
UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 1DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces

UNCLASSIFIED

An OpenSHMEM Implementation for
the Adapteva Epiphany Coprocessor

James Ross
james.a.ross176.civ@mail.mil
US Army Research Laboratory

David Richie
drichie@browndeertechnology.com

Brown Deer Technology

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 2

Outline

• Epiphany Architecture
• Programming Challenge
• Hardware/Software Setup
• OpenSHMEM Interface
• Benchmark Performance
• Conclusions & Future Work

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 3

Adapteva Epiphany Architecture

• Design emphasizes simplicity, scalability, power-efficiency
• 2D array of RISC cores, 2D Network on Chip (NoC)
• 512 KB shared global scratch memory (32 KB/core, Epiphany-III)
• Fully divergent cores
• Minimal un-core functionality, e.g., no data or instruction cache
• Existing design scales to thousands of cores
• High performance/power efficiency ~50 GFLOPS/W (Epiphany-IV)

Mesh Node

RISC CPU

DMA
Engine

32 KB Local Memory

Network
Interface

Router

Timers
64-Word Register File

Sequencer

Interrupt Handler

Arithmetic Logic Unit

Floating Point Unit

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 4

Hardware/Software Setup

Hardware
• Parallella development board ($99 ‘Micro-Server’)
• Dual-core ARM host processor
• 16-core Epiphany-III co-processor (@ 600 MHz)

• 19.2 GFLOPS
• 76.8 GB/s bandwidth

Software at time of publication
• OpenSHMEM 1.3 (our implementation)
• Parallella Linux image (2015.1)

• Epiphany SDK 2015.1
• GCC 4.8

• Brown Deer Technology
• COPRTHR-2 Beta

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 5

Programming Challenge

Programming challenge:
• Can the OpenSHMEM API be efficiently used with embedded PGAS

architectures like Epiphany?
• Distributed memory mapped cores with 32KB local memory per core
• Best viewed as a “distributed cluster on chip”
• Non-uniform memory access (NUMA) to mapped local memory
• Typical many-core programming models (OpenMP, OpenCL, CUDA) leverage

common cache / memory hierarchy for SMP
• Here, there is no hardware data/instruction cache
Two key observations:

• Architecture resembles cluster on chip
• Inter-core data movement is key to performance

Proposition: Use SHMEM as device-level programming model
We are using the OpenSHMEM API to enable the device-level parallelism
of a 2D RISC array processor

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 6

OpenSHMEM

PE #

R
em

ot
el

y
A

cc
es

si
bl

e
S

ym
m

et
ric

 D
at

a
O

bj
ec

ts

Global/Static
Variables

Symmetric
Heap

Variable: X

P
riv

at
e

D
at

a
O

bj
ec

ts

Local
Variables

syscore
0x0000

Free Local
Memory

0x0400

usrcore

Stack
0x8000

Typically, application
code is 4-20 KB

Global/Static
Variables

PGAS Memory Model Epiphany-III Core Memory Layout (Typical)

Buffers allocated with malloc,
shmem_malloc, sbrk, etc.

local_mem_base

Stack pointer (sp register)

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 7

OpenSHMEM

Why OpenSHMEM for PGAS?
• Unified Parallel C, Split-C, Fortress, Coarray Fortran, Chapel, X10

require building/modifying a compiler instead of a library
So why not MPI?
• MPI substantially larger library with higher-level abstraction and two-

sided communication means more code (source and binary)
• OpenSHMEM has improved data referencing semantics and reduced

interface complexity
• No message tags, no status, no special types, no I/O
• MPI makes no assumptions for symmetric memory allocation.

Requires correct remote address calculation
Why not eSDK (e-lib)? (See Supplemental Slides)
• Non-standard, less portable code
• No abstraction between physical row/column and virtual process
• Memory management, collectives, reductions, atomics missing

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 8

OpenSHMEM Design

Objectives:
• Maintain/conform to OpenSHMEM API
• Complete implementation of API
• Design must lead to efficient implementation for architecture

• Tree-based algorithms, high performance, small code size

Challenges:
• Significant local memory constraint (32KB per core)

• Typical OpenSHMEM uses significantly larger amounts of memory
• Entire library is 200+ routines, typical applications use just several

Boons:
• Extremely low latency on-chip inter-core communication
• No middleware (transparent network interface for memory access)
• Simple DMA engine for asynchronous communication

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 9

Implementation

• Currently implemented in header-only library (~1800 LOC
C/inline asm)
• Compiler optimizes for constant arguments, reduces application

code size
• Data type differentiation handled by macros

• No software stack layers for low-level communication
primitives
• Typical implementations based on additional software stacks

(GASNet, network interfaces, other software layers)

• Optimized for low latency performance, efficient
hierarchical communication (dissemination barrier,
recursive-doubling, etc)

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 10

Implementation

OpenSHMEM / Application / Epiphany software stack:

• OpenSHMEM library replaces device-side eSDK (e-lib) code.
• No consideration for coprocessor offloading (e-hal, libcoprthr)
• Message passing between cores literally corresponds to load or store

instruction

Epiphany Metal

OpenSHMEM APIApplication Code

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 11

Performance Results

• Few directly comparable routines between eSDK (e-lib) and OpenSHMEM

• 2.1-9.9x speedup for all message sizes
• Peak Put bandwidth = 2.4 GB/s per core
• Corresponds to alternating ldrd/strd

• >9.1x speedup for software barrier
• 20x speedup for fixed 16 core case

(hardware WAND barrier = 0.1 µsec)
• eSDK barrier = 2.0 µsec

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 12

Performance Results

• Non-blocking DMA performance (automatic dual-issue DMA scheduling)
• Universally underperforms blocking message passing
• Dual-issue DMA increases latency for marginal gain for large transfers
• Hardware errata on E3 prevents full DWORD/clock (4.8 GB/s)

• 1.91 GB/s per core peak performance
• Code performs shmem_putmem_nbi

twice with half total data

• 1.45 GB/s peak performance per core

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 13

Performance Results

• Get performance worse than Put because read network requires response/stall
• Use Inter-Processor Interrupt (experimental feature) to cause remote Put

• 200-300 MB/s per core peak Get performance
• 1.5 GB/s peak performance with IPI

• Crossover at N >= 64 bytes

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 14

Performance Results

• Collect peak bandwidth good, but with relatively high latency for small sizes
• Concatenates blocks of data from multiple PEs to all PEs

• 1.13 GB/s peak performance per core• 1.21 GB/s peak performance per core

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 15

Performance Results

• Collective operations achieve high performance

14 MegaReductions/s

Effective Broadcast = Peak
Put / log2(NPES) = 600
MB/s

AlltoAll Peak = 2.12 GB/s

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 16

Example

#include <shmem.h>
#define N 3040

long pSync[SHMEM_REDUCE_SYNC_SIZE] = { SHMEM_SYNC_VALUE };
int pWrk[SHMEM_REDUCE_MIN_WRKDATA_SIZE];
extern float dot_product(float* a, float* b, int n); // optimized dot product routine**
float c = 0.0f; // collective result

int main(void)
{

int nd8m1 = (N >> 3) - 1; // N/8 - 1
shmem_init();

int me = shmem_my_pe();
int npes = shmem_n_pes();

// allocation
float* a = (float*)shmem_malloc(N*sizeof(float));
float* b = (float*)shmem_malloc(N*sizeof(float));

// initialization...
for (int i = 0; i < N; i++) a[i] = b[i] = 1.0f;

shmem_barrier_all();

c = dot_product(a, b, nd8m1); // assembly optimized routine
shmem_float_sum_to_all(&c, &c, 1, 0, 0, npes, pWrk, pSync);

shmem_free(b);
shmem_free(a);

shmem_finalize();
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

* Includes inlined shmem_(init, my_pe, n_pes, malloc, barrier_all, float_sum_to_all, free, finalize) routines
** Assembly optimized dot_product available in supplemental slides

Combined, this code achieves 87%
peak performance for 16 cores:
16.8 GFLOPS
67.3 GB/s
Nelements = 48,640 (16*3040)

code size (bytes)
syscore 1024
dot_product 208
main* 1916

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 17

Conclusions & Future Work

• This work reported on full OpenSHMEM 1.3 implementation for
embedded PGAS architecture, Adapteva’s Epiphany

• OpenSHMEM provides an effective programming model for this class
of architecture

• Header-only implementation enables compiler optimizations for
program size and performance

• Performance exceeds eSDK (e-lib) in speed, code size
• Performance/latencies in another performance class than traditional

implementations due to on-chip network – a favorable comparison

• Distribution for community input (on ARL github account)
• Improve memory management with COPRTHR-2
• Recommendations to OpenSHMEM standard committee for embedded

PGAS architectures

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 18

Resources

• US Army Research Laboratory GitHub
• https://github.com/USArmyResearchLab
• Intend to release ARL OpenSHMEM for Epiphany with example

codes and benchmarks as free and open source software
• COPRTHR 2.0 Resources/Download

• http://www.browndeertechnology.com/resources_epiphany_develop
er_coprthr2.htm

• Parallella (Epiphany-III host platform)
• http://parallella.org/

Questions: james.a.ross176.civ@mail.mil

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 19

Supplemental Slides

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 20

More Figures

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 21

More Figures

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 22

OpenSHMEM

PE 0 PE 1 PE N-1

R
em

ot
el

y
A

cc
es

si
bl

e
S

ym
m

et
ric

 D
at

a
O

bj
ec

ts

Global/Static
Variables

Symmetric
Heap

Variable: X

Symmetric
Heap

Variable: X

Symmetric
Heap

Variable: X
X = shmem_malloc()

P
riv

at
e

D
at

a
O

bj
ec

ts

Local
Variables

Local
Variables

Local
Variables

Global/Static
Variables

Global/Static
Variables

• Open standard API, portable across many platforms
• Library using Partitioned Global Address Space (PGAS) programming model
• Processing Element (Epiphany core) is an OpenSHMEM process
• Symmetric Objects have same address on all PEs, global shared memory

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 23

.global _dot_product
_dot_product:

movts lc, r2
mov r2, %low(.Lstart)
movts ls, r2
mov r2, %low(.Lend-4)
movts le, r2
.balignw 8,0x01a2
mov r24, #0
mov r25, #0
mov r26, #0
mov r27, #0
ldrd r48, [r0], #1
fsub r44, r24, r24
ldrd r50, [r1], #1
fsub r45, r24, r24
ldrd r52, [r0], #1
fsub r46, r24, r24
ldrd r54, [r1], #1
fsub r47, r24, r24
ldrd r56, [r0], #1
fmadd r24, r48, r50
ldrd r58, [r1], #1
fmadd r25, r49, r51
ldrd r60, [r0], #1
fmadd r26, r52, r54
ldrd r62, [r1], #1
fmadd r27, r53, r55
.Lstart:
ldrd r48, [r0], #1
fmadd r44, r56, r58
ldrd r50, [r1], #1
fmadd r45, r57, r59
ldrd r52, [r0], #1
fmadd r46, r60, r62
ldrd r54, [r1], #1
fmadd r47, r61, r63
ldrd r56, [r0], #1
fmadd r24, r48, r50
ldrd r58, [r1], #1
fmadd r25, r49, r51
ldrd r60, [r0], #1
fmadd r26, r52, r54
ldrd r62, [r1], #1
fmadd r27, r53, r55
.Lend:
fmadd r44, r56, r58
fmadd r45, r57, r59
fmadd r46, r60, r62
fmadd r47, r61, r63
fadd r24, r24, r25
fadd r26, r26, r27
fadd r44, r44, r45
fadd r46, r46, r47
fadd r24, r24, r26
fadd r44, r44, r46
fadd r0, r24, r44
rts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

float dot_product(const float* a, const float* b, int nd8m1) {
float c = 0.0f;
int n = (nd8m1 + 1)*8;
for (int i = 0; i < n; i++) {

c += a[i] * b[i];
}
return c;

}

1
2
3
4
5
6
7
8

The assembly-optimized dot product (left) uses a
hardware loop, 8-way loop unrolling, dual-issue
pipelined loads/stores, fused multiply-adds. It is
functionally identical to the C code (above). The inner
loop achieves peak performance of the processor in
both core bandwidth and computation. For N = 3040,
that’s an overall 96% peak performance with the call
overhead, header, and footer code.

Dot Product

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 24

Core/Device-Level Feature OpenSHMEM 1.3 eSDK (e-lib)
Query Routines Yes Yes
Memory Management Routines Yes None
Remote Memory Access Routines Yes Yes
Non-Blocking Remote Memory Access Routines Yes Yes

(needs better abstraction)

Atomic Memory Operations Yes None
Collective Routines Yes Barrier only
Point-To-Point Synchronization Routines Yes None
Memory Ordering Routines Yes Partial
Distributed Locking Routines Yes Partial
Signal/Interrupt Configuration Routines Application code Yes
Read/Write Special Registers Application code Yes
Timing Routines Library Interface Yes

Supplemental SDK Comparison

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 25

eSDK (e-lib interface) OpenSHMEM
e_coreid_t e_get_coreid(void) int shmem_my_pe(void)

int shmem_n_pes(void)

void *e_get_global_address(unsigned row, unsigned col, const void *ptr) void *shmem_ptr(const void *target, int pe)

e_coreid_t e_coreid_from_coords(unsigned row, unsigned col)
void e_coords_from_coreid(e_coreid_t coreid, unsigned *row, unsigned *col)
e_bool_t e_is_on_core(const void *ptr)
void e_neighbor_id(e_coreid_wrap_t dir, e_coreid_wrap_t wrap, unsigned *row, unsigned *col)

int shmem_pe_accessible(int pe)
int shmem_addr_accessible(const void *addr, int pe)

unsigned e_ctimer_get(e_ctimer_id_t timer)
unsigned e_ctimer_set(e_ctimer_id_t timer, unsigned int val)
unsigned e_ctimer_start(e_ctimer_id_t timer, e_ctimer_config_t config)`
unsigned e_ctimer_stop(e_ctimer_id_t timer)
void e_wait(e_ctimer_id_t timer, unsigned int clicks)

No standard equivalent, but included in
extended/experimental interface

void *e_read(const void *remote, void *dst, unsigned row, unsigned col, const void *src, size_t n)
void *e_write(const void *remote, const void *src, unsigned row, unsigned col, void *dst, size_t n)
int e_dma_start(e_dma_desc_t *descriptor, e_dma_id_t chan)
int e_dma_busy(e_dma_id_t chan)
void e_dma_wait(e_dma_id_t chan)
int e_dma_copy(void *dst, void *src, size_t n)
void e_dma_set_desc(e_dma_id_t chan, unsigned config, e_dma_desc_t *next_desc, unsigned strd_i_src,
unsigned strd_i_dst, unsigned count_i, unsigned count_o, unsigned strd_o_src, unsigned strd_o_dst,
void *addr_src, void *addr_dst, e_dma_desc_t *desc)

shmem_put shmem_get
shmem_iput shmem_iget
shmem_p shmem_g
shmem_[TYPE]_put shmem_[TYPE]_get
shmem_[TYPE]_iput shmem_[TYPE]_iget
shmem_[TYPE]_p shmem_[TYPE]_g
shmem_put[SIZE] shmem_get[SIZE]
shmem_iput[SIZE] shmem_iget[SIZE]
shmem_putmem shmem_getmem
shmem_put_nbi shmem_get_nbi
shmem_[TYPE]_put_nbi shmem_[TYPE]_get_nbi
shmem_put[SIZE]_nbi shmem_get[SIZE]_nbi
shmem_putmem_nbi shmem_getmem_nbi

void e_irq_attach(e_irq_type_t irq, sighandler_t handler)
void e_irq_set(unsigned row, unsigned col, e_irq_type_t irq)
void e_irq_clear(unsigned row, unsigned col, e_irq_type_t irq)
void e_irq_global_mask(e_bool_t state)
void e_irq_mask(e_irq_type_t irq, e_bool_t state)

No equivalent in SHMEM (but some of this occurs
transparently within library, optionally)

void e_mutex_init(unsigned row, unsigned col, e_mutex_t *mutex, e_mutexattr_t *attr)
void e_mutex_lock(unsigned row, unsigned col, e_mutex_t *mutex)
unsigned e_mutex_trylock(unsigned row, unsigned col, e_mutex_t *mutex)
void e_mutex_unlock(unsigned row, unsigned col, e_mutex_t *mutex)
void e_barrier_init(volatile e_barrier_t bar_array[], volatile e_barrier_t *tgt_bar_array[])
void e_barrier(volatile e_barrier_t *bar_array, volatile e_barrier_t *tgt_bar_array[])

void shmem_barrier_all(void);
void shmem_barrier(int PE_start, int logPE_stride, int PE_size,
long *pSync);
void shmem_fence(void);
void shmem_quiet(void);
void shmem_set_lock(long *lock);
void shmem_clear_lock(long *lock);
int shmem_test_lock(long *lock);

No equivalent on-chip memory management interface void *shmem_malloc(size_t size)
void *shmem_align(size_t alignment, size_t size)
void shmem_free(void *ptr)
void *shmem_realloc(void *ptr, size_t size)

Supplemental SDK Comparison

UNCLASSIFIED

DISTRIBUTION A. Approved for public release: distribution unlimited. The Nation’s Premier Laboratory for Land Forces 26

eSDK (e-lib interface) OpenSHMEM
No equivalent atomic operations shmem_[TYPE]_finc shmem_[TYPE]_inc shmem_[TYPE]_fadd

shmem_[TYPE]_add shmem_[TYPE]_cswap shmem_[TYPE]_swap
shmem_[TYPE]_fetch shmem_[TYPE]_set

No equivalent collective routines shmem_broadcast[SIZE]
shmem_fcollect[SIZE]
shmem_collect[SIZE]
shmem_alltoall[SIZE]
shmem_alltoalls[SIZE]
shmem_[TYPE]_sum_to_all
shmem_[TYPE]_prod_to_all
shmem_[TYPE]_min_to_all
shmem_[TYPE]_max_to_all
shmem_[TYPE]_and_to_all
shmem_[TYPE]_or_to_all
shmem_[TYPE]_xor_to_all

No equivalent point-to-point synchronization routines shmem_[TYPE]_wait
shmem_[TYPE]_wait_until

Supplemental

