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ABSTRACT

In a previous paper by Ryan and Shu [20], a one-sided post-processing technique for the
discontinuous Galerkin method was introduced for reconstructing solutions near computa-
tional boundaries and discontinuities in the boundaries, as well as for changes in mesh size.
This technique requires prior knowledge of the discontinuity location in order to determine
whether to use centered, partially one-sided, or one-sided post-processing. We now present
two alternative stencil choosing schemes to automate the choice of post-processing stencil.
The first is an ENO type stencil choosing procedure, which is designed to choose centered
post-processing in smooth regions and one-sided or partially one-sided post-processing near
a discontinuity, and the second method is based on the edge detection method designed by
Archibald, Gelb, and Yoon [1, 2]. We compare these stencil choosing techniques and analyze
their respective strengths and weaknesses. Finally, the automated stencil choices are applied
in conjunction with the appropriate post-processing procedures and it is determine that the

resulting numerical solutions are of the correct order.
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1 Introduction

In a previous paper by Ryan and Shu [20], a one-sided post-processing technique for the dis-
continuous Galerkin method was introduced for reconstructing solutions near computational
boundaries and discontinuities in the solution, as well as for changes in mesh size. The tech-
nique requires apriori knowledge of shock locations, since no biasing should occur in smooth
regions. Hence in this paper we propose two options to automate the stencil choices for the
post-processor. The first technique borrows ENO (essentially non-oscillatory) constructions
to find the smoothest stencil for post-processing. The second technique utilizes a local edge
detection (LED) method developed by Archibald, Gelb, and Yoon [1, 2] to find the shock
location, and determines the post-processing stencil based on the proximity of the shock.
This study analyzes the behavior of these stencil choosing procedures for both stationary
and moving shocks on a series of different uniform meshes and numerically evaluates their
use on four scalar problems.

This paper is organized as follows. In §2 we review the discontinuous Galerkin method
and the symmetric and one-sided post-processing technique utilized in this paper. The ENO
and LED methods for choosing post-processing stencils are discussed in §3. Finally, in §4
we present numerical results demonstrating the benefits of using either of these techniques

for choosing the appropriate post-processing stencil.

2 The discontinuous Galerkin method and post-processing

In this section we give a brief review of the discontinuous Galerkin method, developed by
Cockburn and Shu et al. [5, 6, 9, 10, 11], for treating nonlinear problems, and the related
post-processing technique, introduced by Cockburn, Luskin, Shu and Siili [4, 7, 8, 12]. The
authors show that the post-processor nearly doubles the order of accuracy for time-dependent
linear hyperbolic systems solved over a locally uniform mesh. In addition, numerical evidence

strongly indicates that the method also improves the convergence for nonlinear problems as



well. The applications of the post-processor were extended in [19] to include multi-domains
with different mesh sizes as well as variable and discontinuous coefficient equations. The
extension of this technique to one-sided post-processing appears in [20]. Detailed discussion

of the post-processor, including implementation, can be found in [7, 8, 19, 20].

2.1 The discontinuous Galerkin method (DGM)

We begin by considering the discontinuous Galerkin method for the one-dimensional conser-

vation law

w4 f(u)g = 0. (2.1)

The mesh is defined by Az; = Tipl =T 1 where I; = (x; — A;",x,- + A;”"), and z; denotes

the cell center, i = 1,---, N. The approximation space consists of piecewise polynomials of
degree less than or equal to k, where k+ 1 is the order of accuracy of the approximation, that
is, V,, = {v|v € P* for z € I;}. The discontinuous Galerkin method is found by multiplying
equation (2.1) by a test function v € V}, and integrating by parts to obtain the variational
formulation:

Find up(z,t) € V3 such that

/ wvdx = / J(W)vadr — f(Uir1/2)Vip1/2 + f(Uic1/2)vic2 Vv € V.
I; I;

The numerical scheme is then given by:

[ nevds = [ flanoade = s+ iy (2.2
I I

for all test functions v € V},. The numerical flux, fiﬂ/z = f(ui_ﬂﬂ,u;lﬂ), is chosen to be
an upwind monotone flux, i.e. it is a non-decreasing function of the first argument v~ and a
non-increasing function of the second argument u™. The test function v is taken from inside
the cell. We note that numerical integration of (2.2) by the third-order SSP Runge-Kutta
method (see e.g. [14, 15, 21]) guarantees the order of accuracy to agree with the spatial

discretization error.



2.2 Post-processing for DGM

It was shown in [8] for linear hyperbolic equations that the negative-order norm error esti-
mate, which provides information about the oscillatory nature of the error, is of higher order
than the usual L, norm error estimate for the DGM. The post-processing technique in [20]
both reduces oscillations as well as improves the L, norm accuracy. In fact it is possible to
enhance the overall accuracy to be up to the order of the error estimate in the negative-order
norm. In addition, the post-processor can be numerically simplified if a locally uniform mesh
is assumed, yielding translation invariance and subsequently localizing the post-processor.

This assumption will be used in our study, resulting in a post-processor of the form

1 [ —x
u*(z) = E/ J2R+1) k1 (yT) un(y) dy, (2.3)

where K2(k+D:#+1 i5 3 linear combination of B-splines and wy, is the numerical solution. The

symmetric form of the post-processing kernel can be written as

k
RHEFDE () = N 2Dk kD) (), (2.4)
y=—k

where 1)(*+1)(z) is obtained by convolving the characteristic function over the interval (-1, 1)

(k+1),k+1 k+1),k+1

with itself k times and ¢ € R. The calculation of cg,( as well as the construc-
tion and implementation of (2.3) is described in [3, 19, 20, 22, 23].

We note that since we are using an uniform mesh, the kernel (2.4) has a particularly
simple form as in [7, 8, 19, 20]. Furthermore, the post-processor as well as the B-spline
coefficients are symmetric. Finally there is an additional advantage in the local behavior
of the post-processor, specifically that the kernel needs information only from its nearest
neighbors.

The symmetric version of the post-processed solution in (2.3) uses 2k+ 1 B-splines, giving

a total support of 2k’ + 1 cells where k' = [217. A one-sided version of this post-processor

is performed by simply moving the support bias to one-side. For example, a purely left-sided



post-processed solution would be of the form

—k
u(z) = E/ N Dk <yT _ 7) un(y) dy (2.5)
0 y=—3k

for kK =1 or k = 2. This purely one-sided post-processor has a form similar to the centered
one, just with different bounds on the summation and new coefficients ¢2**** [20]. Similarly,
a partially left-sided post-processor is obtained by changing the bounds of the summation.
In each case, the use of 2k + 1 B-splines remains consistent. The right-sided post-processed

solution is a mirror image of the left.

3 Post-processing stencil options

As explained in [20], advanced knowledge of the shock locations is required to determine the
post-processing stencil best suited for reconstruction in a shock vicinity. A stencil defines
a collection of points z;_;,--- , 2 4, surrounding the point z; where we wish to determine
the smoothness of the solution. Because of the considerations outlined in previous sections,
we are only considering stencils of equally spaced points. We also assume that the mesh
is sufficiently well resolved so that the shocks are well separated and therefore there is a
sufficient number of points between shocks.

There are 2k’ + 1 candidate stencils for the post-processor in each considered region, such
as the five point candidate post-processing stencils for piecewise linear polynomials shown in
Figure 5.1. An admissible stencil for the post-processing procedure avoids points containing
shock values. To this end, here we present two alternative techniques for determining suitable
stencils for post-processing the computed numerical solution. The ENO approach chooses the
post-processor stencil based on the pattern of the overall smoothness of qualifying stencils.
Alternatively, the LED method finds the shock locations directly and then dictates the post-

processing stencil to avoid any shocks.



3.1 ENO type stencil choosing

The essential non-oscillatory (ENO) finite difference method for hyperbolic equations with
discontinuities approximates the values at each z; by interpolating values only in identified
smooth regions [16, 17, 18, 21]. The ENO stencil choosing technique for the DGM post-
processor developed here similarly seeks to evaluate the numerical solution based on the
identified smoothest stencil, and then chooses a one-sided, partially one-sided, or a centered
stencil to post-process the solution. Unlike the standard ENO algorithm, here we impose a
bias toward centered stencils for the DGM solution post-processor since the magnitude of
the error is reduced more significantly than if we use a one-sided stencil. (Note that 2k + 1
order accuracy is still obtained throughout the domain, including regions where one-sided
post-processing is implemented). Below is a description of the ENO type stencil construction
process.

Let us first consider the case where £ = 1 in which a third order post-processor is used.

Given the data u; at all of the cell faces, we employ the recursive formula for r = 1,2, 3:

Dil = |uip1(Tim1/2) — wi(wi12)|

Dt = |Di, - Djl, (3.1)

where i = 7 —4,---, 7+ 4 — r. Clearly Djl- is the difference between the downwind points
across each cell I;. Based on this difference, we make the following stencil choice, S(j), for

reconstruction at each cell I;:

1 if Nle =4,
S(j) = Sa(j) =4 ~1 if NP} =5, (3.2)
0 else,

where NPT is defined as the value for which j — 4 + NP/ maximizes the rth difference, i.e.

D . npr= max D,
J=AENES G 4<T<

Table 5.1 displays the possible stencil choices when S(j) = Sz(j). Although employing

the maximum undivided difference yields post-processing stencils without shocks, the stencil
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might still include cells in which steep gradients of the solution exist, reducing the the overall
accuracy of the method. This can be alleviated by implementing a stencil that considers
both the first and second undivided difference. Namely,

Sy(j) if NP} =2 and NP} =3,
N N _ ) Sa(j) if NP? =3, NP} =4, NP} =5,
0 else.

(3.3)

The S32(j) stencil examines the seven options of maximal 3-point stencils and compares
them to the maximal two point stencil. To refine this further, we consider the first three

differences:

j) if NP} =1and 1< NP? <2,
j) if NP} =2and 2 < NP} <3,
j) if NP} =3 and 3 < NP? <4,
j) if NP} =4and 4 < NP? <5, (3.4)
j) if NP} =5and 5 < NP? <6,
J) ifNP]?’:6and6§NPj2<7,

S
S.
S
S(7) = Saz(j) = { Sa2
S
S
0 else,

or the first four differences:

( Su(j) if NPf=1and 1< NP} <4,
)

(
S432(] 1fNR74:23nd1SNP]3S5,
N o) Su(y) if NPF=3,
S0) = S5520) = 5,0,(7) if NP =4 and 2 < NP} <6, (3:5)
S432(j) if ]\T_P]4 =5 and 3 S NP]?’ S 6,
0 else.

\
Implementing successive levels for S(j) is necessary to provide consistency in determining a

suitable post-processing stencil.

The k£ = 1 stencil choice essentially finds the discontinuity, and is thus sufficient for
suggesting the correct post-processing stencil. Hence, the same stencil choosing method (for
k = 1) described above can be performed with the information given by the P*-polynomial
approximation, for £ > 2. Once this skeleton stencil choice — the stencil choice that is based
on 5-point stencils — is determined, the 9-point stencil choice easily follows. Specifically,

if the 5-point stencil is biased then the 9 point stencil is biased in the same way to avoid



the same discontinuous region. The ENO stencil choosing algorithm for P*, k = 1,2 is the
following:
If S(j) # 0 then do nothing.
Else if S(j) = 0 then
If S(j —1) =1 then S(j) = 2.
If S(j+1)=—1 then S(j) = —2.

If £ > 2 then
If S(j — 1) = 2 then S(j) = 3.
If S(j —1) = 3 then S(j) = 4.
If S(j +2) = —1 then S(j) = —3.
If S(j +3) = —1 then S(j) = —4.
End If
End If

Table 5.2 displays the stencil options for k¥ = 2. As is evident from the above algorithm,
an advantage of using an ENO stencil choosing technique is that the complexity of the stencil

choosing method increases minimally with increasing polynomial degree approximation.

3.2 A Local Edge Detection Method

The local edge detection (LED) method used in this study is based on the multivariate edge
detection method for scattered data first described in [1]. Since here we are considering
a uniform mesh, the analytical and computational aspects of the original method are con-
siderably simplified, and essentially the method is reduced to constructing Newton divided
difference formulations of various orders. Once the edges are located, the post-processing
stencil is simply chosen to avoid the cells that contain jump discontinuities.

Let us denote J = {& : a < & < b} as the jump discontinuities of u(z) on x € [a,b]. Each

¢ is computed by the LED method to within a grid cell value. Subsequently, the size of the



stencil [z;, z,] used to post-process the solution at the value z* is restricted by
-1 S 51/ <I S x* S Ty S 61/4-1 < Tpti,

for each &, € J. In this case, the size of the stencil guaranteeing a smooth region is r — [+ 1,
implying that for u(z) € C*(x) in the region [z;, z,], we can obtain 2k + 1 accuracy as long
as 2k + 1 <r—1+1 (where ¥ = [2£t1]), which is in line with the resolution requirements
for high order post-processing discussed in §2.2. Since the boundary points are defined as
jump discontinuities, there is no formal reduction of accuracy as they are approached.

The main difference between the LED stencil construction procedure we describe in this
section and the ENO stencil described in §3.1 is that while the ENO construction chooses
candidate stencils based on a perceived smoothness of u(x) in the region of reconstruction,
the LED subscribes a particular stencil based directly on the location of the detected jump
discontinuities. This procedure has been further extended to identify discontinuities in the
derivative in [2], which will be described in §3.2.2. Hence the region of reconstruction can
be chosen to avoid discontinuities in the derivative of the function as well.

As in the ENO stencil case, the LED method for one-dimensional data can be formu-
lated using Newton divided differences. We also note that the LED method is completely
independent of the order of the post-processing method since it is based solely on given grid
point data. Hence there is no added complexity for higher order post-processing stencils. A

brief synopsis is provided here.

3.2.1 Review of the one-dimensional mth order LED

Consider a piecewise smooth function u(z) on [a, b] known at the discrete grid point values
S = {z1,---,zn}. We wish to determine whether or not there is a jump discontinuity at
any point z in [a, b]. Following the development in [1], we construct an edge detector L, u(z)
based on a stencil S, containing m + 1 points around z to be an approximation of the jump

function
[u](z) == u(z™) —u(z), (3.6)
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where u(z") and u(z~) are the right and left hand side limits of u at z. Typically in the
uniform data case S is chosen so that there is an equal distribution of m + 1 points around

T € [zj_1, 7], ie.
Sm = {.’L‘i_%, e 7$i+%}7

for each z; € S§. If x is near the boundary, the point distribution can be easily modified
without affecting the properties of the LED method [1]. To ease notation we re-label the

local set S, for any point z € [a, b] as

Se=A{z1, T}

Recall that J = {£ : a < & < b} is the set of jump discontinuities in [a, b] for u(x). The edge

detector L,,u(z) is characterized by the asymptotic convergence property

if RS E A fi J;
Lua) — { (O 5 S 60 S for e € 3.7

where I, is the smallest closed interval such that S, C I,.

The general form of the one-dimensional mth order edge detection method is given by

1
Gm ()

Lu(z) = > cis(@ulz;), j=1,---,m+1 (3.8)

2;€8,

The coefficients ¢;s,(z) are chosen to annihilate polynomials of degree m. Hence (3.8)
can yield up to mth order accuracy in recovering smooth regions, i.e. where I, NJ = {),
depending on the underlying smoothness of u(z). Specifically, it was shown in [1] that for

Az = max{|z;y1 — x|, i =1,--- , N}, we have

[u](§) + O(Az), ifx; <&z <z for €€ J,

L) = { O(Agminmk)) | if o & CF(L,) for k > 0. (3.9)

We determine ¢ s, (z) by solving the system

3 s, (@)pils) = p{™ (). (3.10)

T;€ESy

11



Here p;(z), i = 1,--- ,m is a basis of P, where P™ denotes the space of all polynomials
of degree < m. Note that pf.’”) (x) is constant for all m, and therefore all ¢; s, (z) are also
constant. Hence we write ¢ s, = ¢ s, () for each z; € S,.

The normalization factor ¢, (z) is set as

() = D Cis.,

T; est

where we have defined the sets
S5 :={z; € Sylz; >z} and S; =8, \ S, (3.11)

(NOte that Ezjes;!— Cj,Sm = - ZJ;jES; Cj,Sm-)
In the one-dimensional case, (3.8) can be reduced to a Newton divided difference formula

[1]. Specifically, by defining

m+1
wj(Sm) = Ldj(il)‘l, To, ... ,.Z‘k_|_1) = H (xj - LL‘Z'), (312)
=
we can directly compute
m!
Cj,Se = , J=1L-- m+1, (313)
! 3(Se)
from (3.10) yielding
!
Lnu(z) = 2 u[S,]. (3.14)

G ()
This is further simplified if the given set of points S is uniform on |[a, b]:

b—
S={z;:=a+iAz|i=1,--- ,N}, Azx= Na > 0.

In this case we have

m! m! . 41
Cj =Cjs, = = ; NE ]1=1 *,Mm 3
i = Cj wi(Sz)  ATIMYL, (G — 1)

and the corresponding edge detection method

Lyu(z) = L Z cju(z;), (3.15)

qm Tj (S

for ¢, = ij est Cj- 1t was shown in [1] that g, () is never zero.
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3.2.2 Discontinuities in the derivative

Many partial differential equations, including some of the examples in §4, admit solutions
with discontinuities in the derivative of the solution. Since high order reconstruction re-
quires the function to be as smooth as possible, it is desirable to determine all of the jump
discontinuities for u(")(x) where ¥ = 0,--- , k and k is the order of the reconstruction. In [2]
the LED method was extended to compute the jump discontinuities of u(?) (). The method

is given for one dimension as

1 .

L] su@) == Y cs(@ul;), j=1,---,m+1, (3.16)

C]m(l') T, ES

j -

with
G (2) = Z Cj,smg- (3.17)
+ v
z; €SS

When v = 0 the construction is exactly the same as in (3.8). The convergence rate was

shown in [2] to be

D) (z,6)[u"](€) + O(Ax), ifx; <& x <xiyq for £ € J,

Y — ;
Lou(e) = { O(Agmin(mk)=7), if u € C*(I,) for k > 0, (3.18)

where
+ s, (T — &)

Z.Z‘j 655

D asest Cis. (T — )7

Dy (x,8) =

Note that D}, (x,&) = 1 when v = 0. Clearly the approximation (3.16) of the jump [u( (z)]
improves as resolution is increased. Also note that D) (x,&) is closer to 1 when + is small.
More details can be found in [2]. For our purposes here D) (z,&) need not be computed.
Although the edge detection method yields up to m — v order convergence away from the
discontinuities of a piecewise smooth function, some difficulties arise. For small m, there
is a risk of wrongly identifying steep gradients as jump discontinuities, especially in the
case of limited resolution. On the other hand, as m increases, oscillations that occur in

the neighborhood of a jump discontinuity can be wrongly identified as discontinuities. As
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noted in [2, 13], nonlinear enhancement techniques and outside thresholds can be utilized to
pinpoint the jump discontinuities when v = 0. Unfortunately for v > 0 the oscillations near
the jump discontinuities grow too large to distinguish them from the true jumps. This is
particularly problematic if the jump discontinuities are located close together, i.e., when the
resolution is poor. Hence a different approach was used in [2]. Specifically, rather than using
outside thresholds to determine the jump discontinuities from the approximation (3.16), the

set of jump discontinuities

Iy = {s L f € C7H(E) and [u™](€) # 0}, (3.19)

must be determined explicitly for each . The procedure is given as follows:
Consider the midpoints T 1= w’%ﬂl fori=1,...,N and construct the approximation

(3.16) for the particular local sets

Se. . ={%i—m,... ,z;} and gwi_; ={Ti—1,-- s Tirim—-1} (3.20)

2

such that i—m > 0, i1+m—1 < N, and m, m > 7. By choosing an appropriate threshold, the
regions where u(?) is smooth can be eliminated, i.e. we eliminate all grid cells that contain

values of z such that

LZn,Szi_;u(x) < (Az)” or L:nsm 1 u(z) < (Az)”. (3.21)
3 i-1

The discontinuities of u(?)(z) are then obtained by looking at the remaining regions where

we find the root of

Lys, ,w@)—L) o u(z)=0. (3.22)
i—g i—%—

The solution of (3.22) x = ¢ is added to the set J,. In this way, all of the jump discontinuity
locations of u((z) for v > 0 can be pinpointed exactly. Further details and analysis is
provided in [2], as well as an algorithm for computing (3.22).

Recall that the data is given on uniform points and therefore ¢; and ¢; are determined by

(3.13). Since the local sets (3.20) are fixed, the only variability comes from the normalization
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factor (3.17). As shown in [2], this particular construction enforces the uniqueness of the
root, satisfying (3.22) to within the cell [z;_1,z;]. Furthermore, the jump discontinuity is
found to within subcell resolution accuracy. Hence the LED method, in combination with
the subcell resolution algorithm (3.22) can successfully detect discontinuities for any order
derivative. We note that the jump discontinuities are required to be at a minimum distance
of (m + m)Az with m,m > ~. In the applications that follow, this resolution requirement
is not that prohibitive. Furthermore, as the resolution is increased, the order of the edge
detection method can be increased since the jump discontinuities have more points between
them. In the examples that follow the method is used for v = 0,1 and m = m, typically
taking values between 2 and 5, which is enough to effectively resolve the jump discontinuities
while still maintaining the advantages of the LED in low resolution environments. The post-
processing reconstruction will only occur in regions that are at least C?, yielding at least

second order accuracy.

4 Numerical results

We analyzed the ENO type and LED stencil choosing algorithms by testing them on four
scalar test cases, each with a DG approximation of polynomial degree £ = 1 and k£ = 2.
We evaluated the performance of the ENO S39, Sy39 and Ss432 and the LED stencil choosing
methods to demonstrate their respective strength and weaknesses. For each example, we
compared the post-processed results from the automated stencil choosing using the ENO
Ss432 and the comparable LED stencil choosing method. We chose to work with the Ss430
ENO type method as it was the most consistent among the ENO type methods. Three of the
sample problems were linear, chosen because the theory only guarantees the order enhance-
ment for the linear case. First the stencil choices were tested on a smooth linear problem
in Example 1 to ensure that neither algorithm introduces any errors if used unnecessarily.
The second example features two stationary shocks. The third example has two stationary

shocks and two moving discontinuities in the derivative. Finally a nonlinear problem with a
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moving discontinuity is presented to demonstrate that the algorithms effectively capture a
moving discontinuity.

We present error error tables for the numerical solution as well as the first derivative of
the solution to demonstrate that the 2k+1 order accuracy is indeed achieved throughout
the domain as long as the discontinuity lies on a cell boundary. The Ly-errors presented
are calculated at the cell centers unless otherwise indicated. Furthermore, we remark that
the main advantage of using one-sided post-processing near a discontinuity is in obtaining
the 2k+1 order accuracy in the first derivative of the solution. As seen in (2.5), the post-
processed solution is a polynomial of degree 2k+1, which typically would allow us to obtain
2k+2 order accuracy. In [7, 8] it was shown that 2k+1 order accuracy can be obtained for
the solution to time-dependent linear hyperbolic equations. This same order accuracy is also

achieved in the first derivative for these same equations, as numerically demonstrated in [20].

EXAMPLE 1: LINEAR SCALAR CONVECTION EQUATION
U+ u, =0, 0<z<27r

with initial condition
u(z,0) = sin(z)

is solved to time Ty = 12.5 and the error for the solution is calculated throughout the
entire domain. For this problem, all the ENO stencil choosing methods as well as the LED
method recognize the smoothness of the solution and thus choose centered post-processing
consistently (Figure 5.2). The order of accuracy for the solution and the first derivative of
the solution is increased from second order to above third order in the £ = 1 case, and from
third order to above fifth order in the k& = 2 case (see Table 5.3). This example confirms

that the post-processor with automated shock detection does not introduce errors.

EXAMPLE 2: LINEAR DISCONTINUOUS COEFFICIENT PROBLEM WITH TWO STATIONARY
SHOCKS

ur + (au), =0
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for —1 < z <1 where

with initial conditions

—2cos(4mz) for —f <z <
cos(2mx) else.

N

u(w, 0) = {

The exact solution at time 7 = 4 is shown in Figure 5.5 (left). This solution features two
stationary shocks lying on cell boundaries at x = :I:%. The numerical solution is computed
on a sequence of meshes ranging in resolution from N = 40 to N = 160. The error in
the solution and in the first derivative of the solution, before and after post-processing, is
calculated at time Ty = 4 over the entire domain and is given in Table 5.4. For this example,
the ENO type methods all bias unnecessarily for the low resolution meshes N = 40 and
N = 60. However, the Ssu3, falsely biases less often, and thus gives more reliable stencil
choices than the Sy32 and S33. The ENO Ss439 stencil choices for N = 40, 80, 160 are plotted
in Figure 5.3. For N = 40 and N = 60 the errors from the ENO stencil choice is larger
than the error from the LED stencil (Table 5.4), implying that the LED method handles low
resolution environments better than the ENO type methods. Once the the grid is sufficiently
refined, all four methods identically yield the correct stencil choices.

Since the discontinuities are located at the cell boundaries, the discontinuous Galerkin
method can produce 2k+1 order accuracy in the post-processed numerical solution and its
first derivative throughout the domain, as long as the stencil choice is correct (Table 5.4).
As in [20], the errors for the numerical solution are better than the expected 2k+1 order

accuracy.

ExXAMPLE 3: LINEAR DISCONTINUOUS COEFFICIENT PROBLEM WITH TWO STATIONARY

SHOCKS AND TWO MOVING SHOCKS

ur + (au), =0

17



for —2 < z < 2 where

with initial condition,

2 g —
w(z,0) =4 3 s1n1(7T:E) for -1 <z <1,
cos(zmx) else.

The solution at time 77 = 1.0, shown in Figure 5.5 (right) features two stationary and two
moving shocks where the stationary shocks at z = £1 are located at cell boundaries and
one moving shock is located near the right boundary and the other moving shock is located
near the stationary shock at x = —1. The solution is computed to time 7Ty = 1.0, which is
before the shocks cross. The error in the numerical solution and in the first derivative of the
solution is calculated to include the stationary shocks at x = £1, but to exclude a radius of
0.1 around the moving shocks as in [19, 20].

For k£ = 1, all of the ENO type stencil choices (Ss2, Sy32 and Ssa32), as well as the LED
method, detect the stationary shocks reliably even for low mesh resolution. However, the
moving shock in the middle of the domain, which has a discontinuity only in the derivative,
is not detected by the ENO stencil choices, but is detected by the LED method. For low
resolution the two shocks (the stationary and moving shocks) are too close together for a
stencil between them. Thus, we are only interested in the case of N > 60. In this case,
the LED method is clearly superior to the ENO type stencil choices. However, as we are
excluding a region of 0.1 around the shock, this advantage is not evident in the error tables.
For k = 2 the ENO type stencil choices (Ss2, Siz2, and Sss32) and the LED method are all
equivalent and all capture the correct shock location for all resolutions.

These stencil choices allow the post-processor to both decrease the magnitude of error
and increase the order of accuracy. Table 5.5 shows that the order of accuracy of the post-
processed solution was raised from three to above six. Again we note that the post-processor
gives better than expected errors for the solution, similar to those shown in [20]. In this

case, the ENO stencil choosing method may have trouble in the presence of a discontinuity
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in the derivative, as this method is not designed to determine the locations of discontinuities
in the derivative. Remarkably, this method does detect the discontinuity in the solution
for the £k = 2 case. The extension of the ENO type stencil choosing methods to cases of

discontinuities in the derivative will be addressed in future work.

EXAMPLE 4: BURGERS’ EQUATION
1 2
Uy + iu =0, 0<z<2m,
xr

with initial conditions
1
u(z,0) = 5t sin(z),
is solved to time Ty = 2.0, after a shock has formed as in [8]. This example features a moving

discontinuity which all of the ENO stencil choices as well as the LED method capture for all
choices of N (Figure 5.6).

5 Conclusions

We have presented two effective methods for finding the appropriate post-processing stencil.
The ENO type stencil choosing is designed to pick centered post-processing in smooth regions
and one-sided or partially one-sided post-processing in the neighborhood of a discontinuity
while the LED method directly locates the shocks in the numerical solution to determine
the correct post-processing stencil.

The ENO type stencil choosing is based on the smoothness of the candidate stencils and
is determined by examining the first four undivided differences over the candidate stencils.
Implementation of the successive levels is necessary to avoid one-sided post-processing in
regions where steep gradients in the solution exist. This type of stencil choosing method
requires minimal complexity as the polynomial degree used in the approximation is increased.

The LED method is particularly effective in identifying the shock locations in the case of

low resolution, as well as for non-uniform spacing. The algorithm is effective for determining
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jump discontinuities as well. The subcell resolution technique (3.22) guarantees that the
jump discontinuities are pinpointed so that the post-processing reconstruction is guaranteed
only to occur in smooth regions (at least C?). The method is completely independent of the
post-processing approximation order.

We have demonstrated through numerical examples that both these methods are viable
and efficient techniques for automated choice of the post-processing stencil by enabling the
designed (2k + 1)-th order accuracy of the post-processor throughout the entire domain. No
other pre-determination of discontinuity locations is necessary.

In the case where the discontinuity is in the derivative, the ENO type stencil choosing
method is unreliable, while the LED method works very well. However, we suspect that
the ENO type algorithms can be readily adapted for this purpose and will be the subject of
future investigations. Future work will include extending these methods to systems, multiple

space dimensions, and non-uniform mesh size.

Acknowledgments: The authors are grateful to the reviewer for pointing out the work of

Thomée [22].
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Figure Captions

Figure 5.1 Five point candidate post-processing stencil choices using a piecewise

P!- polynomial approximation.

Figure 5.2 Example 1 for £ = 1 (top) and k& = 2 (bottom). The stencil choice
for the Ss430 ENO type method is on the left and the LED method is on the right. Both
methods correctly choose centered post-processing away from th e domain boundary. N =
40=e, N=80=+, N=160="0.

Figure 5.3 Example 2 with £ = 1 (top) and & = 2 (bottom). The LED stencil
choosing (right) is able to handle low resolution better than th e Ss430 ENO type method
(left). Both the S5, and LED methods are able to detect the stationary shocks at z = +3.
N=40=e, N=80=+, N =160 =L

Figure 5.4 Example 3 with &£ = 1 (top) and & = 2 (bottom). Both the ENO-S5430
(left) and LED (right) methods detect the stationary and moving shocks for k& = 2, but the
ENO method has difficulty detecting the moving shocks for k =1. N =40=e, N =80 =
+, N=160=0.

Figure 5.5 Numerical solutions for Example 2 (left) and Example 3 (right).

Figure 5.6 Example 4 for £ =1 (top) and k& = 2 (bottom). Neither the ENO-Ss,32
(left) nor LED (right) method has difficulty detecting the moving shock. N =40 =e, N =
80 =+, N =160 = [0,
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Table 5.1: Stencils and stencil numbers for &k = 1.

Stencils for £ =1
S(j) | stencil bias
-1 {’U,j_4, Uj—3, Uj—2, Uj—1, Uj } left
-2 {’U,j_g, Uj—2, Uj—1,Uj, Ujt1 } left +1
0 {wj_2,uj_1,u;,uj11,uj4o } | centered
2 {Ujfl, Ujy Ujt1, Ujt2, Ujt3 } I‘ight -1
1| {u) uja1, Ujpe, s, Ujpa } | right

Table 5.2: Stencils and stencil numbers for k& = 2.

Stencils for £ =2

S(j) | stencil bias

1| {8, Uy, U6, Uy Uja, U3, Uj 2, U1, U || left

2| {uj7 e U5, U gy Uj3, Uj2, U1, Uy g || Left 41
-3 {Uj_(;, Uj—5,Uj—4,Uj—3, Uj—2, Uj—1,Uj, Ujt1, Ujt2 } left + 2
-4 {Uj_5, Uj—4,Uj—3,Uj—2, Uj—1, Uj, Ujt1,Ujt2, Uj43 } left + 3
0 {Uj_4, Uj—3, Uj—2, Uj—1, Uj, Ujt1, Uj42, Uj+3, Ujta } centered
4 {uj_3,uj_9,Uj_1,Uj, Ujt1,Ujr2, Uj13, Ujtd, Uj+s | | Tight - 3
3 [ {uj2, w1, 45, ujp, Ujia, Ujas, Ujira, Ujis, Ujye } | Tight - 2
2 {51, U5, Wy, U, Uy 3, Ujya, Ujys, Ujre, Ujgr } | Tight - 1
1 {0, Uy 1, Wy, Ujns, Wjitd, Ujts, Ujre, Ujyr, Ujys } | Tight
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Table 5.3: The Ly error and order of accuracy for the solution of Example 1 calculated with

k =1 and k£ = 2. Results are shown before and after post-processing determined by stencil
choices Ss432 and LED.

Before Ss432 LED
N Lo error  order | L, error order | L, error  order
Errors in Solution

k=1
40 1.1994E-03 8.4052E-04  — | 8.4052E-04 —

60 4.6352E-04 2.34 | 2.2290E-04 3.27 | 2.2290E-04 3.27
80 2.4106E-04 2.27 | 8.7144E-05 3.26 | 8.7145E-05 3.26
100 | 1.4670E-04 2.23 | 4.2253E-05 3.24 | 4.2253E-05 3.24
120 | 9.8368E-05 2.19 | 2.3474E-05 3.22 | 2.3474E-05 3.22
140 | 7.0427E-05 2.17 | 1.4321E-05 3.21 | 1.4321E-05 3.21
160 | 5.2861E-05 2.15 | 9.3540E-06 3.19 | 9.3541E-06 3.19
k=2
40 1.1404E-05 8.4145E-05  — | 1.0557E-05  —

60 3.3814E-06 3.00 | 1.0195E-05 5.21 | 1.2234E-06 5.32
80 1.4269E-06 3.00 | 2.1801E-06 5.36 | 2.5790E-07 5.41
100 | 7.3066E-07 3.00 | 6.5063E-07 5.42 | 7.6474E-08 5.45
120 | 4.2287E-07 3.00 | 2.4103E-07 5.45 | 2.8234E-08 5.47
140 | 2.6631E-07 3.00 | 1.0385E-07 5.46 | 1.2141E-08 5.48
160 | 1.7841E-07 3.00 | 5.0013E-08 5.47 | 5.8398E-09 5.48
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Table 5.4: The L, errors and order of accuracy for the solution (top) and first derivative of
the solution (bottom) for Example 2, calculated with £ = 1 and & = 2. Results are shown for
before and after post-processing with stencil choices determined by the Ss430 and the LED
method.

Before Ss432 LED
N L, error order L4 error order | Lo error  order
Errors in Solution
k=1
40 8.0432E-02 — 2.2491E-01 — 8.4815E-02 —

60 2.7136E-02  2.68 | 2.3724E-02  5.55 | 2.2551E-02 3.27
80 1.2584E-02  2.67 | 8.9582E-03 3.39 | 8.9582E-03 3.21
100 | 6.9905E-03  2.63 | 4.4844E-03 3.10 | 4.4844E-03 3.10
120 | 4.3553E-03  2.60 | 2.5753E-03 3.04 | 2.5753E-03 3.04
140 | 2.9360E-03 2.56 | 1.6183E-03 3.01 | 1.6183E-03 3.01
160 | 2.0959E-03 2.52 | 1.0841E-03  3.00 | 1.0841E-03 3.00

40 1.0663E-03 — 7.4252E-02 — | 2.05610E-02 —
60 3.0828E-04 3.06 | 1.8714E-02 3.40 | 2.4536E-03 5.24
80 1.2955E-04 3.01 | 4.2724E-03 5.13 | 4.4396E-04 5.94
100 | 6.6271E-05 3.00 | 1.1202E-03 6.00 | 1.1186E-04 6.18
120 | 3.8343E-05 3.00 | 3.6331E-04 6.18 | 3.5549E-05 6.29
140 | 2.4145E-05 3.00 | 1.3816E-04 6.27 | 1.3361E-05 6.35
160 | 1.6176E-05 3.00 | 5.9332E-05 6.33 | 5.6958E-06 6.39
Errors in first derivative of the solution

40 1.5086E+00 — | 3.0423E+00 — | 8.4586E-01 —

60 9.0952E-01  1.25 | 3.2012E-01  5.55 | 3.0056E-01  2.55
80 6.6871E-01  1.07 | 1.3100E-01  3.11 | 1.3100E-01 2.89
100 | 5.3212E-01 1.02 | 6.6682E-02  3.03 | 6.6682E-02 3.03
120 | 4.4264E-01 1.01 | 3.8018E-02 3.08 | 3.8018E-02 3.08
140 | 3.7914E-01 1.00 | 2.3561E-02 3.10 | 2.3561E-02 3.10
160 | 3.3165E-01  1.00 | 1.5552E-02  3.11 | 1.5552E-02 3.11

40 1.2741E-01 — | 3.5888E+00 — | 1.0608E-01 —

60 5.5669E-02  2.04 | 2.3168E+00 1.08 | 8.3199E-03 6.28
80 3.1175E-02  2.02 | 1.9245E-02 16.65 | 3.7412E-03  2.78
100 | 1.9920E-02  2.01 | 9.4099E-03 3.21 | 1.4121E-03 4.37
120 | 1.3823E-02 2.00 | 4.2776E-03 4.32 | 5.8566E-04 4.83
140 | 1.0152E-02 2.00 | 2.0576E-03 4.75 | 2.6923E-04 5.04
160 | 7.7706E-03  2.00 | 1.0601E-03 4.97 | 1.3513E-04 5.16
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Table 5.5: The Ly errors and order of accuracy for the solution and first derivatives of the
solution for Example 3 which features two moving and two stationary shocks, calculated
with £ = 1 and £ = 2. The errors are calculated outside a radius of 0.1 of the moving
shocks. Results are shown before post-processing and after post-processing determined by
stencil choices ENO-Ss430 and LED methods.

Before 55432 LED
N Lo error  order | L, error  order Lo error order
Errors in Solution
k=1
40 1.0969E-03 — | 2.0388E-03 — 1.0107E-02 —

60 4.5949E-04 2.15 | 3.4209E-04 4.40 | 3.4209E-04 8.35
80 2.5043E-04 2.11 | 9.4821E-05 4.46 | 9.4821E-05 4.46
100 | 1.5715E-04 2.09 | 3.5083E-05 4.46 | 3.5083E-05 4.46
120 | 1.0768E-04 2.07 | 1.5693E-05 4.41 | 1.5693E-05 4.41
140 | 7.8344E-05 2.06 | 8.0425E-06 4.34 | 8.0425E-06 4.34
160 | 5.9541E-05 2.06 | 4.5692E-06 4.23 | 4.5692E-06 4.23
k=2
40 3.1528E-05 — | 1.8373E-03 — 1.9032E-04 —
60 9.4838E-06 2.96 | 1.5620E-04 6.07 | 1.5224E-05 6.23
80 4.0275E-06 2.98 | 2.5501E-05 6.30 | 2.4366E-06 6.37
100 | 2.0698E-06 2.98 | 6.1383E-06 6.38 | 5.8134E-07 6.42
120 | 1.2006E-06 2.99 | 1.9034E-06 6.42 | 1.7942E-07 6.45
140 | 7.5734E-07 2.99 | 7.0484E-07 6.44 | 6.6257E-08  6.46
160 | 5.0797E-07 2.99 | 2.9754E-07 6.46 | 2.7922E-08 6.47

Errors in First Derivative

40 3.8324E-02 — | 8.7819E-03 — | 3.0425E+01 —

60 2.5115E-02 1.04 | 2.4476E-03 3.15 | 2.4476E-03 11.89
80 1.8657E-02 1.03 | 9.3777E-04 3.33 | 9.3777E-04  3.33
100 | 1.4836E-02 1.03 | 4.3900E-04 3.40 | 4.3900E-04  3.40
120 | 1.2312E-02 1.02 | 2.3478E-04 3.43 | 2.3478E-04  3.43
140 | 1.0521E-02 1.02 | 1.3794E-04 3.45 | 1.3794E-04 3.45
160 | 9.1844E-03 1.02 | 8.6904E-05 3.46 | 8.6904E-05  3.46
k=2
40 1.9866E-03 — | 2.0750E-03 — 3.9894E-04 —

60 8.7943E-04 2.01 | 4.6036E-04 3.71 | 6.2260E-05  4.58
80 4.9381E-04 2.01 | 1.1390E-04 4.86 | 1.4300E-05 5.11
100 | 3.1572E-04 2.00 | 3.6119E-05 5.15 | 4.4020E-06  5.28
120 | 2.1911E-04 2.00 | 1.3808E-05 5.27 | 1.6575E-06  5.36
140 | 1.6091E-04 2.00 | 6.0605E-06 5.34 | 7.2110E-07  5.40
160 | 1.2315E-04 2.00 | 2.9534E-06 5.38 | 3.4945E-07  5.43
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