
Huansong Fu*,+Kunal SinghaRoy*,
Manjunath Gorentla Venkata†,

Yue+Zhu*,+Weikuan Yu*

*Florida+State+University
†Oak+Ridge+National+Laboratory

SHMemCache:+Enabling+Memcached on+the+
OpenSHMEM Global+Address+Model+

OpenSHMEM 2016+L 2

Big+Data+and+Memcached
• Enormous datasets need efficient data analytics tools. Big

opportunities but also challenges come along.
• Memcached is an important in-memory key/value store that can

cache hot key/value pairs for fast access.

Memcached
client

Memcached
servers

Database
Storage

access%database%(slow)
SET/GET/… (fast)

OpenSHMEM 2016+L 3

Challenges+of+Big+Data+Analytics
• Performance is often limited by network or storage.

– E.g., the existing open-source Memcached implementation uses TCP/IP
socket communication.

• More generally: not embracing or being embraced by the fast-
growing HPC systems.
– Big data applications are not widely used on HPC systems and

leveraging high performance interconnects.
– HPC systems have not met the needs of big data analytics middleware

very well.

• Proposed solution - SHMemCache: use OpenSHMEM to
enable Memcached.

OpenSHMEM 2016+L 4

Why+OpenSHMEM ++Memcached?
• Memcached has SET and GET APIs that match with

OpenSHMEM’s one-sided communication very well.

• The integration can provide great portability for Memcached
(and possibly other data analytics frameworks) to be deployed
on various leadership facilities with the OpenSHMEM run-time,
without knowing low-level details.

• The programming compatibility of OpenSHMEM and
Memcached’s similar memory-style addressing models can be
explored.

OpenSHMEM 2016+L 5

Outline

• Design of SHMemCache.
– Overall structure.
– Communication via shared & symmetric memory.
– Server & client.

• Experiments
– Latency and processing dissection.
– Throughput.

• Conclusion

OpenSHMEM 2016+L 6

Server
A

PE+#1(Delegator)

Shared+
Memory

Symmetric+
Memory

Overall+Structure

• Client and server send/receive messages by accessing its own
shared memory region.

• Per-node delegators forward the messages by sending to
symmetric memory of destination PE.

OpenSHMEM
Environment

Node+#1 Node+#2

Node+#3 Node+#4

PE+#3

PE+#1 PE+#2

PE+#4

Server+
A

Client+
A

Server+
B

Client+
B

Client+
D

Client+
C

OpenSHMEM 2016+L 7

Operation+Stages+and+Pipelining
• Pipeline multiple stages of a Memcached operation.

Client Delegator+1 Delegator+2 Server

Operation+1

Operation+2

……

server
processing

send+via+
shared+memory

send+via+
symmetric+memory

send+via+
shared+memory

Operation+N

OpenSHMEM 2016+L 8

Memory+Communication+
• Every memory region includes a number of segments. Every

segment is divided into a number of chunks. Each chunk can
receive an operation item.

• Memory consumption depends on demand.
– E.g., a 4-node system has 3 symmetric memory segments per node and 2

shared memory segments per server/client.

Shared%memory%segments

delegator server+/+client PE+0 PE+1 PE+3PE+2

chunk

write read write

Symmetric%memory%segments

write

OpenSHMEM 2016+L 9

Send/Recv via+Shared+Memory
• Mutex-free for better performance.

– Sender writes to a chunk if it is available for writing.
– Receiver polls from a chunk if there is data (polls use_flag) and data

is complete (polls comp_flag).

• Mutex remains as an option.

OpenSHMEM 2016+L 10

Send/Recv via+Symmetric+Memory
• Sender maintains a head and a tail pointing to the receiving

segment. Head never moves beyond tail.
– Head: the next available chunk to send data.
– Tail: the last available chunk before head.

• Receiver polls data and recycles the chunk so the chunk
becomes available to the sender again.
– Also poll use_flag and comp_flag.

tailold

headold

Receiving+segment

Sending+items

shmem_putmem()

headnew

tailnew

OpenSHMEM 2016+L 11

Server+and+Client
• Main functionality of the existing Memcached server and client

are maintained.
– Server: two-step hashing, memory slabs, etc.
– Client (libMemcached): random k/v generation, benchmarks, etc.

• Minimal changes but careful tuning.
– Only add the new communication interfaces.
– Server use multiple working threads.
– Important parameters: number of slots, number of workers, etc.

OpenSHMEM 2016+L 12

Outline

• Design of SHMemCache.
– Overview.

• Goals and principles.
• Overall structure.

– Communication interfaces.
• Memory communication.
• Symmetric Ring Buffer.

– Server & client.

• Experiments
– Latency and time dissection.
– Throughput.

• Conclusion

OpenSHMEM 2016+L 13

Experiment+Setup
• 21 dual-socket server nodes, each featuring 10 Intel Xeon(R)

cores and 64 GB memory.

• All nodes are connected through an FDR InfiniBand
interconnect.

• Software versions: OpenSHMEM in OpenMPI v1.10.3,
Memcached v1.4.25 and libMemcached 1.0.18.

OpenSHMEM 2016+L 14

 1

 10

 100

 1000

 4 16 64 256 1KB 4KB 16KB

Ti
m

e
(µ

s)

MesgSize (Bytes)

MCD
SMC

 1

 10

 100

 1000

 4 16 64 256 1KB 4KB 16KB

Ti
m

e
(µ

s)

MesgSize (Bytes)

MCD
SMC

Latency

• Memcached (MCD) vs. SHMemCache (SMC).
– As low as 6 µs for SET, and 5 µs for GET.
– In average, SMC outperforms MCD by 7.9 times for SET and 7.2 times

for GET.

(1)+SET (2)+GET

7.9x+avg.+impr. 7.2x+avg.+impr.

OpenSHMEM 2016+L 15

Processing+Dissection
• Dummy component responses messages immediately without

passing them forward.

Client ClientJside
delegator

ServerJside
delegator

Server

Dummy+clientLdelegator

Dummy+serverLdelegator

Dummy+server

No+dummy+
components

server
processing

OpenSHMEM 2016+L 16

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 16 64 256 1KB 4KB 16KB
Ti

m
e

(µ
s)

MesgSize (Bytes)

dum-cli-del
dum-serv-del
dum-serv
no-dum

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 16 64 256 1KB 4KB 16KB

Ti
m

e
(µ

s)

MesgSize (Bytes)

dum-cli-del
dum-serv-del
dum-serv
no-dum

Processing+Dissection+(cont.)
• Dummy test echoes with our expectation.

– In general, network communication is the most time-consuming part.
– SET takes more time for server processing.
– SHMemCache adds little extra overheads.

(1)+SET (2)+GET

Server+
processing

Memory+comm.

Network+comm.

Initiate+request+&
Memory+comm.

OpenSHMEM 2016+L 17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 16 64 256 1KB 4KB

Th
ro

ug
hp

ut

(M
ill

io
n

op
er

at
io

ns
 /

Se
co

nd
)

MesgSize (Bytes)

MCD
SMC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 16 64 256 1KB 4KB

Th
ro

ug
hp

ut

(M
ill

io
n

op
er

at
io

ns
 /

Se
co

nd
)

MesgSize (Bytes)

MCD
SMC

Throughput
• SET and GET throughput (operations per second) with one

client and one server.
– More than 650,000 operations/second for SET and 900,000 for GET.
– In average, SHMemCache outperforms Memcached by a factor of 3.6 for
SET and 2.6 for GET.

GET+throughput

2.6x+avg.+impr.
3.6x+avg.+impr.

OpenSHMEM 2016+L 18

Conclusion+and+Future+Work
• OpenSHMEM’s one-sided communication and global memory

pool can be used to improve big data analytics frameworks such
as Memcached.

• SHMemCache’s communication interfaces are simple and easily
portable.

• SHMemCache can achieve much better performance for both
latency and throughput than Memcached.

• In future, we will further evaluate the scalability and elasticity
of SHMemCache. We will also try to directly program
Memcached operations with OpenSHMEM.

OpenSHMEM 2016+L 19

Acknowledgment
• Guidance and comments from Dr. Neena Imam

and Dr. Manjunath Gorentla Venkata.

OpenSHMEM 2016+L 20

Thank-You-and-Questions?

