SHMemCache: Enabling Memcached on the
OpenSHMEM Global Address Model

Huansong Fu*, Kunal SinghaRoy*,
Manjunath Gorentla VenkataT,
Yue Zhu*, Weikuan Yu*

/e

L]
*Florida State University

1Oak Ridge National Laboratory

OAK
RIDGE

National Laboratory

Big Data and Memcached

* Enormous datasets need efficient data analytics tools. Big
opportunities but also challenges come along.

 Memcached i1s an important in-memory key/value store that can
cache hot key/value pairs for fast access.

Memcached

client _
@
access database (slow)
SET/GET/... VR IC j
Memcached Dsatt:;?:
servers § §
W u
2y &l

OAK
OpenSHMEM 2016 - 2 ULl

Na

Challenges of Big Data Analytics

« Performance is often limited by network or storage.
— E.g., the existing open-source Memcached implementation uses TCP/IP
socket communication.
* More generally: not embracing or being embraced by the fast-
growing HPC systems.

— Big data applications are not widely used on HPC systems and
leveraging high performance interconnects.

— HPC systems have not met the needs of big data analytics middleware
very well.

* Proposed solution - SHMemCache: use OpenSHMEM to
enable Memcached.

OAK
OpenSHMEM 2016 - 3 RIDGE

Why OpenSHMEM + Memcached?

« Memcached has SET and GET APIs that match with
OpenSHMEM’s one-sided communication very well.

« The integration can provide great portability for Memcached
(and possibly other data analytics frameworks) to be deployed
on various leadership facilities with the OpenSHMEM run-time,
without knowing low-level details.

* The programming compatibility of OpenSHMEM and
Memcached’s similar memory-style addressing models can be
explored.

OAK
OpenSHMEM 2016 - 4 RIDGE

Outline

* Design of SHMemCache.

— Opverall structure.
— Communication via shared & symmetric memory.
— Server & client.
« Experiments
— Latency and processing dissection.

— Throughput.
e Conclusion

OAK
OpenSHMEM 2016 - 5 RIDGE

Overall Structure

* Client and server send/receive messages by accessing 1ts own
shared memory region.

* Per-node delegators forward the messages by sending to
symmetric memory of destination PE.

Node #1 Node #2

-
erver i Serve

S
_Jrg) Ca

Shared | =———— =—— N N D
OpenSHMEM

Memory | —— —— PE #1 '
| Environment

PE#3 |
Cllen J

Node #3 Node #4 OAK
OpenSHMEM 2016 - 6 RIDGE

Symmetric
Memaory

Operation Stages and Pipelining

« Pipeline multiple stages of a Memcached operation.

send via
Operation 1 shared memory
send via
Operation 2 symmetric memory
\. \ send via
...... \ shared memory
Operation N T — }
I
/ Af—//
Client Delegator 1 Delegator 2 Server

OpenSHMEM 2016 - 7

server
processing

OAK
'RIDGE

"

Memory Communication

« Every memory region includes a number of segments. Every
segment 1s divided into a number of chunks. Each chunk can
receive an operation item.

 Memory consumption depends on demand.

— E.g., a4-node system has 3 symmetric memory segments per node and 2
shared memory segments per server/client.

delegator server/client 1 PEO PE 1 PE 2 PE 3
B 1 N\ N\)
£ ——) (=)
: -
write — read : write write
|
|
|
|
/
\chunk) : L J L)
|
Shared memory segments : Symmelric memory segments
! OAK

OpenSHMEM 2016 - 8 RIDGE

Nat

Send/Recv via Shared Memory

* Mutex-free for better performance.

— Sender writes to a chunk 1f it is available for writing.

— Receiver polls from a chunk 1f there 1s data (pollsuse flag) and data
is complete (polls comp flag).

* Mutex remains as an option.

function MEM_SEND(des , src)
tmp_flag < src.use_flag

1: 1: function MEM_RECV(s)
2 2 if s.use_flag # UNUSED then
3 src.use_flag <— OCCUPIED 3 calculate position of comp_flag
4: memcpy(des, src, copy-size) 4: while s.completion_flag # SET do
5 des.use flag < tmp flag 5: continue
6 src.use_flag < tmp_flag 6 end while
7: end function 7 end if
8

memcpy(buf, s, copy_size)
9: s.use_flag <— UNUSED

10: end function
UAK

OpenSHMEM 2016 - 9 RIDGE

Send/Recv via Symmetric Memory

* Sender maintains a 4ead and a tail pointing to the receiving
segment. Head never moves beyond tail.
— Head: the next available chunk to send data.
— Tail: the last available chunk before head.

* Receiverpolls data and recycles the chunk so the chunk
becomes available to the sender again.
— Alsopolluse flagand comp flag.

oY /A
head,, -~~~ P o \\\ LI/ AN
AN
N
tallnew \\\\ //\\\\\// \/////\\
g = ‘==
shmem putmem () \\ | L_\ ,
=) 7
/
heady)q ------------- » I~ - \‘y
Sending it \'\ / \“l \\ f
ending items L LT £
tallo[d o \\/_ | <

OAK

OpenSHMEM 2016 - 10 Receiving segment ¥RIDGE

Server and Client

e Main functionality of the existing Memcached server and client
are maintained.
— Server: two-step hashing, memory slabs, etc.

— Client (libMemcached): random k/v generation, benchmarks, etc.

* Minimal changes but careful tuning.
— Only add the new communication interfaces.
— Server use multiple working threads.

— Important parameters: number of slots, number of workers, etc.

OAK
OpenSHMEM 2016 - 11 RIDGE

Outline

* Design of SHMemCache.

— Overview.
* Goals and principles.

e (Qverall structure.

— Communication interfaces.
 Memory communication.

e Symmetric Ring Buffer.
— Server & client.

* Experiments

— Latency and time dissection.
— Throughput.

e (Conclusion

OAK
OpenSHMEM 2016 - 12 ‘RIDGE

Experiment Setup

« 21 dual-socket server nodes, each featuring 10 Intel Xeon(R)
cores and 64 GB memory.

* All nodes are connected through an FDR InfiniBand
interconnect.

* Software versions: OpenSHMEM in OpenMPI v1.10.3,
Memcached v1.4.25 and libMemcached 1.0.18.

OAK
OpenSHMEM 2016 - 13 RIDGE

Latency

« Memcached (MCD) vs. SHMemCache (SMC).

— As low as 6 us for SET, and 5 us for GET.
— In average, SMC outperforms MCD by 7.9 times for SET and 7.2 times

for GET.
1000 ‘ ‘
—e— MCD 1900 e Mco
—&— SMC —f&— SMC

mOM
l 7.2x avg. impr. l
10 ¢]

1

—_
(]
=,
S’
Q
E
[

Time (us)

1oow
l 7.9x avg. impr.
10 ¢ 1

4 16 64 256 1KB 4KB 16KB 4 16 64 256 1KB 4KB 16KB
MesgSize (Bytes) MesgSize (Bytes)
(1) SET (2) GET e

OpenSHMEM 2016 - 14 RIDGE

Processing Dissection

 Dummy component responses messages immediately without
passing them forward.

4—>> ' Dummy client-delegator
""""""""""""""""""" >
g PI— > 1! » Dummy server-delegator
T Lg I TN
____________________ | L. —-—-—» Dummy server
I
(T T T T <- -
I 1 T b e No dummy
________ NN components
-------------- N TN
server
. processing
_________________ <---""""
< R
Client-side Server-side Server
delegator delegator OAK

OpenSHMEM 2016 - 15 RIDGE

Processing Dissection (cont.)

 Dummy test echoes with our expectation.
— In general, network communication is the most time-consuming part.

— SET takes more time for server processing.
— SHMemCache adds little extra overheads.

40 ‘ — 40 ‘ ‘ ‘
- X - dum-cli-del - X - dum-cli-del
35 | dum-serv-del 1 35 | dum-serv-del
30 || - B - dum-serv 30 || -~ B - dum-serv
g | —+— no-dum | _E_Server i —+— no-dum
% 'processing !
o 20 i TIIIzzsIIzso g
E i5 | /7J}:Memory comm.
o F--—--------- |
10 | o 1 i Network comm.
5 + ; J.—IE _5_ é -é— 0- = X E_—_—_—_—_—_—::::::_—I_.|
B -3 -0 - X - }.Initiate request &
0% =X= X% -X= ¥ -X= X -X% X=X = iMemory comm. e x =¥ X =% X
e o e o e e e e e e e e =
4 16 64 25 1KB 4KB 16KB 4 16 64 256 1KB 4KB 16KB
MesgSize (Bytes) MesgSize (Bytes)
(1) SET (2) GET

OAK
OpenSHMEM 2016 - 16 RIDGE

Throughput

 SET and GET throughput (operations per second) with one

client and one server.
— More than 650,000 operations/second for SET and 900,000 for GET.

— In average, SHMemCache outperforms Memcached by a factor of 3.6 for

—
i)
c
o
o
Q
(V)]
15\
ag
< 0
o=
S ©
O .
=0
< o
o
c
o
=
e’

1.2

0.8 |

0.6

04

SET and 2.6 for GET.

—e— MCD
SMC

‘ 3.6x avg. impr. ‘

1.2

Throughput
(Million operations / Second)

1+t
08 -

0.6

0.4 | f
Ny M

—e— MCD
SMC

2.6x avg. impr. T

W) | | | |
4 16 64 256 1KB 4KB 4 16 64 256 1KB 4KB
MesgSize (Bytes) MesgSize (Bytes)
GET throughput OAK

OpenSHMEM 2016 - 17 RIDGE

Conclusion and Future Work

* OpenSHMEM’s one-sided communication and global memory
pool can be used to improve big data analytics frameworks such
as Memcached.

 SHMemCache’s communication interfaces are simple and easily
portable.

 SHMemCache can achieve much better performance for both
latency and throughput than Memcached.

 In future, we will further evaluate the scalability and elasticity
of SHMemCache. We will also try to directly program
Memcached operations with OpenSHMEM.

OAK
OpenSHMEM 2016 - 18 _Rll)(;l,

Acknowledgment

* Guidance and comments from Dr. Neena Imam
and Dr. Manjunath Gorentla Venkata.

OAK
OpenSHMEM 2016 - 19 Ru)c,l

Thank You and Questions?

OAK
OpenSHMEM 2016 - 20 “RIDGE

