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Overview

e High-order image analysis in MRI.

e Computational modeling of nano-circut
architecture designed to have both logical
and imaging processing functionality.

e High dimensional single trial analysis of EEG
to predict fine motor neural intent .
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Consortium

Arizona Alzheimer’s Ve
Disease Consortium ‘SWA]R
;H;ﬂzlﬁfvn;ztml‘\z:;%al Imaging Resource

BARROW

Neurological
Institute’

Goal: ‘To capitalize on the state’s
complementary resources in brain
imaging...to help in the understanding,
early detection, treatment, and prevention
of Alzheimer’s disease.’
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Magnetic Resonance Imaging

Research Motivation: Improve Sensitivity of Detecting Volume
Change of Neural Structures in MRI through high order
Image Reconstruction techniques.
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Fourier Reconstruction

2D Fourier Reconstruction

T SN DY
Fy(x,y) = E Efk,zem(kx”y)

k=—N I==N

2D Fourier Coefficients Shepp-Logan Brain Phantom

(equally spaced k-space data)
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1 else Fourier Reconstruction (128X128)
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Filtered Fourier Reconstruction

2D Fourier Reconstruction

N N

FA‘? (X, y) 2 E Eekelfk’lein(kxﬂy)
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2D Fourier Coefficients

(equally spaced k-space data)
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1 Filtered Fourier Reconstruction (128X128)
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Boundary Detection

Concentration Method [Gelb and Tadmor] with Continuous
Fourier Coefficients

N k ——
Kyxf(x)=in ¥ sgn(k)o k1 ot — [T
k=—N N
Concentration factors satisfy

o(8) 2 10(5)
—=&C(0,1 =Nl e |
§ X - :

Concentration Method with Discrete Fourier Coefficients
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Where the Discrete Concentration factors satisfy

r(§)=a(§)%f”)
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Gegenbauer Reconstruction

The Gegenbauer reconstruction method [Gottlieb, et.al.] recovers piecewise
smooth functions with spectral accuracy up to the edges in each smooth interval.
* Given f(x), an piecewise smooth function in [-1,1] that is analytic in a sub-
interval [a,b].
* Define the local variable 1 is defied such that x(n)=en+0 such that
b+a

_b—a

: and d =
2 P

* The Gegenbauer coefficients:

f,i(n(x))=2ﬁicf(n), 1=n=],

where

i = [ Yo el

1 -1

E

» Convergence is exponential with the max norm in [a,b] for m,A~¢N.
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Gegenbauer Method Continued

It 1s possible to approximate the Gegenbauer coefficients using the truncated
Fourier reconstruction and still maintain spectral accuracy up to the edges in
each smooth interval.

* Define the approximation to the Gegenbauer coefficients

&, = L[l ) ) el i

h
» The new partial sum approximation becomes

fr(x))= Zgnck(n) nsl.

 Convergence remains exponential with the max norm in [a,b] for m,A~¢N.
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Shepp-Logan Phantom Example
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Boundary Detection Using Gegenbauer Reconstruction using the
Minimization Method Fourier Reconstruction with m=A=4.
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Artificial Noise Reduction
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Fourier Reconstruction (128X128) Filtered Fourier Reconstruction
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Boundary Detection Using Gegenbauer Reconstruction using the
Minimization Method and Noise Fourier Reconstruction with m=A=4.
Reduction.
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Gegenbauer Preprocessing

SPM Segmentation

Gegenbauer Reconstruction Gray Matter Probability Maps
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Brainweb
“truth"

Original

Segmentation

Segmentation
With Gegenbauer
Pre—Processing

Gray matter segmented probability maps for the original and Gegenbauer image reconstruction of a
particular randomly generated MNI digital brain phantom with 9% level of noise and 40% INU.
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Brain Extraction

SPM Brain SPM Brain Extraction With
Extraction Gegenbauer Pre-Processing
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High Dimensional Segmentation

The Weibull E-SD field segmentation method [Hu, et.al.] generates for
each data point an ordered pair representing the local expectation and standard
deviation. Segmentation occurs by clustering regions in the E-SD field -- a valid
method under the assumption that homogeneous structures can be characterized
by similar local expectancy and variance.

o A y —~ \
a V S VO V — VO i < a=3
V)=— exp| -

Weibull probability density function (pdf). //  \ae
Note: Approximates Possion pdf for a=1, :
Rayleigh pdf for a=2, and Gaussian pdf for a=3.

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY UT-BATTELLE

15




Control Problem

T

Simulated Volume Data E-SD Field Segmentation Gegenbauer Preprocessing
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—— Original Segmentation - Segmentation with Gegenbauer Pre-processing
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Weibull Distribution Scale Parameter, b.
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Small Animal MRI Segmentation

Original Segmentation (Top) Gegenbauer Preprocessing

Majority of the 10% volumetric difference occurs near boundaries

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY UT-BATTELLE

18




Small Animal MRI Segmentation

Original Segmentation (Bottom) Gegenbauer Preprocessing

Majority of the 10% volumetric difference occurs near boundaries
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boundaries of segmented homogeneous objects are more accu-
rate, and the representation of homogeneous objects is better
constrained in the E-SD field. Additionally, the combination
of these methods is a viable approach for segmentation of
volumetric data due to their low computational cost and robust
nature in the presence of various types of noise.
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Generalized Edge Detection

Research Motivation: Develop an edge detection
method with portability to a broad range of
scientific applications.

e Can be applied to any irregular data in any domain

 Independent of any specific shape of
discontinuities in both the univariate and
multivariate case.

« Easy to implement numerically -- cost effective.
 High order method.
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Formulation in Multiple Dimensions

Suppose that a piecewise smooth function is sampled
on a finite number of points
= {xl,xz,...,xN} GO CIRY.

The coefficients of the edge detector at the point x&Q
IS the solution to the linear system

P oo k= Rel=

AHES) ‘a‘1=m
Where p,, i=1,...,m, is a polynomial basis of order m.
Note:
m+d 2 oL
md — d A a‘l =Ea], X _{xl,xZ,...,xmd }.
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The edge detector L_f is defined as

1 -

me(x)= 7. .(x) zcj(x)f(xj)=[f](x)+0(h (x))

m,d THES

Here [f](x) is the jump function, h(x) is a density function and the
normalization factor depends upon the order m, dimension d, and

the local set S, and is defined as
C]m,d(x)= Ecj(x).
A SN

Discontinuities in the yt" derivative can be detected by adding the
following restriction

Ecj(x)]_?i(xj)= El_)(“)(x) a€EZ’,
X €Sy || =7
and modifying the normalization factor to)lyaecome
X=X

dna(*)= D, CJ(X)( :

!
A= i
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Example: Scattered Data in 1D.
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Example: Scattered Data in 2D
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Function and Sampling (N=128X128)

xy + cos(2smx?) - sin(27x’ x> +y ol
e o nd B
10x—5+xy+cos(2n:x )—sm(Zn:x) X" +y >Z.
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Example: Singularity Detection
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Center on Functional Engineered
Nano Architectonics (FENA)

@ \ 1
— &
Semiconductor —> ® .
Research Corporation & ®

Next generation of nanoscale semiconductor

technology:

*interfaces of new nanosystems.

*biological and molecular functions.

sparadigms of information processing and sensing.
*Locally connected and highly parallel forms
of information processing similar to those in
the brain.

*New nanostructured materials.
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Weakly Connected Neural
Networks (WCNN)

Consider the WWCN as described by the
dynamical system:

X, =F(X,A)+&G(X,,.... Xy, A p,E), i=1...,N.
The fundamental theorem of WCNN states that
the equilibrium point p must be a near a
bifurcation point in order for the network

dynamics to be nontrivial [Hoppensteadt and
|zhikevich].
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WCNN

 Canonical models near equilibrium points are
obtained through the use center manifold
reduction, change of variables, and rescaling or
averaging.
— The dynamics of many different nano-systems can be
distilled to an equivalent network of oscillators.

* Rate coupled network of oscillators that have saddle-
node dynamics is proven to be capable of basic
logical operations and the image processing
function of boundary detection

OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY UT-BATTELLE

30



Architecture of the Network

Consider the NXM networked oscillators, where the phase is described in terms
of its natural oscillation and phase deviation as

Hi,j - Qi,jt i ¢i,j’

fori=1,2,...,N and j=1,2,...,M. Here the phase deviation dynamics of the ith, jth
oscillator has saddle-node dynamics on an invariant circle (SNIC),

(1+ SC((P))QBLJ = (1 + COS qbl.’j)ai,j I (1 —Cos qbi’j)bi’j.

Here a,; and b;; is the inputs to the ith, jth oscillator (naturally coupled to the
nearest neighbors), € is a small parameter, and C(®P) represents the coupling of
the ith, jth oscillator to its neighborhood.
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Example: OR Logical Operation

1 1 ! '
w r or "
" ' | 0% “
u (] | o4 u
| | & 02 “w
e I ' o '
02 o2 -z o2
04 04 l:l u 04
o8 08 I_ _l . - 28
21 s - 28
- - -1 -

Binary images (a) U and (b) V. (c) Initial conditions. (d) The sine of the
steady state solution of equation of the rate coupled network, with

a ; =Ul.,j+Vl.,j+1 and bi’j =-q, ..

Here the rate coupling is random with N=M=9 and € =0.1.
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Example: Boundary Detection

4 N —1

L 408

408 08

04

Binary images (a) U and (b) Initial conditions. (c) The sine of the steady
state solution of equation of the rate coupled network, with

1
a,; =8U, ;- EUk,l )
0<|i~k|s1

0<| j-1|=1

and b, =-a,.

Here the rate coupling is random with N=M=18 and € =0.1.
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Brain Computer Interface

Michael Nagle, 25, is the first Professor John Donohue, head of
patient in a clinical trial that seeks neuroscience at Brown University,
to proce brain-comper interfaces the founder of Cvberkinetics and
can return function to paralyzed creator of BrainGate.

people.
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Single Trial EEG

Objective:  Explore the predictive power of single trial
analysis of EEG 1n the context of leftward and rightward
directed hand movements.

Methods: The dynamics of cortical electrical activity
obtained from 14 right-handed adult volunteers was
analyzed using both broad-band and independent
component (IC) techniques. Classification rates of left
from right movements were determined by the leave-one-
out, cross-validation method, with a support vector
machine, on EEG and independent components (ICs).
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Why EEG

EEG MEG PET fMRI
Physiological Electric Magnetic Oxygen or Oxygen or
signal Potential Potential glucose glucose
metabolism in metabolism in
brain brain
Temporal resolution | Very high Very high Low (seconds — Low/medium
(<1ms) (<1ms) minutes) (seconds)
Costs Low High High High
Application Non Non invasive | Mildly invasive Non invasive
invasive
Portability High Low Low Low

OAK RIDGE NATIONAL LABORATORY
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EEG Setup and Standard Analysis

Signal averaging

A

mplifiers
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latency

Event Related Potential

%

amplitude
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Independent Component Analysis

Let x(t) be an n-dimensional vector of sensor signals produced by the
linear mixing of s(t), and unknown n-dimensional vector of
independent sources,

x(t) = As(t).

Here the unknown mixing matrix is square and assumed to be
invertible. This problem is also referred to as blind source separation.
The particular ICA algorithm chosen for this study was SOBI
[Cardoso] since it exploits the temporal data structure by minimizing
the correlation between sources at different time delays. Every ICA
algorithm determines the unmixing matrix up to scaling and
permutation:

W = DPA".
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ICA example

cof 21 |
s(t) = sign{CES)(;)} +&(2), M M WW[\ WM WWW
E(r 1 200 1 | >

o T o e e )\
s(£) = Wix(2). mm WW] WMM( \)W W
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ICA Summary

* Inverse problem ill-posed [Helmholtz], and
sources estimation is possible only by
Imposing major restrictions [Darvas, et.al.]

* |CA has been demonstrated to separate
EEG and MEG data into physiologivally and
functionally distinct sources [Makeig, et.al.],
[Jung, et.al.]

 |CA can remove ocular and other artifiacts
from EEG and MEG data [Zhou and Gotman]
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Support Vector Machines

Given the training set (x.ERN,y.€+1) for i=1,..,m, the training of a
support vector machine [Vapnik] leads to the following quadratic
optimization problem:

min i +%§§y.yjaiajk(xi,xj)
% ;

with : _Ey’ai 3

Decision function becomes:

_sgn(zylakxx b)
b= Avg {y] Eyz“zk( e )}

O<a <C
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‘{z|(w-z)+b:
°
\ \ -
\ \
\\ \ \\
. \
¢ o \ ’{z|(w-z)+b:0}
\\\\ \ ‘\\\ |
min :

with : ‘(w-z)+b‘zl

Note:

(W-z) +D=+1
(W-2,)+b=-1

=  (W-(z,-2,) = 2
2

W
— (Wu°(zl'zz)) ~ liwll

HWH |ldeal hyperplane will be perpendicular
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Nonlinear SVM

e To allow for more generalized decision surface, nonlinearly transform
input vectors into a high-dimensional feature space by a map ®.

* Computational costs are significantly reduced by a suitable kernel such
that

(I)(x) : CID(xl.) = k(x,xl.)
i.e. consider the second order polynomial map
(I)(x) ; (xl,xz) > (xf,x%,xlxz)

P(x)- B(y) = (x-y)’
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Typical Kernels

Polynomial
k(x,xl.) = (x- xl.)d

Radial Basis Function

2
k(x.x,) = exp(_”x X xi'%

Neural Network
= tanh(K(x - X;)+ @).
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EEG Experiment

© O - O

Captions of the video display for one particular trail in which the target 1s moved

from center to left. Trial begins with the subject waiting for the cue and ends with the

subject acquiring the target.
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Eye Movements

mV
mV

200 300 400 500 600 700 800 9200 -500 -400 -300 -200 -100 0 100 200 300
mSec mSec

Grand average of leftward versus rightward movement trials of
EEG data recorded the HEOG channel for both (a) stimulus and (b)
movement locking.
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EEG Cap Array

mmmmmmmmmmmmmmmm

Grand average 1n the scalp array of leftward versus rightward
movement trials of pre-processed EEG data for both (a) stimulus
and (b) movement locking
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(a) The sensorimotor cortex weighted component average across
subjects. (b) The corresponding grand average component
activation for leftward versus rightward movement trials in the
stimulus locked case. Rate: 74%, range 63-83%, p < 0.0001.
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(a) The sensorimotor cortex weighted component average across
subjects. (b) The corresponding grand average component
activation for leftward versus rightward movement trials in the
movement locked case. Rate: 72%, range 62-81%, p < 0.0001.
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