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A Method to Reduce the Gibbs Ringing Artifact in
MRI Scans While Keeping Tissue Boundary
Integrity:.

Rick Archibald and Anne Gelb

Abstract— Gibbs ringing is a well known artifact that ef-
fects reconstruction of images having discontinuities. This is
a problem in the reconstruction of magnetic resonance imag-
ing (MRI) data due to the many different tissues normally
present in each scan. The Gibbs ringing artifact manifests
itself at the boundaries of the tissues, making it difficult to
determine the structure of the brain tissue. The Gegen-
bauer reconstruction method has been shown to effectively
eliminate the effects of Gibbs ringing in other applications.
This paper presents the application of the Gegenbauer re-
construction method to neuro-imaging.

Keywords— Fourier reconstruction, Gibbs phenomenon,
edge detection, Gegenbauer polynomials.

I. INTRODUCTION

AGNETIC resonance imaging (MRI) is a non-

invasive procedure that provides discrete data about
the human body. Information from an MRI scan is valuable
for both clinical and research purposes. Large amounts of
data are now available from MRI scans, giving comput-
ers a critical role in handling and interpreting the images
produced. It is therefore imperative to develop accurate,
efficient, and robust computer algorithms that can both
reconstruct and segment images from MRI scans.

If the k-space data from the MRI is sampled rectilin-
early, the filtered Fourier reconstruction method is com-
monly use to reconstruct the image [18]. Fourier approx-
imation is a powerful tool in image reconstruction in the
context of convergence, since an image having no disconti-
nuities (or edges) has an exponentially and uniformly con-
verging Fourier approximation to the original image. This
superior convergence quality depends solely on the smooth-
ness of the function. Unfortunately, however, if the image
has discontinuities, then spurious oscillations will appear
in the reconstruction at the discontinuities and the overall
convergence rate will be greatly reduced. These spurious
oscillations are called the Gibbs ringing artifact in magnetic
resonance imaging, and are prevalent particularly at the
tissue boundaries. Filters are often introduced to dampen
the high frequency modes responsible for the oscillations
and reduce the effects of Gibbs ringing. However, since im-
portant information about the finer features of an image
is carried in the high frequency modes, filtering inevitably
causes blurring of the features of the reconstructed image at
the boundaries. This is a violation of the data-consistency
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constraint, but is tolerated in order to reduce the Gibbs
ringing artifact [18].

The high resolution Gegenbauer reconstruction method
requires the construction of a set of Gegenbauer coefficients
from the k-space data of the MRI image, which is a com-
putationally intensive procedure hindering large data cal-
culations. The commonly used filtered Fourier reconstruc-
tion procedure is much more cost efficient because the fast
Fourier transform (FFT) can be directly utilized. To max-
imize speed without compromising accuracy, we adopt the
hybrid Gegenbauer procedure [7] that combines the highly
resolved Gegenbauer reconstruction near the tissue bound-
aries with the computationally efficient filtered Fourier re-
construction away from the boundaries. A relationship be-
tween the Gegenbauer and Fourier coefficients [3] is also
exploited to reduce computational cost.

This paper demonstrates the advantages of using the hy-
brid Gegenbauer reconstruction algorithm by comparing it
to the commonly used filtered Fourier reconstruction on
two different simulated brain phantoms. In §II the con-
struction of the Shepp-Logan brain phantom is introduced.
The Gibbs ringing artifact as a result of Fourier recon-
struction is explained in §III. Filtering is presented in §IV
as a possible remedy to the Gibbs ringing artifact. The
edge detection method, critical in determining the smooth
intervals for high resolution reconstruction, is explained
in §V, followed by a discussion of the Gegenbauer recon-
struction method in §VI, and the hybrid Gegenbauer ap-
proach in §VII. Finally, in §VIII we demonstrate the hybrid
Gegenbauer reconstruction method for a realistic simulated
brain phantom provide by McConnell Brain Imaging Cen-
tre Montréal Neurological Institute [16].

Throughout this paper we assume that all the data is
unmodified, and note that in [1] the numerical algorithms
introduced here were expanded to include reconstructing
images that contain noise.

II. SHEPP-LOGAN BRAIN PHANTOM

We introduce the commonly used Shepp-Logan brain
phantom image in figure 1 to demonstrate the underly-
ing principles of MRI reconstruction methods presented in
this paper. This phantom represents a geometrically sim-
plified magnetic resonance coronal scan of the head, and its
algorithm is given in the appendix. Because of the sharp
discontinuities present in the image, the phantom provides
a basic model to test the effectiveness of different recon-
struction methods in the context of neural imaging.
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Fig. 1. The Shepp-Logan brain phantom image.

III. THE GIBBS RINGING ARTIFACT

Fourier approximation is frequently used for image re-
construction when discrete data is given on equally spaced
points. As mentioned in the introduction, the error in the
Fourier reconstruction of a function depends solely upon
the smoothness of the function, since the decay rate of the
Fourier coefficients is directly linked to the number of con-
tinuous derivatives of the function[13]. In the application
of Fourier reconstruction to neural imaging, the underlying
function has discontinuities at the tissue boundaries, and
hence Gibbs ringing will be prevalent at the discontinuities
with the overall rate of convergence reduced to first order.

To demonstrate the Gibbs ringing artifact, we consider
the Fourier approximation of the following periodic func-
tion sampled on equally spaced discrete data points, x; =
N j=0,--+,2N - 1.

Ezample II1.1: Let f(z) be a piecewise smooth periodic
function on [—1, 1] defined by

—cos(%),

sin(67a
2 Snlter)
43> + 22 — 5z, if%<m<1.

The discrete data (pseudo-spectral) Fourier approximation
is constructed as

flz) =

N

Z fkeiwkz, (2)

k=—N

In(z) =

where fk are the discrete Fourier coefficients computed
from given discrete data f(z;) as

2N-1
;1 inka, (2, ifk=<%£N,
Jr= 2Nc¢y, j;o Flaj)e r T 1, otherwise.

(3)

In practice, one uses the fast Fourier transform (FFT) sub-
routines to compute (2) and (3).

The graph of example III.1 and its Fourier approxima-

tion are shown in figure 2. The Gibbs ringing artifact is

particularly evident at the discontinuities where there is an
18% overshoot and 18% undershoot.
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Fig. 2. (a) Piecewise Smooth function given in example III.1 and (b)
Fourier reconstruction of the function on 128 points.

As an example of Fourier reconstruction in two dimen-
sions, we consider the Shepp-Logan phantom image in fig-
ure 1 which is a piecewise smooth function on [—1,1] x
[-1,1]. The discontinuities are caused by the various tis-
sues represented in the phantom. The Fourier approxima-
tion is computed as

N N

In(y)= D D fraem ), (4)

k=—NIl=—N

where the Fourier coefficients are recovered from the dis-
crete data given on equally spaced points as

2N—12N -1

- 1 .
- - . —im(kxj+lyn)
Jra = AN Crel E E f(xj,yn)e v, (5)

j=0 h=0

The Gibbs ringing artifact is clearly evident in the
Fourier reconstruction of the Shepp-Logan brain phantom
exhibited in figure 3.
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Fig. 3. Fourier Reconstruction of Shepp-Logan brain Phantom on
[128 x 128] grid points.

IV. FILTERED FOURIER RECONSTRUCTION

One factor contributing to the Gibbs ringing artifact for
piecewise smooth functions is the slow decay rate of the
Fourier expansion coefficients [13]. A filter increases the
rate of decay by attenuating the higher order coefficients
which in turn controls the effects of the Gibbs oscillations.
The filtered discrete Fourier reconstruction in two dimen-
sions is computed as

N N
fn(z,y) = Z Z 0k fr e ™ E ), (6)
k=—NI=—N
where 6;, = 6(%) is the exponential filter given by
o]y = ool (7)

The exponential filter is one of many filters that can be
used, and is chosen most often because of its high accu-
racy away from discontinuities, robustness, and simplicity.
Other filters, e.g. Lanczos, raised cosine, etc., do not retain
high accuracy away from the discontinuities. In (7) p repre-
sents the order of the filter and « measures the strength of
the filter, generally chosen so that 6(1) ~ O(e,,) where €,
represents machine accuracy (Typically o = 32). Figure 4
shows the filtered Fourier reconstruction of the piecewise
smooth function in example III.1. The Gibbs ringing is
indeed reduced, however the reconstruction is smeared at
the discontinuities.

Filtered reconstructions of the Shepp-Logan brain phan-
tom image are displayed in figures 5 and 6. Although the
Gibbs ringing is alleviated by implementation of the expo-
nential filter, and high accuracy is restored in the smooth
regions away from the boundaries, the undesirable side ef-
fect of blurring the features at the boundaries is evident.

V. EDGE DETECTION

As mentioned in the introduction, detecting the edges of
an image is the critical first step in a high resolution recon-

Fig. 4. Filtered Fourier reconstruction of example IT1.1 on 128 points
with p = 4.
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Fig. 5. Filtered Fourier reconstruction of the Shepp-Logan brain
phantom on [128 x 128] equally space grid points.

struction. Information about the locations of the edges is
used to determine the regions of smoothness in which the
images can be reconstructed. Edge detection from spectral
data has been the subject of many recent articles, and here
we use the method developed in [9] which is summarized
below.

Let us define the jump function [f](z) for a piecewise
smooth function as [f](z) = f(z+) — f(z—), where f(z+)
are the right and left side limits of the function at =z,
flzt) =limy— .+ f(x). Note that [f](z) is zero away from
a discontinuity, and is the value of the jump at a disconti-
nuity.

We choose a “concentration” kernel, K%, such that the
support of K§; = f tends to the singular support, or jump
discontinuities, of f. Specifically, we wish to “concentrate”
at the discontinuities of f(x) while tending to zero in the
smooth regions, thus yielding the concentration property

K§ = f(x) — [f](2), as N — oo. (8)
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Fig. 6. (a) Fourier reconstruction and (b) filtered Fourier reconstruc-
tion on 128 points with p = 4 for a cross section of the Shepp-Logan
Brain.

This “concentration” kernel is written as

Z o(—) sin kt,
k=1

where o(4) are the concentration factors satisfying

% € C?(0,1).

It was shown in [9] that if the concentration factors o (&)
are normalized so that

/01@@:1,

3
then the concentration property (8) holds with the estimate
o lOg N
K3« f(x) — [f](z)] < Const - ——.

The concentration method for detecting jump disconti-
nuities is easily implemented as

N

M ;
S sgn(t)o(h) fue,

k=—N

KR f(2) := SE[f](2) = im

where fj, are continuous Fourier coefficients and o ( ‘k‘) are
the concentration factors corresponding to the concentra-
tion kernel K§;.

There are several examples of admissible concentra-
tion factors discussed in [9]. The exponential concentra-
Const - feﬁ where Const =
fel Eea:p(m)dn, is particularly effective, as it takes
full advantage of the spectral data by rapidly converging
away from the discontinuities. The parameter « is freely
chosen, with a typical value a = 6.

Since our information is based on discrete data points,
we apply the analogous case for the discrete coefficients (3)
which is implemented as

tion factor, o(§) =

LI
5 =i E sgn( e e,
~lf g N+ 2)fk

where f;, are the discrete Fourier coefficients (3), and the

corresponding concentration factor 7(£) is given in [9] and

[11] as

2sin(én)
fr

The discrete case admits an analogous concentration prop-
erty to (8) ensuring convergence of (10) to [f](z), and is
easily calculated with the FFT algorithm. We note that
when the data given is k-space data, the edge detection
method (9) can be directly applied. Let us recall example
II1.1, for which we wish to locate the discontinuities. Es-
sentially, we wish to approximate the corresponding jump
function,

m(§) = a(§) (11)

%, if z = —1,
[fllz) =9 -2, ifz=1, (12)
0, else.

Figure 7 demonstrates the results of applying the concen-
tration method to the piecewise smooth function in exam-
ple ITI.1 where it is evident that (10) is converging to (or
“concentrating” at) the positions and sizes of the disconti-
nuities of the step function.

In order to determine the exact intervals of smoothness
imperative for high resolution reconstruction, the concen-
tration method (10) must be further enhanced to “pin-
point” the edges exactly. For this purpose, an edge en-
hancement procedure has been constructed in [10] and is
described below.

The detection of edges is based on a separation of scales.
More specifically, if {m;‘}]”il denotes the locations of the
jump discontinuities of f(z), then for admissible concen-
tration factors (11) we have

[£1(

O(x),

z}), if r=uzj,
TR f](=) =
if z # 7.
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Fig. 7. (a) The jump function, and (b) the concentration method
(10) on 128 points applied to the function in example III.1.

The nonlinear enhancement procedure [10] amplifies the
separation of scales by computing

(A=), if 2 = a7,
O(x)’,

This separation of scales can be more pronounced by defin-
ing

(TR [f1(=)* =
if z # 7.

NI ([f)@2), ifx =2

70

E:= N2(T{[f](2))" =

O(N—1/2), if z # 7,

leading to the enhanced edge detection method,
TR [f)(),

0, if |E| < Jcrit-

if |E| > Jerit

En(TN([f(z)) = (13)

Here J.r; is an O(1) global threshold parameter signify-
ing the minimal amplitude for the jump discontinuity not
to be negligible. Since (10) actually locates the neighbor-
hoods of the discontinuities, the exact jump locations are

determined as the corresponding locations to the largest
amplitudes |E| > Jgp; in each neighborhood of admissible
jumps (i.e. where |E| > J.rit). Note that J..; should be
chosen to be consistent with the variation and scaling of
the function. Experiments show that the parameter ¢ = 2
is adequate for enhancement.

The nonlinear enhancement procedure works well when
the discontinuities are located “far enough” from each
other. (Experimentally the neighborhood of a discontinu-
ity is approximately 5Az.) However when the discontinu-
ities are extremely close together, as is the case of MRI
scans, where two neighboring pixels may contain disconti-
nuities, a more refined procedure near the locations of the
discontinuities must be employed. The limitations of the
nonlinear enhancement procedures in the case of MRI are
exhibited in figure 8 and 19, where several jump locations
are “missed”.

To this end, we adopt a minimization procedure as ex-
plained in the following paragraphs.

We begin by defining the saw tooth function:

z+1
r—1

if—lgwgbl,

if b1 <z S ]., (14)

g(z;b1) = {

which is a periodic piecewise smooth function having a
single jump discontinuity at z = b; with [g](z;b1) = —2
for x = b; and [g](x;b1) = 0 otherwise. The function
g(z; by) is easily extended to contain multiple discontinu-
ities, = = {b;},, as [g](z;b) = sz\i1 g(z,b;).

If f(x) is a periodic piecewise smooth function with dis-
continuities located at x = {b;}, and corresponding jump
values [f](b;) = a;, then

a;

hw) = f@)+ Y Folwib) (15)

defines a smooth and periodic Affunction. Clearly the jump
function [h](x) = [f](x) + >, %[g](a;b;) = 0, and by
the concentration property, T%[h](z) converges to [h](z),
setting up the minimization problem,

min max TR (2)] =

,ai,b;

min max|T[](z)

,ai,bi
M

+ Y STRlgl@ib)l, (16)

to yield the size and positions of the jump discontinuities
of f(x). Here b; and a;, i = 1,--- , M, are the positions
and corresponding jump values of the discontinuities, and
M is the total number of discontinuities. We note that the
choice of (14) is not unique, but it is chosen because of
its simplicity. There may be advantages in choosing other
functions.

This method of minimization provides an interesting op-
timization problem. By the concentration property (10),
since max, |T%[f](z)| converges to the height of the largest
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discontinuity of f, one can then conclude that

M
max [T ()] = max |75 [f)(e) + 3 5 TRlo)(r: )

— 0. (17)
The problem can now be formulated as follows. If M, a;,
and b; are correctly chosen for ¢ =1,--- | M then
1
mas [T [H](2)] < O(5;). (18)

The correct choice of M, a;, and b; therefore gives the
unique minimum of (16) within a pixel distance.

The minimization procedure for (16) lacks refinement. If
all possible values of M, a;, and b; are numerically calcu-
lated, uniqueness of (16) ensures their correct values. Un-
fortunately, such a procedure is extremely costly computa-
tionally.

Since the nonlinear enhancement procedure (13) is very
efficient for discontinuities that are not close together, we
can apply this procedure first to locate the discontinuities
that are not close together (e.g. a distance greater than
5Ax). After isolated discontinuities are found, the remain-
ing discontinuities can be found through numerical calcu-
lation of (16). The proposed combination procedure takes
advantage of both the speed of the nonlinear enhancement
(13) and the accuracy of the numerical minimization (16).

To simplify notation we combine the set of jump loca-
tions and jump sizes into a set of ordered pairs,

D= {bi,ai - [f](bi)}%v[

(19)

The following algorithm converges to the set D:
Algorithm V.1: (Algorithm used to determine the set
D, which is the set of jump discontinuities {b;}}£, and
their corresponding set of jump values {a;},, for any
piecewise smooth periodic function f(z) on [—1,1].)
1. The concentration method (9) and nonlinear enhance-
ment procedure (13) are performed. Then for the set of
grid point values {z; = =N ?Q(;l, we determine an initial
set of discontinuities
M
D, = {bl,i,aLi = [f](b1,i)}

: (20)
i=

Here b;; are the discontinuity points “pinpointed” after
the nonlinear enhancement procedure, a; ; are their corre-
sponding jump values, and M; is the total number of dis-
continuities. Specifically, in (13) when En (TF[f](z;)) > 0,
we have b17i = Zj, @1, = EN(T]"\}[f](b17l)), and M1 is
the total number of nonzero values for En(TF[f](z;)),
j=0,---,2N —1.

2. We can determine the discontinuities that are missing
from D4 by applying the procedure described in (17) with
bi; and a1 4, ¢ =1,---, M, as the respective discontinuity
points and jump values. Hence for j = 0,---2N — 1, we
use (9) and (13) to compute

My

Ex(TwI](x;)) = En (Tnlfl(z) -

i=1

ay,;

2

(21)

TR [g) (253 01,)) )

105

Then the set of missed discontinuities,

M.

D, = {bz,i,az,i = [f](bz,i)} 1’

i=

(22)

consists of by ; = x; and as; = En(Tn[h](b2,;)) > 0. Here
M, is the total number of nonzero values of En (Tn[R](z;)).
3. The set of discontinuities is updated by augmenting it
with the set of missed discontinuities as

D; = D; UDs. (23)
We note that it is possible that some ordered pairs in this
new set D1 may have the same discontinuity location but
different jump values, i.e. b1 ; = by but ai1; # as; for
some integer values i € [1,M;] and j € [1, M3]. This oc-
curs when a jump value is not computed accurately enough
and is “corrected” in Ds, often as a result of jump loca-
tions occurring only a few pixels apart. At this point, in
the new set Dy we assign the jump discontinuity, b; ;, the
corresponding jump value a1 ; = a1,; — a2 ;.

4. The above two steps are repeated until Do yields the
empty set, leaving D = D;. O

We note that although for computational simplicity we
assumed discontinuity locations will occur only on grid
points, the edge detection procedure is not restricted in
this way. Convergence of this algorithm is rapid, taking
fewer than ten iterations for each example used in this pa-
per.

The boundary detection method and minimization pro-
cess can be extended to detect the size and position of
discontinuities in a two dimensional function by holding
each dimension fixed and determining the edges as a func-
tion of the fixed coordinate. Specifically, the concentration
method for the discrete case in two dimensions is

K|

N
Tnlfle(y) = ir Y sgn(k)7(z—1)
k=—N

N+ 3

N
Z Fojelim(katin)
I=—N

N
U

in Z sgn(l)T(N+

1
I=—N 2

N
Z Fo el k)

k=—N

Tn[fl(y(z)) =

)

(25)

where T and g are fixed coordinates. We apply the expo-
nential concentration factor given in (11). Figure 8 demon-
strates the concentration method applied to the cross sec-
tion f(z,0) of the Shepp-Logan brain phantom. After ap-
plying the nonlinear enhancement and minimization pro-
cedures, it is possible to detect the location of the discon-
tinuities between different tissues as well as the size of the
jump discontinuities. Figure 9 exhibits the final bound-
ary detection of the Shepp-Logan brain phantom using the
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Fig. 8. (a) The cross section f(z,0) of the Shepp-Logan phantom
brain, (b) the concentration method applied on 128 points, (c) non-
linear enhancement of the concentration method, and (d) the mini-
mization algorithm results.

minimization procedure in both directions. It should be
noted that the z-direction and y-direction boundary detec-
tion provide overlapping information, with the most reli-
able information occurring when the boundary is perpen-
dicular to the direction of detection.

10.9
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Fig. 9. Final boundary detection of the Shepp-Logan brain phantom
for a [128 x 128] grid.

VI. THE GEGENBAUER RECONSTRUCTION METHOD

The Gegenbauer reconstruction method was developed
in [15] and extended in a litany of articles (consult [14] for
references). It is a powerful tool that recovers piecewise
smooth functions with spectral accuracy up to the edges in
each smooth interval, and can therefore be used to com-
pletely eliminate the Gibbs ringing artifact without com-
promising high resolution at the edges. Let us first intro-
duce the Gegenbauer reconstruction method for a smooth
function f(z) on [—1,1].

The Gegenbauer polynomial C)(z) is an orthogonal
polynomial of order n that satisfies

[ a-ericaciwa={ v F2r e
where (for A > 0)
_JROMOTO+})
e T CES Y (27)
with r ~
cx) = . (28)

An Ly-bounded function f(x) on [—1, 1] can be represented
by the Gegenbauer series expansion

fx) =Y FOCHNa), (29)
=0

where the spectral Gegenbauer coefficients are defined by

. 1 /!

PO =ox [ A= @G @ (30)
1 -1

We note that the Gegenbauer polynomials are related to

the more commonly used associated Legendre polynomials

by [3]

T+ LHr2A +n)
n!T(2))

A L s e =X
Ca) = -0 P
Since the Gegenbauer polynomials are orthogonal, the par-
tial Gegenbauer sum,

(@) =Y FAOC @), (31)
=0

converges exponentially to the smooth function f(z) in
[-1,1].

In general, (30) must be evaluated using an approxima-
tion of f(z). In the case where images are to be recon-
structed from (discrete) spectral Fourier data (e.g. in the
case of MRI reconstruction where we have k-space data),
it was shown in [15] that the truncated Fourier expansion
fn(x) in (2) can be used to approximate (30) for each
[=0,---,m as

N 1t L

WO 5/ (1= 22 fx(2)C) (z) da. (32)
1 J-1

The approximation is exponentially accurate provided that

A,m ~ N. In turn (31) is approximated by

gm(@) =D DCM ), (33)
[=0

where it was again shown in [15] that the approximation
is exponentially accurate for smooth (non-periodic) func-
tions on [—1,1] as long as A,m ~ N. We recall that the
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regular Fourier reconstruction (2) applied to a smooth but
non-periodic function will produce Gibbs oscillations at
the boundaries and an overall reduced convergence rate of
O(%). Conversely, the filtered Fourier reconstruction (6)
for a smooth but non-periodic function will alleviate these
oscillations but cause blurring at the boundaries. Hence we
see that the poorly performing Fourier approximation can
be turned into an exponentially converging Gegenbauer ap-
proximation via (32) and (33) even up to the boundaries.
To efficiently compute the Gegenbauer approximation (33),
we exploit the relationship in [3],

e ;
3 1(1 - a:2))‘*%e’””0[\(m)dm =
Mo

L)L+ A) i (),

p— (34)

where J, () is the Bessel function. This formula, together
with the discrete Fourier coefficients (3), provides the ex-
plicit expression for the approximate Gegenbauer coeffi-
cients (32) as

0 = 0 fO AT+ N) Y Tealh) (o) (k)
0<|k|<N
(35)
In this form, FFT techniques can be employed in the cal-
culation of the Gegenbauer coefficients.

The Gegenbauer reconstruction method can be similarly
performed when f(z) is smooth in any arbitrary interval
[a,b]. Specifically, let us define a local variable n € [—1,1]
such that z(n) = en + 4§, where e = 252 and § = 252, The
Gegenbauer reconstruction is then based on the Fourier

approximation of f(z) in [a, D],

N
In(em) = fulen+8)= 3 feetrerto,

(36)
k=—N
and is computed by
gm(x(m) = g2 ()G} (), (37)
1=0
where the approximate Gegenbauer coefficients,
L[t .
20 =55 [ A= A a@)c . 69
N

are computed by the FFT algorithm as
gMD) =0uf(0) + T+ N
2 Lo
S Jualrke) (e f (k).
0<|k|<N
(39)

Figure 10 shows the Gegenbauer reconstruction of the
piecewise smooth function of example III.1. The method is
applied in each smooth subinterval and then the three re-
constructed regions are “glued” together to form the final

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Fig. 10. (a) Gegenbauer reconstruction of example III.1 on [—1, 1],

with 2N = 128, m = 8, and XA = 4. (b) Log of the error for Fourier,
filtered Fourier, and Gegenbauer reconstruction.

approximation. Figure 11 depicts the clear improvement of
applying the Gegenbauer reconstruction method over the
filtered Fourier approximation (figure 6) to a cross section
of the Shepp-Logan phantom. The intervals of smoothness
are found first by the edge detection method described in
8V, and then Gegenbauer reconstruction is performed in
each smooth interval up to the edges of each interval. As
is evident from the figure, there are some smooth intervals
consisting of too few points to construct an approximation.
(Gegenbauer reconstruction requires at least a theoretical
minimum of = points to form an approximation [13].) In
these intervals, the values at each grid point are assumed
constant and equivalent to the values determined at the
edges. The procedure is further described in §VII. Figure
12(b) shows the resulting error of the Gegenbauer recon-
struction method for the Shepp-Logan phantom, where it is
evident that a high rate of convergence is obtained. No op-
timization of parameters was attempted, and the method
works as a black box.

The Gegenbauer reconstruction method is of O(10%)

times computationally slower then Fourier or filtered
Fourier reconstruction, where d is the dimension of the
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Fig. 11. (a) Gegenbauer reconstruction applied to the Shepp-Logan
phantom at the cross section (z,0). Here 2N = 128, m =4, and A =
4. (b) Log of the error for Fourier, filtered Fourier, and Gegenbauer
reconstruction.

function. It is possible to reduce the computational time
of the Gegenbauer method by reducing the number of pixel
points values that are reconstructed using this method.
Since the Gegenbauer reconstruction has a significant re-
duction in error close to the edges, it is critical to employ
it in those regions. However, as exhibited in figures 11
and 12, the filtered Fourier reconstruction is effective in re-
gions away from the discontinuities. That being said, the
next section describes a method that takes advantage of the
computational efficiency of filtered Fourier reconstruction
in regions away from the discontinuities, while assuring the
high resolution of the Gegenbauer reconstruction method
near the edges.

VII. THE HYBRID RECONSTRUCTION METHOD

The Gegenbauer reconstruction method is clearly su-
perior to exponential filtering in terms of its high reso-
lution reconstruction capabilities up to the edges of each
smooth subinterval. However, it is considerably more com-
putationally costly than the filtered Fourier reconstruction.
Although the filtered Fourier reconstruction suffers from
smeared resolution at the boundaries, it retains high ac-

e
¥

+ N=64
— N=128
* N=256
_40 I I I I I I I I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 12. Log of the absolute error in (a) filtered reconstruction, and
(b) Gegenbauer reconstruction of the Shepp Logan phantom at the
cross section (z,0) for N = 64, 128, 252.

curacy in the smooth regions away from the edges. The
hybrid method, developed in [7], takes advantage of the
strengths of both methods in applying Gegenbauer recon-
struction near the tissue boundaries and the filtered Fourier
reconstruction away from the tissue boundaries.

For example, let us consider a piecewise smooth function
f(z) that is continuous inside the interval [a,b]. Then the
hybrid method is given as

gh(z), fa<z<a+p
orb—p<z<hb, (40)

f(x), fa+p<z<b-op,

where f% (z) is the one-dimensional version of (6), and
0<p< b_T“ is a neighborhood parameter. Clearly larger p
implies greater accuracy, since the Gegenbauer reconstruc-
tion method would be applied in a greater interval. On the
other hand, a smaller value for p yields reduced computa-
tional cost.

Now let us consider the two dimensional piecewise
smooth function f(x,y) continuous inside the interval a, <
x < by, ay <y < by Also, let XBP and Y BP stand for
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the closest edges of the smooth subinterval, a, or b, and a,
or b, respectively. We define the hybrid method to be per-
formed in each smooth subinterval z € [a,,bs],y € [ay, by]
as

(DM DAY AT LSl
if |t — XBP|>pand|y—YBP| > p,

e im0 Ok ALk C (x)ei ™y,
if |t — XBP| < pand |y — YBP| > p,
9o M@, y)

SR Soito Bk BriCR el ™,
if | — XBP| > pand |y —YBP| < p,

ZZL:O Zln;o ﬁ;?,zc;?(x)cﬁ (y),
\ if |t — XBP| < pand |y —YBP| <p.

The hybrid method (41) is defined so that the method of
reconstruction for f(x,y) is chosen based on the proxim-
ity to the nearest boundary in each direction. Specifically,
the high resolution Gegenbauer reconstruction is chosen
in close proximity to the edges of the smooth interval, and
the more cost efficient exponential filtering is appropriately
chosen everywhere else. For example, if Gegenbauer recon-
struction is to be performed in the z direction with filtering
in the y direction, we have

m N
9Nz y) =D Y O A Cr(@)e™,  (42)
1=0 k=—N
where the coefficients A, ;, are given by
N ~
o ¥ (ao,fwm).m
=N
Z Jl+,\ 7Tl/ ) f,,, ) 7iﬂ—kyj.
0<|v|<N
(43)

Similarly, if Gegenbauer reconstruction is chosen for the y
direction with exponential filtering in the z direction, we
have

m N
zy) =D Y OkBriCl(y)e™, (44)
1=0 k=—N
for the coefficients
N ~
By, = Z (50lfk,0 + TN+ N
j=—N
> Jia(Tw) ) fr 1/) imka,
0<|v|<N
(45)

If both z and y are close to the edges of the interval,
then we apply the Gegenbauer reconstruction procedure in
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both directions. The approximate Gegenbauer coefficients
in two dimensions are a direct extension of (32),

_ 1 /1 /1 (1= 2P (1— )
mh o) !

Fn(@(2)y(ny))CR () C (1 ) dnyy,
(46)

~\
Gk

where 1, and 7, are the local variables in [—1,1] de-
fined by z(n,) = €xn. + d, and y(n,) = €yny + 6, with
€2 = 2(bs — az), ¢, = 3(by —ay), 0 = 1(b, + ag), and
dy = 5(by + ay). The Gegenbauer coefficients approxima-
tion is based on the two dimensional Fourier partial sum
fn(z(ng), y(ny)) computed in (36). We note that although
the Gegenbauer parameters can assume different values in
each direction, for simplicity we choose A = A, = X, and
m = m, = m,. Our approximation using the Gegenbauer
reconstruction method in both directions is then

= Z Z gk,lck

k=0 1=0

CP (y)- (47)

We have now acquired all of the necessary tools for the
reconstruction of piecewise smooth data. The following
procedure is implemented as a black box once the initial
parameters are chosen, and is easily extended to higher
dimensions:

Algorithm VII.1: (Algorithm used to reconstruct
piecewise smooth function f(z) on [—1,1] using the edge
detection and the hybrid Gegenbauer reconstruction
procedures.)

1. Construct the Fourier coefficients from the grid point
data (2). Note that this step is eliminated when the
k—space data is given directly.

2. Apply algorithm V.1 to locate the discontinuities and
their corresponding jump values.

3. After choosing Gegenbauer parameters m and A in (33),
filter order p (7), and hybrid neighborhood parameter p
(40), apply the hybrid Gegenbauer method (41) to recon-
struct the image inside each smooth interval containing
enough resolution.

4. Using the jump values obtained from the edge detec-
tion and minimization procedures, the values at the edges
of each smooth interval can be approximated by summing
the Gegenbauer approximation of the neighboring point
and the jump discontinuity height at the edge. This is ac-
complished for each smooth subinterval [a, b] by computing

+ [f(a),
[£1(b),

In fact, the Gegenbauer method recovers f(z) right up to
the discontinuity and this step is not required. However,
we have found that applying (48) is useful if the discrete
function image has discontinuity points that are assumed
to occur on the actual data points, as we have assumed
here.

g (@) = gpta—Az)

9 (0) g (b+ Az) + (48)
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5. For “small” smooth intervals, i.e. |b — a|] < 4Az where
Ar = % is the grid size, the values at the edges are deter-
mined by (48) and then each grid point value in (a, b) is as-
sumed constant, either g2:*(z) = g} (a) or g% (z) = g (b)
for z € (a,b). We note that other interpolation procedures
(e.g. linear) can be performed, but in general the variation
in these intervals is so small that constant interpolation is

adequate. [

For the Shepp-Logan brain phantom reconstruction, we
apply the procedure described above to each pixel with p =
5Axz, m = A = 4 and p = 4. We choose A, m small since
the image has little texture, as demonstrated in example
ITII.1. The Gegenbauer reconstruction method is capable
of reproducing images with more texture by using greater
values for A and m. Although larger A and m would work
here as well, the cost of computation is eased by smaller
values.

Figure 13 depicts the filtered reconstruction of the phan-
tom away from the boundaries, and figure 14 shows the re-
constructed regions close to the boundaries using the two
dimensional Gegenbauer method in regions where there
is enough resolution to perform Gegenbauer reconstruc-
tion. These two figures constitute the hybrid reconstruc-
tion method (41). In the last step, boundary informa-

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8

Fig. 13. Filtered Fourier reconstruction with p = 4 away from bound-
aries.

tion determined by the edge detection procedure is added,
and constant interpolation is performed in the very small
intervals. The completely reconstructed image is seen in
figure 15, where its enormous improvement over the tradi-
tional imaging technique of filtered Fourier reconstruction
is evident. The overall computational time is of the same
order as Fourier reconstruction. The discrepancies visible
in figure 15 result from the interface matching of filtered
Fourier reconstruction and Gegenbauer reconstruction. If
one wishes to further improve the accuracy of reconstruc-
tion, the Gegenbauer method should be used for larger in-
tervals, which will increase the cost of computation.
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Fig. 14. Gegenbauer reconstruction with m = XA = 4 applied to large
enough intervals near the boundaries.

[]
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Fig. 15. Information about boundaries and constant interpolation is
performed in very small intervals of smoothness to achieve the final
hybrid Gegenbauer reconstruction of the simulated brain phantom.

VIII. THE SIMULATED BRAIN PHANTOM

As our second example of an MRI phantom, we use the
digital phantom provided by the McConnell Brain Imag-
ing Centre Montréal Neurological Institute, [4], [5], [16],
and [17]. This is a more realistic representation of a T1
weighted magnetic resonance coronal scan of the head, as
can be seen in figure 16, where greater complexity than in
the Shepp-Logan brain phantom is evident. The phantom
does not present a clear image because of the coarse grid
of available sample points.

Table 1 shows the intensities that were assigned to each
tissue type in the simulated brain phantom.

The filtered Fourier reconstruction of the simulated brain
phantom is shown in figure 17. Reconstruction is per-
formed on a grid double the size of the original phantom
to rectify the “graininess” of the image. The traditional
method of image reconstruction clearly blurs the image,
which is a direct result from applying the filter.
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Fig. 16. Simulated digital brain phantom on a [218 x 218] grid.

TABLE I
INTENSITY ASSIGNED TO EACH TISSUE TYPE IN THE SIMULATED BRAIN
PHANTOM.

Tissue Intensity
Background | 50
CSF 280
Grey matter | 540
White matter | 730
Fat 1030
Muscle/Skin | 460
Skin 240
Skull 85
Connective 710

0.4 0.6 0.8

Fig. 17. Filtered Fourier reconstruction of the simulated brain phan-
tom on a [218 x 218] grid with filter order p = 4.

Figure 18 displays an z-axis cross section half way
through the simulated brain phantom. The concentration
procedure is applied dimension by dimension (25) to deter-
mine the neighborhoods of the discontinuities. The result
is depicted in figure 19 for the [z, 0] cross section, where it
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Fig. 18. (a) Cross section of the simulated brain phantom at [x,0].

is evident that the nonlinear enhancement and minimiza-
tion procedures described in §V are necessary to pinpoint
the edges.
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Fig. 19. (a) Jump function of the cross section of the simulated brain
phantom at [z,0] and the performances of (b) the concentration, (c)
nonlinear enhancement, and (d) the minimization procedures.

In neuro-imaging, the important structures are all within
the skull. With this in mind, it is more efficient to recon-
struct the image only within the interior of skull. The
boundary detection method described in §V, with the fi-
nal result displayed in figure 20, allows us to determine the
edges of the skull and eliminate unnecessary computing
outside the region. It is possible to determine this region
due to the fact that the boundary jump between skull and
CSF is large relative to other boundaries in a T2 weighted
image. We note that the detection of the inside of the
brain is still completely automated. Figure 21 depicts the
final boundary detection of simulated brain phantom. The
results of applying the hybrid Gegenbauer reconstruction
method described in §VII to the simulated brain phantom
are shown in figures 22 and 23, where it is clear that this
reconstructed image is much better than the traditional
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Fig. Final boundary detection of the simulated brain phantom.

Fig. 21.
phantom.

Skull and CSF boundary detection of the simulated brain

filtered Fourier reconstruction.

IX. CONCLUSION

It is possible to improve the accuracy of reconstruction
in magnetic resonance imaging by using the edge detection
algorithm and hybrid Gegenbauer method. The improve-
ment is significant and specifically excels at maintaining
integrity near tissue boundaries. Since it is possible to use
FFTs in the Gegenbauer hybrid reconstruction method, the
computational cost is not significantly greater than the tra-
ditional Fourier filtered reconstruction. The new algorithm
described in §V allows us to “pinpoint” all of the bound-
aries, even if they are located very close together. Further-
more, it gives critical information needed to automatically
eliminate the skull.

We note that previous filtering techniques, such as the
one described in [2], have been introduced to effectively
combat the Gibbs ringing artifact in particular regions of
interest. Other Gibbs ringing reducing techniques use im-
age expansion in particular regions of interest. One such

800
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Fig. 22. (a) Filtered Fourier Reconstruction away from the bound-
aries with p = 4 and (b) Gegenbauer reconstruction close to bound-
aries with m = A\ = 4.
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Fig. 23. Final hybrid Gegenbauer reconstruction of the brain phan-
tom.

recently developed method involves a Bayesian approach
that uses a nonlinear image expansion technique to pre-
serve the discontinuities of the original image [19]. The
Gegenbauer reconstruction method may have several ad-
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vantages over these mentioned techniques. In particular,
no information is required about the relative expected local
signal strength, although such information would enhance
the capabilities of the Gegenbauer reconstruction perfor-
mance since the number of Gegenbauer polynomials re-
quired for reconstruction can then be explicitly determined.
In comparison to the Bayesian approach, the Gegenbauer
method does not require the expensive minimization com-
putations described in [19]. Direct comparisons of these
different techniques will be the topic of future work.

Our results in this paper serve as a possible way to im-
prove medical imaging for the MRI. This work has sparked
several future considerations.

1. The development of an optimal minimization procedure.
As repeatedly shown, edge detection provides an essential
step in high resolution reconstruction. The new algorithm
designed in §V enables higher accuracy reconstruction be-
cause of its ability to find very closely placed edges. This
minimization procedure should be investigated to optimize
computational cost, and will be a subject of future work.
2. Implementation of the edge detection and reconstruction
procedures when noise is present. It is critical to determine
the robustness of these methods when in the presence of
realistic noise. Recovery of images from noisy MRI data
was addressed in [1], which required the expansion of tech-
niques and theory described here. It was demonstrated
that this method is feasible in practical applications, and
the techniques presented here are currently being applied
to experimental MRI data.

3. Application to other medical imaging problems. In our
current investigation we assumed k-space data information
is given rectilinearly. An adaptation to radially sampled
data must be readily available for this method to be appli-
cable to PET imaging problems and/or spiral scanning in
MRI.

APPENDIX
I. SHEPP-LoGAN PHANTOM ALGORITHM
z=20

if (5)°+(45)* <1
then z = 2

. 0184
if (gg6a1)” + (yfsm )P <1

then z = 2z — .98

&= (x— .22) - cos(.4m) + y - sin(.4m)
n=—(x —.22) - sin(4n) +y - cos(.4m)

if ($7)2 + (45)2 <1
then z = z — .02

&= (x+.22) - cos(.6m) +y - sin(.67)
n=—(z+.22) - sin(.67) +y - cos(.67)

if ()2 + (f5)? <1
then z = z — .02

if (2522)2 +(£)* <1
then z = z + 300

if (57)° + (452)7 <1
then z = z + .01

if (&) + (Lm)? <1
then z = z + .01
if (g55)? + (45)2 < 1
then z = z + .01

(<50 + (M50 <1

then z = 2z + .01

if (g35)° + (Y5)* < 1
z

023
then z = 2z + .01

i (S0 + (S5 <1

then z = z + .01

flz,y) =2
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