
ORNL is managed by UT-Battelle
for the US Department of Energy

Investigating Data
Motion Power Trends to
Enable Power-Efficient
OpenSHMEM
Implementations

Tiffany M. Mintz, Eduardo D'Azevedo,
Manjunath Gorentla Venkata, and
Chung-Hsing Hsu

2016 OpenSHMEM Workshop
August 3, 2016

2 Computational Research
and Development Programs

Motivation

•  Becoming increasingly necessary to be mindful and more in
control of power consumed by extreme-scale systems,
specifically for data movement

•  Lack of software implementations that support or enable
power efficient data movement

•  Potential to increase power efficiency for memory accesses
through power-aware development of OpenSHMEM
implementations

3 Computational Research
and Development Programs

Research Approach

•  Current: study power consumption of one-sided RMA
operations
–  Profile power consumption for put and get operations for OpenMPI

and OpenSHMEM implementations
–  Analyze profiles for significant deviations in power consumption
–  Generate targeted hypothesis for reducing power consumption

•  Next: Isolate algorithms within one-sided message passing
implementations that could be optimized for power

4 Computational Research
and Development Programs

Power Profiling

•  Profiles generated using PowerInsight instrumented cluster
–  Dual Intel Xeon E5-2650v2 i7, 8 cores, 16 threads, a base frequency

of 2.6 GHz, and 64GB DDR3-1600 SDRAM

•  Benchmarks
–  Ohio State University Micro-Benchmark Suite

•  OpenSHMEM and one-sided MPI put and get latency benchmarks
–  OpenSHMEM implementation of High Performance Conjugate

Gradient (HPCG) Benchmark

5 Computational Research
and Development Programs

OSU Micro-Benchmark: Put Operations

20000

25000

30000

35000

40000

45000

50000

55000

60000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Po
w

er
 (m

W
)

6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Po
w

er
 (m

W
)

Sample Number

Rank 0

C
PU

M

em
or

y

20000

25000

30000

35000

40000

45000

50000

55000

60000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Rank 1

6000
7000
8000
9000

10000
11000
12000
13000
14000
15000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
Sample Number

6 Computational Research
and Development Programs

Put Benchmark Observations

•  OpenSHMEM Reference implementation has a consistently
higher power profile on active process (rank 0) than all other
one-sided implementations
–  CPU: On average consumes ~16W – 11W more power, and ~ 63J –

33J more energy
–  Memory: On average consumes ~ 2W more power, and ~ 14J – 3J

more energy

•  On passive process (rank 1)
–  OpenSHMEM Reference implementation on average consumes more

power & energy than the OpenMPI-OpenSHMEM implementation
(~12W & 22J cpu, ~2W & 3J memory)

–  OpenSHMEM Reference has comparable power consumption to
OpenMPI with active synchronization (< 1W) but consume much less
energy (~12J)

7 Computational Research
and Development Programs

OSU Micro-Benchmark: Get Operations

Rank 0

C
PU

M

em
or

y

Rank 1

20000

25000

30000

35000

40000

45000

50000

55000

60000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Po
w

er
 (m

W
)

6000
7000
8000
9000

10000
11000
12000
13000
14000
15000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Po
w

er
 (m

W
)

Sample Number

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

6500
7500
8500
9500

10500
11500
12500
13500
14500
15500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
Sample Number

8 Computational Research
and Development Programs

Get Benchmark Observations

•  The OpenMPI-OpenSHMEM implementation on average
consume less power and energy on the active process
–  CPU: ~9W – 5W less power, ~125J – 63J less energy
–  Memory: < 2W less power, ~31J – 16J less energy

•  On passive process:
–  OpenSHMEM reference implementation consumes less power than

OpenMPI-OpenSHMEM (~5W cpu, < 0.5W memory) but consumes
more energy (~12J cpu,~ 6J memory)

9 Computational Research
and Development Programs

HPCG: Strong Scaling
C

PU

M
em

or
y

OpenSHMEM Reference OpenMPI-OpenSHMEM

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

1 55

10
9

16
3

21
7

27
1

32
5

37
9

43
3

48
7

54
1

59
5

64
9

70
3

75
7

81
1

86
5

91
9

97
3

10
27

10

81

11
35

11

89

12
43

12

97

Po
w

er
 (m

W
)

4 cores, 186 secs 8 cores, 104 secs

16 cores, 73 secs 32 cores, 86 secs

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

1 57

11
3

16
9

22
5

28
1

33
7

39
3

44
9

50
5

56
1

61
7

67
3

72
9

78
5

84
1

89
7

95
3

10
09

10

65

11
21

11

77

12
33

12

89

4 cores, 188 secs 8 cores, 107 secs

16 cores, 71 secs 32 cores, 81 secs

0

10000

20000

30000

40000

50000

60000

1 55

10
9

16
3

21
7

27
1

32
5

37
9

43
3

48
7

54
1

59
5

64
9

70
3

75
7

81
1

86
5

91
9

97
3

10
27

10

81

11
35

11

89

12
43

12

97

Po
w

er
 (m

W
)

Sample Number

0

10000

20000

30000

40000

50000

60000

1 55

10
9

16
3

21
7

27
1

32
5

37
9

43
3

48
7

54
1

59
5

64
9

70
3

75
7

81
1

86
5

91
9

97
3

10
27

10

81

11
35

11

89

12
43

12

97

Sample Number

10 Computational Research
and Development Programs

HPCG Observations

•  For both implementations:
–  Non hyper-threaded executions (4-16 cores):

•  delta for cpu power consumption doubles as the number of physical
processing cores doubles

•  peak memory power consumption is nearly equivalent across
implementations and delta for peak memory power remains constant at
~10W as the number of physical cores doubles

–  For hyper-threaded executions of 32 processes, cpu power
consumption nearly equivalent to 16 processes

•  Memory power consumption for OpenSHMEM Reference
implementation for 32 processes nearly equivalent to 16
–  OpenMPI-OpenSHMEM peak memory power for 32 processes

increases by ~ 5W

•  OpenSHMEM reference implementation has a peak power
profile of about 9W more than the OpenMPI-OpenSHMEM

11 Computational Research
and Development Programs

HPCG: Weak Scaling
C

PU

M
em

or
y

OpenSHMEM Reference OpenMPI-OpenSHMEM

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1
10

01

11
01

12

01

13
01

14

01

15
01

16

01

17
01

18

01

19
01

20

01

21
01

22

01

23
01

24

01

Po
w

er
 (m

W
)

4 cores, 99 secs 8 cores, 110 secs

16 cores, 154 secs 32 cores, 361 secs

0

10000

20000

30000

40000

50000

60000

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1
10

01

11
01

12

01

13
01

14

01

15
01

16

01

17
01

18

01

19
01

20

01

21
01

22

01

23
01

24

01

Po
w

er
 (m

W
)

Sample Number

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

1 91

18
1

27
1

36
1

45
1

54
1

63
1

72
1

81
1

90
1

99
1

10
81

11

71

12
61

13

51

14
41

15

31

16
21

17

11

18
01

18

91

19
81

20

71

21
61

4 cores, 100 secs 8 cores, 113 secs

16 cores, 152 secs 32 cores, 315 secs

0

10000

20000

30000

40000

50000

60000

1 91

18
1

27
1

36
1

45
1

54
1

63
1

72
1

81
1

90
1

99
1

10
81

11

71

12
61

13

51

14
41

15

31

16
21

17

11

18
01

18

91

19
81

20

71

21
61

Sample Number

12 Computational Research
and Development Programs

Hypothesis from Analysis

•  There is not a one-to-one mapping of performance to power
consumption in message passing implementations,
particularly for memory accesses

•  There is a threshold for performance optimizations directly
correlating with power optimizations (especially when
considering hyper-threaded executions)

•  A less power efficient implementation may be optimized for
power without degrading performance

13 Computational Research
and Development Programs

Next Steps

•  Add power profiles for OpenSHMEM over UCX
•  Isolate put and get implementations and determine

algorithmic differences in implementations that contribute to
disparity in power consumption

•  Determine if software re-engineering of put and get
operations would result in increase power-efficiency

•  Study synchronization models

14 Computational Research
and Development Programs

This work was supported by the United States
Department of Defense (DoD) and used resources
of the Computational Research and Development
Programs at Oak Ridge National Laboratory.

Acknowledgements

15 Computational Research
and Development Programs

Questions?

