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Improving the Accuracy of Volumetric
Segmentation Using Pre-Processing Boundary
Detection and Image Reconstruction.

Rick Archibald, Jiuxiang Hu, Anne Gelb, and Gerald Farin

Abstract— The concentration edge detection and Gegenbauer produce volumetric data sets, which include magnetic res-
image reconstruction methods were previously shown to improve onance (MR), X-ray computed tomography (CT), positron
the quality of segmentation in magnetic resonance imaging. In omission tomography (PET), and ultrasound [23]. The amount

this study these methods are utilized as a pre-processing step to . .
the Weibull E-SD field segmentation. It is demonstrated that the and importance of the volumetric data sets collected from these

combination of the concentration edge detection and Gegenbauer different medical modalities have inspired much research in
reconstruction method improves the accuracy of segmentation for the segmentation of anatomical structures in the human system
the simulated test data and real magnetic resonance images used[5], [8], [21], [25], [26].
in this study. Previous work has demonstrated that the Gegenbauer recon-
Index Terms— 3D Segmentation, Weibull E-SD field, Edge De- struction method, a high order image reconstruction method
tection, Gegenbauer Reconstruction, Magnetic Resonance Imag- first introduced in [15], in combination with the concentration
ing. edge detection method, introduced in [11], is an effective pre-
processing step in medical segmentation [1]. The purpose of
|. INTRODUCTION this study is to improve the accuracy of the Weibull E-SD field
OLUMETRIC data sets, common in many scientific ana?fgm_entation methqd, which was first developed in [16] asan
ective course-grain approach to volumetric segmentation.

discrent]:dlco?rl'\tféeli?ws v?/fhfhs e:;zf;], C%?r?t'S:eOfr;ﬂ::;sd"genf]'osni I’llis will be accomplished by effectively pre-processing data
po! . ) P prese physiG rough the concentration edge detection and Gegenbauer
parameter in a finite region of space. Typically the dat

. . faconstruction methods. The advantage of the Gegenbauer
sets are three-dimensional and come from measurements on

. . . L . - “reconstruction method over other types of reconstruction pro-
uniform grids, although in some applications the dimension P P

. : . . N Rdures lies in its ability to reconstruct an entire image with
increased to include time and may be on non-uniform grids

) X . . X ial A hi he knowl f
Of particular interest in the analysis of these types of da\%lxponentla accuracy. lts success hinges on the knowledge o
|

. T . structural edges [14], and hence edge detection is a critical
sets is the determination of regions that are homogeneous . :
. . . : irst step. Both the concentration edge detection method [2],
respect to some characteristic, for instance, intensity or text

The classification of complete homogeneous regions Witn;gl]' [12], and Gegenbauer reconstruction procedure have been
P 9 9 shown to be stable and robust in the presence of noise [3],

volumetric data sets is called segmentation. . . ;
. S . and are therefore well suited for volumetric reconstruction and
The importance of segmentation in the analysis of VO|%— mentation

metric data is represented by active and widespread researc he fundamental assumption in the Weibull E-SD field

Segmentation is routinely used in satellite-based remote Segggmentation method, [16], is that regions which are homoge-
ing technology, which is capable of acquiring volumetric da ' !

ots of not onlv the earth’ rface and atmosohere. but Ieous with respect to some characteristic will have similar
Sets y s su spnere, bul 320, expectation and standard deviation. The ordered pair

the sun’s photosphere. In this situation, segmentation is use%FOIocaI expectation and standard deviation for each point

determine features corresponding to geographical Iandscar?ﬁsthe volumetric space forms the so-called E-SD field. It

ghi/sma![ sttf)rmsl[lg], dsunse[ots [4], a;pd lmore. tVOI;Jrgeft”ﬁas been demonstrated in [6] that the estimation of the E-
ata sets ot geologic deposits are routinely constructed 1r field is not stable in the presence of noise and becomes

seismic dgta, in which segmentation is performed n O.rdﬁtr?pendent on the statistical model of the noise. Since noise
to recognize subsurface structural features from varlatlo_qg inherent in physical situations, it becomes imperative to

characteristics [18]. In medicine, a number of technologl%sse an appropriate statistical framework in the modelling of

R. Archibald is with the Center for System Science and Engineerilﬁgisfe ?n the volumetric datg Se_t so that the effec_ts Of_ noise are
Research (SSERC), Arizona State University, Tempe, AZ 85287. E-maininimized and the approximation of the E-SD field is stable.

archi@math.la.asu.edu. o , The characteristics of physical noise in volumetric data is
J. Hu is with the Department of Bioengineering and Partnership fo

Research in Stereo Modelling (PRISM), Arizona State University, Tempd,ependent upon th_e part'?war teChnOI‘)gy utilized in measur.e'
AZ 85287. E-mail: hu.jiuxiang@asu.edu. ment. Hence physical noise has been modelled by many dif-

A. Gelb is with the Department of Mathematics and Statistics, Arizongrent distributions including Rayleigh [9] Gaussian. Gamma
State University, Tempe, AZ 85287. E-mail: ag@math.la.asu.edu. . : . o - !
G. Farin is with the Department of Computer Science, Arizona Staf'd Poisson [6]. The Weibull distribution, introduced1989

University, Tempe, AZ 85287. E-mail: farin@asu.edu. by W. Weibull, is inspired by the statistical theory of strength



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, MONTH 2003 2

materials. It has the ability to approximate all of the aboveased on the discrete Fourier coefficients (2) is given by
mentioned distributions by various choices of parameters [24], N
and f[herefo_re is a flexible _dlstnbutlon for the modellmg_ of fal(z) = Z Freimhe, (4)
physical noise in volumetric data. The Weibull E-SD field
segmentation method, [16], employs the Weibull distribution _ )
to model physical noise in segmentation and utilizes the theg¥)d computed using the Fast Fourier Transform (FFT) al-
of Weibull distributions to denoise estimates of the E-SD fiel@0rithm. As an example consider the following piecewise
thereby dramatically improving segmentation [16]. function.

The paper is organized as follows: In section Il the concen- EXxample 1:
tration edge detection and Gegenbauer reconstruction methods —zsin(rz), if —1<z<0,
are reviewed. Their effectiveness is demonstrated for a one /(%) = 23+ 1, if0<z<l1. (®)
dimensional reconstruction problem. In section Ill the Weibutfhe Fourier reconstruction of the piecewise smooth function
E-SD field segmentation algorithm is discussed. The ed@ leads to spurious oscillations and reduced overall conver-
detection and reconstruction algorithms are combined to pigence, typically known as the Gibbs phenomenon. Figure 1(b)
process the data. The resulting image is then segmenteddeynonstrates this effect. High resolution reconstruction aims
the Weibull E-SD field segmentation algorithm. The numericab reduce this effect while maintaining the finer features of the
results are displayed in section IV. function.

k=—N

II. HIGH RESOLUTIONIMAGE RECONSTRUCTION

The Gegenbauer reconstruction method, introduced in [15
is a high order image reconstruction method capable of recor..
structing entire images with exponential accuracy. A critical”
first step in any high resolution reconstruction method is
edge detection. In this study, edge detection is achieved k-
a combination of the concentration edge detection procedur’’
designed in [11] and [12], with the minimization procedure -—= =
introduced in [2].

The concentration edge detection and Gegenbauer recon- @ (b)
struction methods are briefly outlined below in sections II-

A and II-B. For ease of presentation, the concentration edagé %5)
detection and Gegenbauer reconstruction methods are first
presented in one dimension. Common to both presentations
is the assumption that an arbitrary piecewise smooth function
f(z), considered without loss of generality on the domaiﬂ_ Edge Detection

—1 <z <1, is known only on the uniform grid
, Consider an arbitrary piecewise smooth functig().
f(xy), xzj=-1++%,7=0,....,2N -1, (1) Define the jump functiorif](z) := f(z+) — f(z—), where
oﬁgxi) are the right and left side limits of the function at
f(zt) = limgy— .+ f(x). Note that[f](x) is zero away from
an edge, and is the value of the jump at an edge. In the case

(a) Sampling of the function (5) AWV = 64 uniform grid points.
Fourier reconstruction (4) based on this sampling.

for N € N. Based on this sampling, the Gegenbauer rec
struction method is capable of approximatiffgz) on any
smooth interval with exponential accuracy [14]. Thusf (f) ; . L
is piecewise smooth, it is possible to approximate the entl?é function (5) of example 1 the jump function is
function in each smooth interval with exponential accuracy. -1, if =0,

For the sampling in (1), both the concentration edge detec- [1](z) = { 0, otherwise. (6)
tion and Gegenbauer reconstruction methods depend upon th

discrete Fourier coefficients Sased on the Fourier coefficients (2), it is shown in [11]

that the concentration edge detection method converges to the

~ 1 ! . jump function and is easily implemented as
fr = > fl@)e ™, k==N,...,N, (2)
2ch =0 N |k|
TT — . r_ikmx
e W) = in 3 () e
_ 27 if k= iNa — [f](l'), asN — oo.
Ch = { 1, otherwise, ) 7

which is easily computed using the Fast Fourier Transfor, . . . .
(FFT) algorithm. Since both the concentration edge detectiH? rer(¢) s galled the concentration factor, and is determined
and Gegenbauer reconstruction methods employ the FFT alg‘b[lll o satisfy

rithm, the speed of computation is of the order of the conven- 7(€)
tional FFT image reconstruction. The Fourier reconstruction sin(&m)

€ C*(0,1),
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and normalized so that

Tt
5/0 sin(fﬂ)dg =1

In [11] it was shown that the concentration factor belongs..
to a class of functions that accelerate the rate of convergenc.
of the concentration edge detection method (7) to the jumj-
function. The concentration factor used in this study is the . .
exponential concentration factor,

(@) (b)

_ 2csin(ém)e REED

T(§) = ; (8)
™ Fig. 2. (a) Concentration edge detection method (7) of the piecewise smooth
where function (5). (b) Minimization of the concentration edge detection method
I—e (10). Here2N = 64.
—1
c= / ean0-1 dn). 9)
€

This concentration factor is particularly effective, as it takege fixed coordinates. This three dimensional procedure is used
full advantage of the spectral data by rapidly converging awgy all images processed in this paper. The employment of the
from the discontinuities. The parameteris freely chosen, FFT algorithm for the edge detection procedure ensures high

with a typical valuea = 6. speed of computation.
The concentration edge detection method (7) will have

spurious oscillations in the neighborhood of an edge. In _
order to determine the exact intervals of smoothness, whiBn Gegenbauer Reconstruction Method

is imperative for high resolution reconstruction, we adopt a The Gegenbauer reconstruction method was developed in

minimization procedure introduced in [2] given by [15] and extended in a litany of articles (consult [14] for ref-
min  max TR (z)] = min_ max T 1f)(2) erenges). It is a powerful tool that recovers pleceW|se.smooth
M,ai,b; M,aib; = functions with spectral accuracy up to the edges in each

Mo smooth interval without blurring features, hence mitigating the
+ Z éTg, [9](x;b:)], (10) common problem associated with filtering.
i=1 The Gegenbauer polynomiél))(z) is an orthogonal poly-

where nomial of ordern that satisfies
- G 1 (1— 2?20 (2)C (x)dz = P k=g
hz) = f(z) + z_; — 9(:bi) (11) » i (2)Cp 0. kn,
and where (for\ > 0)
Ly Jr+l, i -1<a<b, A VTCH (DA + 1)
The minimization procedure (10) is based on the functicsnd
h(z), which will be smooth function if all the discontinuities of T(n + 2))
f(z) are subtracted through the use of the sawtooth functions CMN1) = (15)

(12). If h(z) is a smooth functionIf[h](z) — 0, and nif(23)

therefore the correct minimization of (10) yields the number For ease of presentation let us first introduce the Gegenbauer

of discontinuities,M, with the associated positions;, and reconstruction method for a one dimensional piecewise smooth

magnitudesq;, fori =1,..., M, of the functionf. function f(x), considered without loss of generality on the
In order to demonstrate the concentration edge detectidomain—1 < z < 1. The Gegenbauer reconstruction method

method, consider again the piecewise smooth function (S)performed in each smooth interval, b] C [—1,1]. Since

of example 1. Figure 2(a) depicts the concentration edgee Gegenbauer polynomials are orthogonal on the interval

detection method (7) of the piecewise smooth function (5)-1,1], a linear transformation from the interval € [a, b]

Clearly the concentration edge detection method convergesy € [—1,1] is applied. Specifically, a local variablke €

to the jump function (6), but has spurious oscillations if-1,1] is defined such thai(n) = en + 6 € [a,b], where

the neighborhood of an edge. Utilizing the minimizatiom = ”‘7“ andé = % Suppose we are givef(z;) on equally

method (10), as depicted in figure 2(b), further improves tispaced points as in (1) or equivalently the discrete Fourier

concentration edge detection method. coefficients f;, in (2). We know that the Fourier partial sum
The edge detection method and minimization process c@) yields a poor approximation td(x) on [a,b] due to the

be extended to detect the size and position of discontinuiti@bbs phenomenon. However, information from the Fourier

of a multiple dimensional function by holding all but onedata (2) can still be utilized in the Gegenbauer reconstruction

dimension fixed and determining the edges as a function infthe following way to approximatg(x) on [a, b]:
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We define the Gegenbauer reconstruction approximation of

f(z) on[a,b] as
N m A N VWV”WW"V‘V " "' 'Y' i 'V‘W IV
gm(2(m)) =D 32 (1)C7 (), (16)
. =0 . . ° N /‘\‘A“Am‘r\v/\f a \A‘fm/
where the approximate Gegenbauer coefficients, . TPy
) . ) -
20 =5 [ Q=P e mdn. @)
7 J-1
are based on the Fourier approximationfek) in [a, b], @) ()
N oo ik (en+0) Fig. 3. (a) Gegenbauer reconstruction (16) of the piecewise smooth function
In(x(n) = fn(en+0) = Z fre el (18) (5). Here the Gegenbauer reconstruction parametersnare A = 12. (b)

k=—N Log-error plot of the Fourier and Gegenbauer reconstruction, dNh= 64
. . . pseudo spectral Fourier coefficients.
It is demonstrated in [15] that the approximate Gegenbauer

coefficients (16) can be calculated as

gA(l) _ kiv EA’Z’Ee“”‘Sf(k) (19) in smooth regions. The reconstruction will have exponential
€ k ’ accuracy up to the edges of each smooth region. Three
=N dimensional Gegenbauer reconstruction is used for all the
where images processed in this paper. The employment of the FFT
e [ L if k=0, (20) algorithm for the Gegenbauer reconstruction procedure ensures
% = { T(A)il(1+ )\)Jl_‘r}\(ﬂ-ke)(i))" if k0, high speed of computation.

andJ;\(mke) is the Bessel function of the first kind. Hence
the poorly performing Fourier approximatigfy (18) can be
changed into a highly accurate Gegenbauer reconstruction (16This study employees the Weibull E-SD field volumetric
of f via the Gegenbauer coefficients (17), or equivalentsegmentation method, which was first introduced in [16]. For
(20). We note that in practice there may exist some smoathch data point of the discrete volumetric data set the E-
intervals that consist of too few points to construct an appros$D field consists of an ordered pair representing the local
imation. The Gegenbauer reconstruction requires a theoretiespectation and standard deviation. This segmentation method
minimum of at leastr points to form an approximation [13]. assumes that homogeneous structures can be characterized by
Therefore, in intervals containing too few points, the valuesmilar local expectancy and variance. Thus, homogeneous
at each grid point are assumed constant and equivalent to sheictures are contained in a tight region of the E-SD field,
values determined at the edges by the edge detection metbadbling segmentation by windowing regions in the E-SD
[2]. field.

The parameters: and A depend upon the number of points, The Weibull E-SD field segmentation method [16] is briefly
N, in the subinterval] = [a, b], that is reconstructed. A spe-described below. Section 11I-A develops the concept of E-SD
cific requirement is thatn < N;. Recent work demonstratesfields, section I1I-B introduces the Weibull distribution and the
how the parameters: and A can be optimized for a particular data set noise model, and section 1lI-C describes the denoising
subdomain [10]. For simplicity, we choose the parameters sugstocedure.
that A\ = m with

N .
m = max {1, min {mmaw, {I—‘ }}’ (21) A. E-SD Fields
4 In order to preserve continuity with the previous image

where[z] is the minimal integer which is greater than or equdfconstruction presentation, we model a_given volumetric
to z. andm —19 discrete data set as a three-dimensional functi¢m, y, z),
il maxr — . A

considered without loss of generality on the domaih <
In order to demonstrate the Gegenbauer reconstruction, "< 1 “sampled on the uniform grid

method, consider again the piecewise smooth function (5) of

Ill. SEGMENTATION

example 1. Figure 3(a) depicts the Gegenbauer reconstructiqn _ {(22 — Nz 2j - Ny 2k— Nz) ‘ i— 0. N,
method (16) of the piecewise smooth function (5) where it is N. ' N, 7 N: Y
evident that the Gegenbauer reconstruction not only removes J=0,...,Ny

the Gibbs phenomenon, but is also exponentially accurate up k=0,.. .,Nz},
to the edges. The accuracy of both the Fourier and Gegenbauer

reconstruction methods are depicted in the log-error plot (22)

in figure 3(b), where it can be seen that the Gegenbaugy, N,,N,, N, € N*. The local data ok-voxel, which is a
reconstruction method is significantly more accurate. cube of grlfd points, is defined as

The Gegenbauer reconstruction method can be directly
extended to multiple dimensions by performing reconstruction A CU,
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such that the dimensions & is x x k X k. When the shape parameter of the Weibull distribution is given
In order to characterize homogeneous structures within the o = 1.0, it approximates the Poisson pdf. Whenr= 2.0 it

discrete volumetric data set, it is necessary to define thpproximates Rayleigh pdf, and when= 3.0 it approximates

random variable Gaussian pdf. The Weibull pdf (28) is depicted in figure 4 for

a range of shape parameter values.
Xa(v) = #{(z,9.2) € AC U|f(z,y,2) =v}.  (23) 9 Pep

Thus XA (v) is the number of data points isvoxel, A C U, 4

a=10
which have the value. The density distributiors (v) of the P()|a=0.75
random variableX (v) is defined as
XA(U)
da(v) = (24)
A
where |A| denotes the number of elementsAn In general,
the expressions of local expectancy and standard deviation of
a x-voxel are given as follows [7], [17], [22]: o >
\%
1
DR ONES W Z f(@,y,2), (25) Fig. 4. Weibull Distribution (28) for different shape parameters vbith: 2
(z,y,2)EA andvg = 0.
and
1 Weibull E-SD field volumetric segmentation method utilizes
SD[XAl= | — Z f2(z,y,2) — E2[XA]. (26) the Weibull distribution as a model for the physical data noise.
A (z,y,2)EA This model for noise is local in the sense that the method

o ) . o ] _assumes that each SDO will have constant Weibull distribution
Definition 1 describes a spatially distributed object, whicharameters.

is based on the above random variable (23). It is assumed fofina)ly, it is noted that the approximation of the s-moment

the Weibull E-SD field volumetric segmentation method thahr 5 weibull distributed random variable is possible by the
homogeneous structures are spatially distributed objects. fq|iowing property.
Definition 1: A region (2 is called a spatially distributed  property1: If X, X, ..., X, are independent identically

object GDO), if the expectancy (25) and standard deviatiogjstriputed (iid) random variables with Weibull distribution
(26) for eachx-voxel, A € 2, are relatively constant, i.e.,  (28), then

E[Xa] € (e1,e2) and SD[Xa] € (d1,d2), (27) n
Xal € (er,e2) Xal € (1, ) lim 1 E Xi:E[XS}, for1 <s < 0. (30)
n—oo n

whereeq, es, d; andds denote predefined constants with < i—1
ex andd; < dy. Here XA is a random variable as defined in
(23). C. Weibull Noise Index

If noise is preseqt, then (25) and (26) will not give accurqte As mentioned before, the calculations of (25) and (26)
values [7], [20]. It is therefore necessary to model the nOi§g he E-SD field are not reliable in the presence of noise
in the data and use denoising procedures in order to stabilm& [20]. However, by modelling the noise with a Weibull
the approximation of the E-SD field. distribution, it is possible to use the properties of the Weibull

distribution to denoise or improve the signal-to-noise ratio
B. Weibull Distribution (SNR) in the volumetric data set, and thereby stabilize the

Weibull distribution, first introduced in 1939 by W. Weibull,2PProximation of the E-SD field. This section briefly describes

is defined by the following probability density function (pdfjthe procedure for denoising and stabilizing the approximation

[24], of the E-SD field.
w1 " Assume that the noise in each SDO of the volumetric data
_afv—v _ (v~ set follows a Weibull distribution with constant parameters.
p(v) = ( ) ewp[ ( ) } (28 ) . )
b b b For eachx-voxel, define an auxiliary functiop(s) as
wherev > wvg, a > 0 is the shape parametdr,> 0 is the (Z Fo(ay Z))2
scale parameter, and, is the shift parameter (the minimum g(s) = = (@y,2)€A . 7 , (31)
possible value of the random variable). The s-moment of a K2 wymea I (2,9, 2)
Weibull distributed random variabl& is given by where s € (—o0,00). As discussed in [16], the auxiliary
s function is a convex function with maximum g{0) = 1.
E[X°] = bsr<1+ a)’ (29) Using (29) and property 1, the auxiliary function has the

following approximation

(Ex])*
B 5 Blts,ta), (32)

whereT'(z) = [~ t*~'e~"dt is the gamma function.
One patrticular strength of the Weibull distribution is the
number of other distributions that it can approximate [24].

g(s) ~
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wheret, = £ and B(z,y) = fol t*=1(1 —t)¥~1dt is the Beta
function. Thus, the auxiliary function is dependent on only on
Weibull distribution parameter, namely the shape parameter
in (28).

As demonstrated in [16], the auxiliary function (31) is
capable of identifying noise in eachvoxel. Since the max-
imum of the function’s B(t,,t,) is near0.72, noise may be
detected and systematically removed in theoxel by solving
the equatiorng(s) = 0.72. The complete Weibull E-SD field
volumetric segmentation algorithm, which is presented in [16];
is simple and efficient with average complexity®@fL log L),
where := NeMu e @

IV. NUMERICAL RESULTS

In this section, we will look at two examples illustrating the §
proposed methods for image reconstruction and segmentatic;
The first example examines artificial volume data with locak
Weibull distributed random noise. The second example use
T2 weighted MRI scans of a mouse head provided by thd
Southwest Small Animal Imaging Resourgewhere the field
of view for the MRI scan i2.56 x1.92x1.52 cm, 100 microns
isofield.

(© (d)
A. Controlled Experiment

We validate the use of the concentration edge detectiofiErEsis
and Gegenbauer reconstruction methods as a pre-process; '
segmentation step by using simulated volumetric data. Thi
following simple objects are included in the simulated volu-gai==as
metric data; a torus, an ellipsoid, and two deformed cubesEt
The size of the data set i$0 x 100 x 100 and normalized so
that the minimum value i and maximum value i855. The J
noise added to every image point has a Weibull distributioris
and takes the form

Y = min {255,0{—bln(1—X)}1]}, © ®

where X is a random variable that is uniformly distributed ir]:ig. 5. (a) The slice(53,y, ) of the simulated volumetric data. (b)
[07 1], the shape parameter and paramete€’ are constants Refere_nce se_gmen_tati_on. (c) The slés, y, z) of the simulated volumetric
within h hom n i ie. data with Weibull distributed noise-added data with scale paraneted0.

t each homogeneous object, i.e (d) Segmentation without pre-processing. (e) The sli88,y, z) of the
Gegenbauer reconstruction of the simulated volumetric data. (f) Segmentation
with pre-processing.

0.75, for torus,
1.2, for ellipsoid,

“= 3, for cubes, (33)
10, else,
be considered local parameters with respects to each homoge-
and neous object.
100, for torus, Denote S,, as the support function of the segmentation of
¢ — J 150, for ellipsoid, (34) any simulated volumetric data set with added noise, and define
200, for cubes, the support function of the segmentation of the simulated
250, else. volumetric data set without added noise, denoted,aso be

The scale parametéris constant throughout each simulated® refergnce segme_ntatio_n which is depicted in figure 5(b).
volumetric data set and incremented as displayed in figure’s.numerical comparison is performed based on segmented
It is noted that the parameté? has the effect of modifying VOlume as measured by the volume deviation (error),

the scale parametérin each homogeneous object, and thus Yoy 10(@) = Su ()]

for this experiment both Weibull distribution parameters can 6(Sy,8n) = S S (35)
zev ~r

1Located at the University of Arizona. http://www.swair.arizona.edu/oct/
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—- Original Segmentation = Segmentation with Gegenbauer F’re—processing‘

0.14

0.12 =
5 0.1 r\,,_,,’,’—«/
(<
W 0.08
¢ e
5 ooe /
2 0.04 /

0.02

o (@ (b)

08 12 25 32 4 5 6 8 9 10

Weibull Distribution Scale Parameter, b.

Fig. 6. Volume error (35) in the segmentation of the simulated test data &
with and without Gegenbauer pre-processing, for various values of the sca G SRS

parametesb. - ‘

0 ) E 255

(© (d)

100

@ (b)

Fig. 7. E-SD fields of the segmented simulated volumetric data (a) withoul
and (b) with Gegenbauer pre-processing. Here the scale parameter for t
Weibull distributed noise-added to the databis- 10.

(e) ®
Several levels of noise have been added to the simulated
volumetric data to test the concentration edge detection afigl 8. (a) Top and (b) bottom view of the segmentation of a particular mouse.
Gegenbauer reconstruction methods as a segmentation e‘[op and (d) bottom view of the segmentation of a particular mouse with
. . . . . Gegenbauer pre-processing. (e) They, 1.0 cm) cross section of the mouse
processing step. Depicted in Figure 6 IS the VOlume_ €rror, WitBad data, provided by the Southwest Small Animal Imaging Resource, and
and without Gegenbauer pre-processing, for various valu@she (z,y,1.0 cm) cross section of the Gegenbauer reconstructed mouse
of the scale parametér In every instance, Gegenbauer prelead data.
processing significantly lowers the volume error. Depicted

in figures 5(d) and 5(f) are segmentations of the test data,
with and without Gegenbauer pre-processing, where the scal‘%igure 8(a-d) depicts the original and Gegenbauer pre-

parameter (_)f the Weibull noise distribution fis= 10. Upon processed segmentation of one particular MRI scan, where a
close examination of the surfaces of the segmented test d&{@erence in the surface of the segmented brain is visible.
it can _be observed that the surfa_ces of the segmente_d ﬁﬁStfact, based on the volume deviation (35), there is an
data with Gegenbauer pre-processing are smoother while g »qe3 79 difference between original and Gegenbauer pre-
contours and the edges of the original homogeneous objeglScessed segmentation of all seven MRI scans. Upon close
are preserved. L ) i examination of the surface of the segmented mouse brain in
Also worth noticing is the Weibull E-SD fields of bothfq re g(a-d) it can been observed that the surface of the
the original and Gegenbauer pre-processed volumetric dataséﬁmented mouse brain with Gegenbauer pre-processing is
depicted in figure 7(a) and 7(b). It can be seen that homoggs,sther while the contours and edges are preserved. Fea-
neous objects in the Weibull E-SD field have lower varianG§ e that are noticeably improved through Gegenbauer pre-
and a greater compact representation with Gegenbauer pies-essing include the shape of the frontal lobe and brain stem.
processing. Therefore homogeneous objects are better regiigs gefinition of the contours of the lower brain boundary

sented in E-SD field with Gegenbauer pre-processing, Whighanother feature that is enhanced through Gegenbauer pre-
aids in the segmentation process. processing.

Also worth noticing is the E-SD fields of both the original
B. MRI Data and Gegenbauer pre-processed volumetric data in figure 9,
The segmentation method with Gegenbauer pre-processivigere it is clear that the E-SD field has a greater compact
is applied to seven differerif’2 weighted MRI scans of the representation of the mouse brain when Gegenbauer recon-
heads of mice provided by Southwest Small Animal Imagingfruction is used as a pre-processing step. Although difficult
Resource. For each scan the field of vieW.i56 x 1.92 x 1.52  to observe in these E-SD fields, there is a reduction of variance
cm, 100 microns isofield. when Gegenbauer reconstruction is used as a pre-processing
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