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Overview

• High-order image analysis in MRI.
• Computational modeling of nano-circut

architecture designed to have both logical
and imaging processing functionality.

• High dimensional single trial analysis of EEG
to predict fine motor neural intent .
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Consortium

Goal: ‘To capitalize on the state’s
complementary resources in brain
imaging…to help in the understanding,
early detection, treatment, and prevention
of Alzheimer’s disease.’
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Magnetic Resonance Imaging

Research Motivation:  Improve Sensitivity of Detecting Volume
Change of Neural Structures in MRI through high order
Image Reconstruction techniques.

Fourier Reconstruction Gegenbauer ReconstructionBoundary Detection
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Fourier Reconstruction

2D Fourier Reconstruction

2D Fourier Coefficients

(equally spaced k-space data)
Shepp-Logan Brain Phantom

Fourier Reconstruction  (128X128)
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Filtered Fourier Reconstruction

2D Fourier Reconstruction

2D Fourier Coefficients

(equally spaced k-space data)

Graph of the Filter θ

Filtered Fourier Reconstruction (128X128)

α=32

p=4
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Boundary Detection
Concentration Method [Gelb and Tadmor] with Continuous
Fourier Coefficients

Where the Discrete Concentration factors satisfy

Concentration Method with Discrete Fourier Coefficients

Concentration factors satisfy
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Gegenbauer Reconstruction

The Gegenbauer reconstruction method [Gottlieb, et.al.] recovers piecewise
smooth functions with spectral accuracy up to the edges in each smooth interval.

• Given f(x), an piecewise smooth function in [-1,1] that is analytic in a sub-
interval [a,b].
• Define the local variable η is defied such that x(η)=εη+δ such that

and

• The Gegenbauer coefficients:

    where

• Convergence is exponential with the max norm in [a,b] for m,λ~εN.
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Gegenbauer Method Continued

It is possible to approximate the Gegenbauer coefficients using the truncated
Fourier reconstruction and still maintain spectral accuracy up to the edges in
each smooth interval.

• Define the approximation to the Gegenbauer coefficients

• Convergence remains exponential with the max norm in [a,b] for m,λ~εN.

• The new partial sum approximation becomes
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Shepp-Logan Phantom Example

Fourier Reconstruction  (128X128) Filtered Fourier Reconstruction  (128X128)

Gegenbauer Reconstruction using the
Fourier Reconstruction with m=λ=4.

Boundary Detection Using
Minimization Method
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Artificial Noise Reduction

Fourier Reconstruction  (128X128) Filtered Fourier Reconstruction

Gegenbauer Reconstruction using the
Fourier Reconstruction with m=λ=4.

Boundary Detection Using
Minimization Method and Noise

Reduction.
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Gegenbauer Preprocessing

SPM Segmentation

MR Image

SPM Segmentation

Gegenbauer Reconstruction Gray Matter Probability Maps
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Gray matter segmented probability maps for the original and Gegenbauer image reconstruction of a
particular randomly generated MNI digital brain phantom with 9% level of noise and 40% INU.
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Brain Extraction

SPM Brain
Extraction

SPM Brain Extraction With
Gegenbauer Pre-Processing
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High Dimensional Segmentation

The Weibull E-SD field segmentation method [Hu, et.al.] generates for
each data point an ordered pair representing the local expectation and standard
deviation.  Segmentation occurs by clustering regions in the E-SD field -- a valid
method under the assumption that homogeneous structures can be characterized
by similar local expectancy and variance.
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Weibull probability density function (pdf).
Note: Approximates Possion pdf for a=1,
Rayleigh pdf for a=2, and Gaussian pdf for a=3.
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Control Problem

Simulated Volume Data E-SD Field Segmentation Gegenbauer Preprocessing
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Small Animal MRI Segmentation

Original Segmentation (Top) Gegenbauer Preprocessing

Majority of the 10% volumetric difference occurs near boundaries 
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Small Animal MRI Segmentation

Original Segmentation (Bottom) Gegenbauer Preprocessing

Majority of the 10% volumetric difference occurs near boundaries 
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Generalized Edge Detection

Research Motivation:  Develop an edge detection
method with portability to a broad range of
scientific applications.
• Can be applied to any irregular data in any domain
• Independent of any specific shape of

discontinuities in both the univariate and
multivariate case.

• Easy to implement numerically -- cost effective.
• High order method.
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Formulation in Multiple Dimensions

Suppose that a piecewise smooth function is sampled
on a finite number of points

The coefficients of the edge detector at the point x∈Ω
is the solution to the linear system

Where pi, i=1,…,md, is a polynomial basis of order m.
Note:
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The edge detector Lmf is defined as

Here [f](x) is the jump function, h(x) is a density function and the
normalization factor depends upon the order m, dimension d, and
the local set Sx and is defined as

Discontinuities in the γth derivative can be detected by adding the
following restriction

and modifying the normalization factor to become
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Example: Scattered Data in 1D.
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Function Sampling (N=64)
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L1f(x) L3f(x)

L6f(x) Minmod of Lmf(x)
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Example: Scattered Data in 2D

Function and Sampling (N=128X128) Minmod Boundary Detection
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Example: Singularity Detection

Function Minmod on Lmf(x) with γ=0. Minmod on Lmf(x) with γ=1. 
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Center on Functional Engineered
Nano Architectonics (FENA)

Next generation of nanoscale semiconductor
technology:
•interfaces of new nanosystems.
•biological and molecular functions.
•paradigms of information processing and sensing.

•Locally connected and highly parallel forms
of information processing similar to those in
the brain.

•New nanostructured materials.
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Weakly Connected Neural
Networks (WCNN)

Consider the WWCN as described by the
dynamical system:
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The fundamental theorem of WCNN states that
the  equilibrium point ρ must be a near a
bifurcation point in order for the network
dynamics to be nontrivial [Hoppensteadt and
Izhikevich].
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WCNN

• Canonical models near equilibrium points are
obtained through the use center manifold
reduction, change of variables, and rescaling or
averaging.
− The dynamics of many different nano-systems can be

distilled to an equivalent network of oscillators.
• Rate coupled network of oscillators that have saddle-

node dynamics is proven to be capable of basic
logical operations and the image processing
function of boundary detection
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Architecture of the Network

! 

"i, j =#i, j t + $i, j ,

Consider the NXM networked oscillators, where the phase is described in terms
of its natural oscillation and phase deviation as

for i=1,2,…,N and j=1,2,…,M. Here the phase deviation dynamics of the ith, jth
oscillator has saddle-node dynamics on an invariant circle (SNIC),

! 

1+ "C(#)( ) ˙ # i, j = 1+ cos#i, j( )ai, j + 1$ cos#i, j( )bi, j .

Here ai,j and bi,j is the inputs to the ith, jth oscillator (naturally coupled to the
nearest neighbors), ε is a small parameter, and C(Φ) represents the coupling of
the ith, jth oscillator to its neighborhood.
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Example: OR Logical Operation

Binary images (a) U and (b) V. (c) Initial conditions. (d) The sine of the
steady state solution of equation of the rate coupled network, with

Here the rate coupling is random with N=M=9 and ε =0.1.

! 

ai, j =Ui, j +Vi, j +1 and bi, j = "ai, j .
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Example: Boundary Detection

Binary images (a) U and (b) Initial conditions. (c) The sine of the steady
state solution of equation of the rate coupled network, with

Here the rate coupling is random with N=M=18 and ε =0.1.
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Brain Computer Interface

Michael Nagle, 25, is the first
patient in a clinical trial that seeks
to proce brain-comper interfaces
can return function to paralyzed

people.

Professor John Donohue, head of
neuroscience at Brown University,
the founder of Cvberkinetics and

creator of BrainGate.



35

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Single Trial EEG

Objective: Explore the predictive power of single trial
analysis of EEG in the context of leftward and rightward
directed hand movements.

Methods: The dynamics of cortical electrical activity
obtained from 14 right-handed adult volunteers was
analyzed using both broad-band and independent
component (IC) techniques.   Classification rates of left
from right movements were determined by the leave-one-
out, cross-validation method, with a support vector
machine, on EEG and independent components (ICs).
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Why EEG

LowLowLowHighPortability

HighHighHighLowCosts

Non invasiveMildly invasiveNon invasiveNon
invasive

Application

Low/medium
(seconds)

Low (seconds –
minutes)

Very high
(<1ms)

Very high
(<1ms)

Temporal resolution

Oxygen or
glucose
metabolism in
brain

Oxygen or
glucose
metabolism in
brain

Magnetic
Potential

Electric
Potential

Physiological
signal

fMRIPETMEGEEG
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EEG Setup and Standard Analysis

Amplifiers

Signal averaging

+

+…
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latency

amplitude

Event Related Potential
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Independent Component Analysis
Let x(t) be an n-dimensional vector of sensor signals produced by the
linear mixing of s(t), and unknown n-dimensional vector of
independent sources,

Here the unknown mixing matrix is square and assumed to be
invertible.  This problem is also referred to as blind source separation.
The particular ICA algorithm chosen for this study was SOBI
[Cardoso] since it exploits the temporal data structure by minimizing
the correlation between sources at different time delays.  Every ICA
algorithm determines the unmixing matrix up to scaling and
permutation:
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ICA example

! 

s t( ) =

cos
13"t

500

# 

$ 
% 

& 

' 
( 

sign cos
"t

25

# 

$ 
% 

& 

' 
( 

) 
* 
+ 

, 
- 
. 

/ t( )

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

+ 0 t( ),

! 

x t( ) =

0.0149 "2.0788 "1.5583

0.2187 0.1129 0.6374

1.7132 "1.0865 "0.4046

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
s t( )

! 

s t( ) =Wx t( ).



41

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY



42

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

ICA Summary

• Inverse problem ill-posed [Helmholtz], and
sources estimation is possible only by
imposing major restrictions [Darvas, et.al.]

•  ICA has been demonstrated to separate
EEG and MEG data into physiologivally and
functionally distinct sources [Makeig, et.al.],
[Jung, et.al.]

• ICA can remove ocular and other artifiacts
from EEG and MEG data [Zhou and Gotman]
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Support Vector Machines
Given the training set (xi∈RN,yi∈±1) for i=1,..,m, the training of a
support vector machine [Vapnik] leads to the following quadratic
optimization problem:
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! 

min : w

with : w " z( ) + b #1

Ideal hyperplane will be perpendicular
to the shortest line connecting the
convex haul of each class.
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Nonlinear SVM

• To allow for more generalized decision surface, nonlinearly transform
input vectors into a high-dimensional feature space by a map Φ.

• Computational costs are significantly reduced by a suitable kernel such
that
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Typical Kernels

Polynomial
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EEG Experiment

          
Captions of the video display for one particular trail in which the target is moved 

from center to left.  Trial begins with the subject waiting for the cue and ends with the 

subject acquiring the target. 
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Eye Movements

  
Grand average of leftward versus rightward movement trials of
EEG data recorded the HEOG channel for both (a) stimulus and (b)
movement locking.
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EEG Cap Array

  

Grand average in the scalp array of leftward versus rightward
movement trials of pre-processed EEG data for both (a) stimulus
and (b) movement locking
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(a) The sensorimotor cortex weighted component average across
subjects.  (b) The corresponding grand average component
activation for leftward versus rightward movement trials in the
stimulus locked case. Rate: 74%, range 63-83%, p ≤ 0.0001.
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(a) The sensorimotor cortex weighted component average across
subjects.  (b) The corresponding grand average component
activation for leftward versus rightward movement trials in the
movement locked case. Rate: 72%, range 62-81%, p ≤ 0.0001.

  


