

wnf̃neiπnx. (42)

Since w is a filter function it is uniformly bounded with

|wn| ≤ 1. (43)

Also since f(x) is an L2-function, it’s Fourier coefficients f̃n are uniformly
bounded. Hence

|wnf̃n| ≤ |f̃n| ≤ A. (44)

Therefore, using the result for the special case einπx in (40) yields

(
f̂λ(l)− g̃λ,w(l)

)
Cλ

l (x)≤A
(m + λ)Γ(m + 2λ)Γ(λ)

m!Γ(2λ)

∑

|n|>N

(
2

π|n|

)λ

= Ã
(m + λ)Γ(m + 2λ)Γ(λ)

m!Γ(2λ)

(
2

πN

)λ−1

, (45)

for all 0 ≤ l ≤ m.

We can now estimate the truncation error (36) by

TE(λ, m,N)≤m max
0leql≤m

max
−1≤x≤1

(
f̂λ(l)− g̃λ,w(l)

)
Cλ

l (x)

≤m max
0leql≤m

∣∣∣
(
f̂λ(l)− g̃λ,w(l)

)∣∣∣Cλ
l (1)

≤A
(m + λ)Γ(m + 2λ)Γ(λ)

(m− 1)!Γ(2λ)

(
2

πN

)λ−1

, (46)

where in the second step we used the fact that |Cλ
l (x)| ≤ Cλ

l (1) for all
−1 ≤ x ≤ 1 (Bateman (1953); p.206), and in the third step we used (45).

¤

The regularization error, RE(m,λ) remains unchanged and proof of its expo-
nential convergence can be found in (Gottlieb and Shu, 1997)
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Collins, D.L., Zijdenbos, A.P., Baaré, W.F., and Evans, A.C. 1999. ANIMAL
+ INSECT: Improved cortical structure segmentation. In Lecture Notes in

25



Computer Science, Vol. 1613, Proceedings of the 16th International Confer-
ence on Information Processing in Medical Imageing (A. Kuba, M. Sámal,
and A. Todd-Pokropek, Eds), 463-468. Springer-Verlag. Berlin/Heidelberg.

Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes,
C.J., and Evans, A.C. 1998. Design and construction of a realistic digital
brain phantom. IEEE Transactions on Medical Imaging, 17(3), 463-468.

Dale, A.M, Fischi, B., and Sereno, M.I. 1999. Cortical surface-based analysis.
I. Segmenation and surface reconstruction. NeuroImage, 9, 179-194.

Gelb, A. In Press. Parameter optimization and reduction of round off error for
the Gegenbauer reconstruction method. Submitted to Journal of Scientific
Computing.

Gelb, A. and Tadmor, E. 1999. Detection of edges in spectral data. Applied
and computational harmonic analysis, 7, 101-135.

Gelb, A. and Tadmor, E. 2000. Detection of edges in spectral data II: nonlinear
enhancement. SIAM J. Numer. Anal., 38, 1389-1408.

Gelb, A. and Tadmor, E. 2000. Spectral reconstruction of piecewise smooth
functions from their discrete data. Mathematical Modelling and Numerical
Analysis.

Ghanei, A., Soltanian-Zadeh, H., Jacobs, M.A., and Patel, S. 2000. Boundary-
based warping of brain MR images. J. Magn. Reson. Imaging, 12, 417-429.

Gottlieb, D., Shu, C.W., Solomonoff, A. and Vandeven, H. 1992. On the Gibbs
phenomenon I: recovering exponential accuracy from the Fourier partial sum
of a nonperiodic analytic function. J. of Comp. and appl. math., 43, 81-98.

Gottlieb, D. and Orszag, S. 1977. Numerical analysis of spectral methods:
theory and applications. SIAM, Philadelphia.

Gottlieb, D., and Shu, C.W. 1997. On the Gibbs phenomenon and its resolu-
tion.SIAM Review, 39, 644-668.

Joshi, M., Cui, J., Doolittle, K., Joshi, S., Van Essen, D., Wang, L., and
Miller, M.I. 1999. Brain segmentation and the generation of cortical surfaces.
NeuroImage, 9, 109-127.

Joshi, S., Miller, M., and Grenander, U. 1997. On the geometry and shape of
brain sub-maifolds. Int.J.Patt.Rec.Art.Intel., 11, 1317-1343.

Khoo, V.S., Dearnaley, D.P., Finnigan, D.J., Padhani, A., Tanner, S.F., and
Leach, M.O. 1997. Magnetic resonance imaging: consideration and applica-
tions in radiotheraphy treatment planning. Radiother.Oncol., 42, 1-15.

Kwan, R. K-S., Evans, A.C., and Pike, G.B. 1996. An extensible MRI simula-
tor for post-processing evaluation. In Lexture Notes in Computer Science.,
1131, 135-140. Springer-Verlag/Berlin.

Kwan, R.K-S., Evans, A.C., and Pike, G.B. 1999. MRI Simulation-based eval-
uation of image-processing and classification methods. IEEE Transactions
of Medical Imaging, 18, 1085-1097.

Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M.,
Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., et
al. Dynamic magnetic resonance imaging of human brain activity during
primary sensory stimulation. Proc. Natl. Acad. Sci. USA, 89, 5675-5679.

26



Le Bihan, D. 2000. What to expect from MRI in the investigation of the
central nercous system? C. R. Acad. Sci Ser. III, 323, 341-350.

Le Goualher, G., Argenti, A.M., Duyme, M., Baaré, W.F., Hulshoff Pol, H.E.,
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