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Motivation 

•  Becoming increasingly necessary to be mindful and more in 
control of power consumed by extreme-scale systems, 
specifically for data movement 

•  Lack of software implementations that support or enable 
power efficient data movement 

•  Potential to increase power efficiency for memory accesses 
through power-aware development of OpenSHMEM 
implementations 
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Research Approach 

•  Current: study power consumption of one-sided RMA 
operations 
–  Profile power consumption for put and get operations for OpenMPI 

and OpenSHMEM implementations 
–  Analyze profiles for significant deviations in power consumption 
–  Generate targeted hypothesis for reducing power consumption 

•  Next: Isolate algorithms within one-sided message passing 
implementations that could be optimized for power 
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Power Profiling 

•  Profiles generated using PowerInsight instrumented cluster 
–  Dual  Intel Xeon E5-2650v2 i7, 8 cores, 16 threads, a base frequency 

of 2.6 GHz, and  64GB DDR3-1600 SDRAM 

•  Benchmarks 
–  Ohio State University Micro-Benchmark Suite 

•  OpenSHMEM and one-sided MPI put and get latency benchmarks 
–  OpenSHMEM implementation of High Performance Conjugate 

Gradient (HPCG) Benchmark 
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OSU Micro-Benchmark: Put Operations 
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Put Benchmark Observations 

•  OpenSHMEM Reference implementation has a consistently 
higher power profile on active process (rank 0) than all other 
one-sided implementations 
–  CPU: On average consumes ~16W – 11W more power, and ~ 63J – 

33J more energy 
–  Memory: On average consumes ~ 2W more power, and ~ 14J – 3J 

more energy 

•  On passive process (rank 1) 
–  OpenSHMEM Reference implementation on average consumes more 

power & energy than the OpenMPI-OpenSHMEM implementation 
(~12W & 22J cpu, ~2W & 3J memory)  

–  OpenSHMEM Reference has comparable power consumption to 
OpenMPI with active synchronization (< 1W) but consume much less 
energy (~12J) 
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OSU Micro-Benchmark: Get Operations 

Rank 0 

C
PU

 
M

em
or

y 

Rank 1 

20000 

25000 

30000 

35000 

40000 

45000 

50000 

55000 

60000 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 

Po
w

er
 (m

W
) 

6000 
7000 
8000 
9000 

10000 
11000 
12000 
13000 
14000 
15000 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 

Po
w

er
 (m

W
) 

Sample Number 

20000 

25000 

30000 

35000 

40000 

45000 

50000 

55000 

60000 

65000 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 

6500 
7500 
8500 
9500 

10500 
11500 
12500 
13500 
14500 
15500 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 
Sample Number 



8 Computational Research 
and Development Programs 

Get Benchmark Observations 

•  The OpenMPI-OpenSHMEM implementation on average 
consume less power and energy on the active process 
–  CPU: ~9W – 5W less power, ~125J – 63J less energy 
–  Memory: < 2W less power, ~31J – 16J less energy 

•  On passive process: 
–  OpenSHMEM reference implementation consumes less power than 

OpenMPI-OpenSHMEM (~5W cpu, < 0.5W memory) but consumes 
more energy (~12J cpu,~ 6J memory) 
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HPCG: Strong Scaling 
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HPCG Observations 

•  For both implementations: 
–  Non hyper-threaded executions (4-16 cores): 

•  delta for cpu power consumption doubles as the number of physical 
processing cores doubles 

•  peak memory power consumption is nearly equivalent across 
implementations and delta for peak memory power remains constant at 
~10W as the number of physical cores doubles 

–  For hyper-threaded executions of 32 processes, cpu power 
consumption nearly equivalent to 16 processes 

•  Memory power consumption for OpenSHMEM Reference 
implementation for 32 processes nearly equivalent to 16 
–  OpenMPI-OpenSHMEM peak memory power for 32 processes 

increases by ~ 5W 

•  OpenSHMEM reference implementation has a peak power 
profile of about 9W more than the OpenMPI-OpenSHMEM 
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HPCG: Weak Scaling 
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Hypothesis from Analysis 

•  There is not a one-to-one mapping of performance to power 
consumption  in message passing implementations, 
particularly for memory accesses 

•  There is a threshold  for performance optimizations directly 
correlating with power optimizations (especially when 
considering hyper-threaded executions) 

•  A less power efficient implementation may be optimized for 
power without degrading performance 



13 Computational Research 
and Development Programs 

Next Steps 

•  Add power profiles for OpenSHMEM over UCX 
•  Isolate put and get implementations and determine 

algorithmic differences in implementations that contribute to 
disparity in power consumption 

•  Determine if software re-engineering of put and get 
operations would result in increase power-efficiency 

•  Study synchronization models 
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