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Big+Data+and+Memcached
• Enormous datasets need efficient data analytics tools. Big 

opportunities but also challenges come along.
• Memcached is an important in-memory key/value store that can 

cache hot key/value pairs for fast access.

Memcached
client

Memcached
servers

Database
Storage

access%database%(slow)
SET/GET/… (fast)
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Challenges+of+Big+Data+Analytics
• Performance is often limited by network or storage.

– E.g., the existing open-source Memcached implementation uses TCP/IP 
socket communication.

• More generally: not embracing or being embraced by the fast-
growing HPC systems.
– Big data applications are not widely used on HPC systems and 

leveraging high performance interconnects.
– HPC systems have not met the needs of big data analytics middleware 

very well.

• Proposed solution - SHMemCache: use OpenSHMEM to 
enable Memcached.
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Why+OpenSHMEM ++Memcached?
• Memcached has SET and GET APIs that match with 

OpenSHMEM’s one-sided communication very well.

• The integration can provide great portability for Memcached
(and possibly other data analytics frameworks) to be deployed 
on various leadership facilities with the OpenSHMEM run-time, 
without knowing low-level details.

• The programming compatibility of OpenSHMEM and 
Memcached’s similar memory-style addressing models can be 
explored.
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Outline

• Design of SHMemCache.
– Overall structure.
– Communication via shared & symmetric memory.
– Server & client.

• Experiments
– Latency and processing dissection.
– Throughput.

• Conclusion
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• Client and server send/receive messages by accessing its own 
shared memory region.

• Per-node delegators forward the messages by sending to 
symmetric memory of destination PE.
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Operation+Stages+and+Pipelining
• Pipeline multiple stages of a Memcached operation.

Client Delegator+1 Delegator+2 Server

Operation+1

Operation+2

……

server
processing

send+via+
shared+memory

send+via+
symmetric+memory

send+via+
shared+memory

Operation+N
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Memory+Communication+
• Every memory region includes a number of segments. Every 

segment is divided into a number of chunks. Each chunk can 
receive an operation item.

• Memory consumption depends on demand.
– E.g., a 4-node system has 3 symmetric memory segments per node and 2 

shared memory segments per server/client.

Shared%memory%segments

delegator server+/+client PE+0 PE+1 PE+3PE+2

chunk

write read write

Symmetric%memory%segments

write
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Send/Recv via+Shared+Memory
• Mutex-free for better performance.

– Sender writes to a chunk if it is available for writing.
– Receiver polls from a chunk if there is data (polls use_flag) and data 

is complete (polls comp_flag).

• Mutex remains as an option.
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Send/Recv via+Symmetric+Memory
• Sender maintains a head and a tail pointing to the receiving 

segment. Head never moves beyond tail.
– Head: the next available chunk to send data.
– Tail: the last available chunk before head.

• Receiver polls data and recycles the chunk so the chunk 
becomes available to the sender again.
– Also poll use_flag and comp_flag.

tailold

headold

Receiving+segment

Sending+items

shmem_putmem()

headnew

tailnew
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Server+and+Client
• Main functionality of the existing Memcached server and client 

are maintained.
– Server: two-step hashing, memory slabs, etc. 
– Client (libMemcached): random k/v generation, benchmarks, etc.

• Minimal changes but careful tuning.
– Only add the new communication interfaces.
– Server use multiple working threads.
– Important parameters: number of slots, number of workers, etc.



OpenSHMEM 2016+L 12

Outline

• Design of SHMemCache.
– Overview.

• Goals and principles.
• Overall structure.

– Communication interfaces.
• Memory communication.
• Symmetric Ring Buffer.

– Server & client.

• Experiments
– Latency and time dissection.
– Throughput.

• Conclusion
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Experiment+Setup
• 21 dual-socket server nodes, each featuring 10 Intel Xeon(R) 

cores and 64 GB memory.

• All nodes are connected through an FDR InfiniBand
interconnect.

• Software versions: OpenSHMEM in OpenMPI v1.10.3, 
Memcached v1.4.25 and libMemcached 1.0.18.
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Latency

• Memcached (MCD) vs. SHMemCache (SMC).
– As low as 6 µs for SET, and 5 µs for GET.
– In average, SMC outperforms MCD by 7.9 times for SET and 7.2 times 

for GET.

(1)+SET (2)+GET

7.9x+avg.+impr. 7.2x+avg.+impr.
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Processing+Dissection
• Dummy component responses messages immediately without 

passing them forward. 

Client ClientJside
delegator

ServerJside
delegator

Server

Dummy+clientLdelegator

Dummy+serverLdelegator

Dummy+server

No+dummy+
components

server
processing
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Processing+Dissection+(cont.)
• Dummy test echoes with our expectation.

– In general, network communication is the most time-consuming part.
– SET takes more time for server processing.
– SHMemCache adds little extra overheads.

(1)+SET (2)+GET

Server+
processing

Memory+comm.

Network+comm.

Initiate+request+&
Memory+comm.
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Throughput
• SET and GET throughput (operations per second) with one 

client and one server.
– More than 650,000 operations/second for SET and 900,000 for GET.
– In average, SHMemCache outperforms Memcached by a factor of 3.6 for 
SET and 2.6 for GET.

GET+throughput

2.6x+avg.+impr.
3.6x+avg.+impr.
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Conclusion+and+Future+Work
• OpenSHMEM’s one-sided communication and global memory 

pool can be used to improve big data analytics frameworks such 
as Memcached.

• SHMemCache’s communication interfaces are simple and easily 
portable.

• SHMemCache can achieve much better performance for both 
latency and throughput than Memcached.

• In future, we will further evaluate the scalability and elasticity 
of SHMemCache. We will also try to directly program 
Memcached operations with OpenSHMEM.
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Thank-You-and-Questions?


