Increasing Computational Asynchrony
iIn OpenSHMEM
with Active Messages

Siddhartha Jana (Sid), Tony Curtis,
Dounia Khaldi, Barbara Chapman

August 2, 2016
Baltimore, MD

Outline

Challenges in current distributed memory
programming models

Active Messages as a means to introduce
computational asynchrony

Potential applications and past
implementations

Proposed interface for OpenSHMEM
Prototype implementation

Prototype evaluation

Case study

Lessons learned and future work

Challenges in current distributed
memory programming models

e Large data payloads

e Poor computation communication overlap

e Synchronization among processes becomes expensive
l
Data movement becomes a challenge
There is a need to move computation closer to data

ASCR report by US DOE Exascale workshop states:

“.. The increased vatriation in execution speed of various components, due to
error recovery and power management, will require codes that are more tolerant
to noise; hence, more asynchronous.”

** Amarasinghe, S., Hall, M., Lathin, R., Pingarli, K., Quinlan, D., Sarkar, V., Shalf, J., Lucas, R., Yelick, K.: ASCR
Programming Challenges for Exascale Computing (2011)

Active Messages (AM)

SOURCE TARGET

PROCESS PROCESS
Original proposal: T. von Eicken et al., 1992 **
Launch tasks on remote processes AM REQUEST [~ __
Single AM request = TR
(handler id) + (target process id) + (optional data payload)
Minimum code injection overhead REQUEST
The source process does not have to wait for the remote EANBLEN
handler to complete execution. opon!

v ___,1
et T
........ }

** Eicken et al., “Active Messages: a Mechanism for Integrated Communication and Computation”, 1992

Potential Applications and Implementations

Applications that stand to benefit:
e Design characteristics:
e Computation on large data structures
e Computation over remotely inaccessible data structures

e Communication patterns:
e Parallel graph computations
e lIrregular data accesses (halo exchanges)

Existing approaches:
e Low-level libraries: GASNet (LBNL), OpenUCX, LAPI (IBM), PAMI (IBM).
e Explicit launching of computation units: ParalleX (parcels), UPC++ (function shipping),
Charm++ (entry methods), Chapel (begin-at), CAF 2.0 (spawn)
e Dynamic work-scheduling of tasks among processes: X10, AsyncSHMEM (Max’s talk),
Titanium, Chapel, Habanero-Java, Habanero-C, Habanero-UPC, Habanero-UPC++

Introducing Active Messages
within OpenSHMEM

/** Handler Function Signature **/
void user_function_name (data_buffer, buffer_size,
source_rank, ...)

/** (De)Registration of Active Message handlers **/
void shmemx_am_attach (handler_id, function_ptr)

[** Initiating Active Messages **/

void shmemx_am_request (target_rank, handler_id,
source_addr, nbytes)

void shmemx_am_reply (handler_id, source addr,
Nbytes, ...)

void shmemx_am_quiet();

[** Handler-safe locking mechanisms **/
void shmemx_am_mutex_lock
(shmemx_am_mutex*)

void shmemx_am_mutex_unlock
(shmemx_am_mutex®)

SOURCE TARGET
PROCESS A PROCESS B
shmem_am_request() \ REQUEST
. HANDLER
............. 5

.u"‘"‘uﬁ.

e

shmem_am-tjuiet()
o

REPLY
HANDLER

el

shmem_am_reply()

Prototype implementation

Implemented within the OpenSHMEM reference implementation

Reuses GASNet’s existing Active Messaging interface

Currently hosted at github.com/openshmem-org/openshmem-am

Microbenchmark suite at github.com/openshmem-org/openshmem-am-testsuite.qit

OpenSHMEM Program

OpenSHMEM reference
implementation (p2p,
AMO, synchronizations,
collectives)

Active Message
Prototype
Implementation

GASNet Library

Active
Messages

Core API AMO Barriers

Shared Memory, Ethernet, IB, Myrinet GM,
IBM LAPI, Cray Gemini & Aries...

Active Messages is not a replacement of point-to-point RMA

Q" 450408 _ 350408 :
\O Active Messages —=- Active Messaﬂes i
.\% 4.0e+08 - ROMAROTs —— 3.0e+08 | RDMA PUTs ——
& Faoem /| geseer
\e\\q g 250408 P g 20ev08) 7,
& 2.0e+08 - & 15e+08[Ve
= 152408} / = Vi
= £ 1.0e+08| b
S 1.0e+08| A 2
2 500407 e 5.00407f _
0.0e+00 . . I o De+00 . e S i |
- =
2 - e 3 8 g - < q 3 8 g

Bandwidth and Message Rate behavior

Payload size [Bytes]

Payload size [Bytes]

(a) Inter-node Unidirectional Bandwidth (b) Inter-node Bidirectional Bandwidth
(bytes/sec) (bytes,/sec)
3.0e+06 T — 2 5e+06 . . —
250406 | EDMA 0TS —- BOMA PUTE o ™~
- — 2.0e+06 - /
3 200406 2 /
g 4 7 1.5e+06 A
E 150406} £ /
P = & 108406 L
E 1.0e+06F . 3 %y
S 50ei05)” " xis ¥ 5.0e+05 f T M iy
E i E i
g 0.0e+00 : q'r é 5 % 0.0e+00 e ; é o
- o 3 I 2 - o 8 & =
L =1 & =1 Ly =1 & =1

Mumber of me ssages/FUTs

(c) Inter-node Unidirectional Message Rate

(msg/sec)

Number of messages/PUTs
(d) Inter-node Bidirectional Message Rate
(msg/sec)

Takeaway:
e Closer-to-metal performance achievable with standard OpenSHMEM point-to-point
operations 8

Token-ring latency
of the prototype implementation

PE-0 PE-1 PE (N-1)

Total
Roundtrip
Time

i

Ll
Y
%

E——
shmem _int_wait_until

oy
Q []

" AM Request handler

or PE critical path
== S5ET FLAG

! 45
shmem barrier all() —_—

shmemx_am_request()
or shmem _int_put

Takeaway:

Round trip time (secs)
[Logscale base-2]

1.53e05

Active Messages =i
PUTS —=—

=t

128-

|
w
[Ty]
o

Mumber of PEs (hops) [Logscale base-2]

e Better suited for triggering specific events on remote PEs
e Better productivity with no significant loss in performance.

512

Launching Asynchronous Tasks
Varying Workloads and Minimal Synchronization

Master Worker Worker Worker
. PEO PE1 ==== PEN
(o f—. » L
estorworker b peesmmmIIIR,
communication in Graph
comr applications like: ' [‘.'.'.'.'.'.'.','.'.'.'.'.'.'.'.'.‘.'.'.'.'.'.'.'.'.'.'.','.' B

e Travelling Salesman
Problem (shortest
path) e > 1

e Minimum Spanning
Tree

...........
.............
............
............

10

Launching Asynchronous Tasks
Visualization of Asynchrony using Vampir

Gs 55 1&5 lis 21}5 Zis ?.Qs 315 lle dis Gis]'Qs

> ecom | | | | | Il || ||||||||||||||| || LI T ET LD ||||||||||||||||||||| I E|||| || | || | ||| RNARN |
Master l Worker Worker Worker e
PE PEO PE1 ==== PEN Prac...
Froc (28] (e N VIO RER 50 WORKER 30 WORKERSO | | WORKER 70

Case study: Traveling Salesman Problem (TSP)
Flow diagrams of OpenSHMEM Versions with and without Active Messages

(a) Master Process {b) Waorker Process {c) Master Process
{OpenSHMEM w/AM & MPI w/ tagging) {all 3 versions) (OpensSHMEM w/o AM)
Local shortest Repeat:
path Subscribe for g New path for all workers
new path Request k=1to N

shmemx_am_poll()

Check if local shortest path
reveived from workerk. If yes,
check if that is globally shortest.
If yes, send new shortest
distance to all workers.

Check if local shortest
path is globally shortest.
If yes, send new shortest

distance to all workers

12

or check MPI_Tag Check if new path request
—p received from worker-k. If yes,
send new path to k
Repeat:
REqUESt Find 5prath5 for all workers
If any, send to k=1to N
Use of handler master
safe locks for
OpenSHMEM wj AM +
= UL TR T T AL TR T DU Check if new SubpﬁthE
g Determine if received from worker-k. If yes,
: : | local shortest path. add paths in local work gueue
z Send new = | If yes, notify master
= path to requesting
= worker Repeat:
: Local shortest for all workers
E NO path k=1to N
= ! Add new subpaths
H to local work queue

FCLLLETETT

A closer look at TSP using Active Messages

void handler_subscribe()

(.}

void handler_shortestpath()
{...}

void handler_newpath()

{.)

int main()

{
shmem_init();
shmemx_am_attach(..&handler_subscribe);

shmemx_am_attach(..&handler_shortestpath); Add Worker-N to

shmemx_am_attach(..&handler_newpath);
shmemx_am_mutex_init(...);
while(1) {
if (lassign_task())
break;
if(shortestpath)
updatepath().
}

.... " cleanup */

}

Using handler-safe locks

Task assignment
from task-queue

Any idle
workers?

Any task in
queue?

YES

All workers idle?

1
A
Y
I . Announce completion
Assign task of solution to all PEs
to worker
REQUEST
POLL?

S

Add Worker-N to

PE subscription worker-stack

Candidate
path < global
shortest?

Shortest path worker-stack
selection

v

Update master's copy
of global best path

¥

Broadcast global
shortest distance

New path

management Add Worker-N to Add new path to
worker-stack task queue

-

13

Case study: Traveling Salesman Problem
Comparison between OpenSHMEM versions with and without Active Messages

X
X<
eV
‘\%
&) : : ,
\/o““ Input data size = 16 Input data size = 196 Input data size = 225
3 2 =
° = wmpi ’ E = mel I = = e
B OpenSHMEM w/o AM ; H B OpenSHMEM wi/o AM i B OpenSHMEM wio AM T
B OpenSHMEM w/ AM B ; B OpenSHMEM w/ AM ~ M OpenSHMEM w/ AM I
38 - E
° . g i . it
i S
: .| E BT 2 1N B
= ‘ £ e £ "
: ! 2 ; ‘ :
. ¥ ® N Bt
5 : | ! ks _ T il R B)
= : ; i A - RN g B L B
T . gl T D g g - =
; _l !il : " él I I ; -'-'f'
b e
2 | | | | | | | | T o - ' ' ' o ' '
2 4 8 16 32 64 128 256 16 32 64 128 256 128 256
Number of Processes Number of Processes Number of Processes

Takeaway:
e Use of locking mechanisms take a toll on performance for small input data size and PE count.
e Avoid designs with multiple handlers sharing same data structures 14

Lessons learned: Pros and cons

Pros:
e Asynchronous execution w.r.t. source — fire and forget
e Minimal synchronization overhead at the source
e Helps_injection of codepath in remote processes

Cons:
e Sharing data structures may require locking mechanisms
e Inefficient for small number of cores and problem sizes

Future Work

Initiate a redmine ticket and launch discussion within the
OpenSHMEM community

|dentify different types of Active Message requests based on
completion semantics

Handler can either run independent of the remote process or
within an interrupt handler (depending on the implementation)
Collective operations like broadcast operations over an active set
Explore more irregular application benchmarks are a good fit

Increasing Computational Asynchrony
in OpenSHMEM with Active Messages

Acknowledgements

e Funding support by DOD subcontract# 346023
e Research support by LANL
e Compute resources support by NSF contract# CRI-0958464

Contacts:

Sid Jana sidjana@cs.uh.edu

Tony Curtis anthony.curtis@stonybrook.edu

Dounia Khaldi dounia.khaldi@stonybrook.edu

Barbara Chapman barbara.chapman@stonybrook.edu

