
Increasing Computational Asynchrony
in OpenSHMEM

with Active Messages

Siddhartha Jana (Sid), Tony Curtis,
Dounia Khaldi, Barbara Chapman

August 2, 2016
Baltimore, MD

1

Outline

● Challenges in current distributed memory
programming models

● Active Messages as a means to introduce
computational asynchrony

● Potential applications and past
implementations

● Proposed interface for OpenSHMEM
● Prototype implementation
● Prototype evaluation
● Case study
● Lessons learned and future work

2

Challenges in current distributed
memory programming models

● Large data payloads
● Poor computation communication overlap
● Synchronization among processes becomes expensive

�
Data movement becomes a challenge
There is a need to move computation closer to data

ASCR report by US DOE Exascale workshop states:
“... The increased variation in execution speed of various components, due to
error recovery and power management, will require codes that are more tolerant
to noise; hence, more asynchronous.”

** Amarasinghe, S., Hall, M., Lathin, R., Pingarli, K., Quinlan, D., Sarkar, V., Shalf, J., Lucas, R., Yelick, K.: ASCR
Programming Challenges for Exascale Computing (2011) 3

Active Messages (AM)

● Original proposal: T. von Eicken et al., 1992 **
● Launch tasks on remote processes
● Single AM request =

 (handler id) + (target process id) + (optional data payload)
● Minimum code injection overhead
● The source process does not have to wait for the remote

handler to complete execution.

** Eicken et al., “Active Messages: a Mechanism for Integrated Communication and Computation”, 1992 4

Potential Applications and Implementations

Applications that stand to benefit:
● Design characteristics:

● Computation on large data structures
● Computation over remotely inaccessible data structures

● Communication patterns:
● Parallel graph computations
● Irregular data accesses (halo exchanges)

Existing approaches:
● Low-level libraries: GASNet (LBNL), OpenUCX, LAPI (IBM), PAMI (IBM).
● Explicit launching of computation units: ParalleX (parcels), UPC++ (function shipping),

Charm++ (entry methods), Chapel (begin-at), CAF 2.0 (spawn)
● Dynamic work-scheduling of tasks among processes: X10, AsyncSHMEM (Max’s talk),

Titanium, Chapel, Habanero-Java, Habanero-C, Habanero-UPC, Habanero-UPC++

5

Introducing Active Messages
within OpenSHMEM

/** Handler Function Signature **/
void user_function_name (data_buffer, buffer_size,
source_rank, ...)

/** (De)Registration of Active Message handlers **/
void shmemx_am_attach (handler_id, function_ptr)

/** Initiating Active Messages **/
void shmemx_am_request (target_rank, handler_id,
source_addr, nbytes)
void shmemx_am_reply (handler_id, source_addr,
Nbytes, …)
void shmemx_am_quiet();

/** Handler-safe locking mechanisms **/
void shmemx_am_mutex_lock
(shmemx_am_mutex*)
void shmemx_am_mutex_unlock
(shmemx_am_mutex*)

6

Prototype implementation
● Implemented within the OpenSHMEM reference implementation
● Reuses GASNet’s existing Active Messaging interface
● Currently hosted at github.com/openshmem-org/openshmem-am
● Microbenchmark suite at github.com/openshmem-org/openshmem-am-testsuite.git

7

Active Messages is not a replacement of point-to-point RMA
Bandwidth and Message Rate behavior

Higher is
 bette

r

Takeaway:
● Closer-to-metal performance achievable with standard OpenSHMEM point-to-point

operations 8

Token-ring latency
of the prototype implementation

Lower is better

Takeaway:
● Better suited for triggering specific events on remote PEs
● Better productivity with no significant loss in performance. 9

10

Launching Asynchronous Tasks
Varying Workloads and Minimal Synchronization

Master-worker
communication in Graph
based applications like:

● Travelling Salesman
Problem (shortest
path)

● Minimum Spanning
Tree

t

11

Launching Asynchronous Tasks
Visualization of Asynchrony using Vampir

t

Case study: Traveling Salesman Problem (TSP)
Flow diagrams of OpenSHMEM Versions with and without Active Messages

12

A closer look at TSP using Active Messages
Using handler-safe locks

void handler_subscribe()
{...}

void handler_shortestpath()
{...}

void handler_newpath()
{...}

int main()
{
 shmem_init();
 shmemx_am_attach(..&handler_subscribe);
 shmemx_am_attach(..&handler_shortestpath);
 shmemx_am_attach(..&handler_newpath);
 shmemx_am_mutex_init(...);
 while(1) {
 if (!assign_task())
 break;
 if(shortestpath)
 updatepath().
 }
 …. /* cleanup */
} 13

Input data size = 16 Input data size = 196Lower is
 bette

r

Case study: Traveling Salesman Problem
Comparison between OpenSHMEM versions with and without Active Messages

Input data size = 225

Takeaway:
● Use of locking mechanisms take a toll on performance for small input data size and PE count.
● Avoid designs with multiple handlers sharing same data structures 14

Lessons learned: Pros and cons

Pros:
● Asynchronous execution w.r.t. source – fire and forget
● Minimal synchronization overhead at the source
● Helps injection of codepath in remote processes

Cons:
● Sharing data structures may require locking mechanisms
● Inefficient for small number of cores and problem sizes

15

Future Work

● Initiate a redmine ticket and launch discussion within the
OpenSHMEM community

● Identify different types of Active Message requests based on
completion semantics

● Handler can either run independent of the remote process or
within an interrupt handler (depending on the implementation)

● Collective operations like broadcast operations over an active set
● Explore more irregular application benchmarks are a good fit

16

Increasing Computational Asynchrony
in OpenSHMEM with Active Messages

Acknowledgements
● Funding support by DOD subcontract# 346023
● Research support by LANL
● Compute resources support by NSF contract# CRI-0958464

Contacts:
● Sid Jana sidjana@cs.uh.edu
● Tony Curtis anthony.curtis@stonybrook.edu
● Dounia Khaldi dounia.khaldi@stonybrook.edu
● Barbara Chapman barbara.chapman@stonybrook.edu

