
An Evaluation of Thread-Safe and
Contexts-Domains Features in Cray SHMEM

Naveen Namashivayam, David Knaak, Bob Cernohous, Nick Radcliffe,
and

Mark Pagel

Cray Inc.

OpenSHMEM 2016: Third workshop on OpenSHMEM and
Related Technologies

3-August-2016

Contents

●  Introduction – The Problem
●  What is Cray SHMEM
●  Multithreading in OpenSHMEM
●  Thread-safe and Contexts-Domains Design in Cray SHMEM
●  Experiments for Design Decisions
●  Initial Application Level Evaluation
●  Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
2

Introduction - What is the Problem?

●  Typical modern compute nodes have
●  Multiple cores for computation
●  Memory sharable by cores on node
●  Multiple network injection resources (NIR)

for communication with other nodes
●  We want an OpenSHMEM program to utilize

as many HW resources as possible
●  The OpenSHMEM API doesn’t support this

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
3

multi-core
node

network

network

NIRs

NIRs

Introduction - What is the Problem?

In what way does the OpenSHMEM API not
support this?
●  Computation performance on-node can be

improved with multithreading
●  This decreases the number of PEs as the

number of threads increases:
●  nPEs * nThreads = nCores

●  But only a PE can make SHMEM calls; so
fewer NIRs are utilized

●  Interaction between threads and OpenSHMEM
routines is NOT yet standardized

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
4

multi-core
node

network

network

NIRs

NIRs

Introduction - What is the Problem?

Architecture Cores per
Node

Aries NIRs
per Node

Ivy Bridge 10+ ~120

Haswell 28+ ~120

Broadwell 36+ ~120

Knights
Landing

250+ ~120

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
5

Introduction – Possible Solutions

What OpenSHMEM extensions can make it possible to
maximum utilization of compute and network resources?
●  Thread-Safe routines?
●  Contexts-Domains routines?
We will evaluate two different proposals:

●  “Thread-safe” proposal from Cray – Ticket #186
●  “Contexts-Domains” proposal from Intel – Ticket #177

We will evaluate performance using implementations in Cray
SHMEM

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
6

Contents

●  Introduction – The Problem
●  What is Cray SHMEM
●  Multithreading in OpenSHMEM
●  Thread-safe and Contexts-Domains Design in Cray SHMEM
●  Experiments for Design Decisions
●  Initial Application Level Evaluation
●  Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
7

Cray SHMEM - Background
●  Closed source vendor-specific OpenSHMEM implementation
●  Part of Message Passing Toolkit (MPT) software stack from Cray Inc.
●  OpenSHMEM specification version-1.3 compliant
●  Uses Cray DMAPP library as a low-level communication layer
●  Apart from standard OpenSHMEM features, supports:

●  Thread-safety
●  Multiple-symmetric heaps for heterogeneous memory kinds
●  Flexible PE subsets (teams) creation and management
●  Alltoallv
●  Point-to-point Put with signal
●  Local shared-memory pointers

●  Extra features are supported as SHMEMX-prefixed extensions

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
8

Contents

●  Introduction – The Problem
●  What is Cray SHMEM
●  Multithreading in OpenSHMEM
●  Thread-safe and Contexts-Domains Design in Cray SHMEM
●  Experiments for Design Decisions
●  Initial Application Level Evaluation
●  Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
9

Multithreading in OpenSHMEM
●  Interaction between threads and OpenSHMEM routines are not

standardized
●  Multithreading API Objectives:

●  Able to initiate OpenSHMEM communications from multiple threads
●  Provide the maximum possible utilization of:

●  Computational units (N) - cores and hyper-threads
●  Network Injection Resources (NIR)

●  Isolate users and OpenSHMEM routines from network and hardware

resource details as much as possible
●  Two different approaches: “Thread-safe” and “Contexts-Domains”

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
10

Possible Utilizations Example Utilization Use Case
N < NIR Using Intel Broadwell nodes on Cray Aries Interconnect

N > NIR Using Intel KNL nodes on Cray Aries Interconnect

Thread-safe Proposal (Ticket #186)
●  Proposed by Cray to be a part of OpenSHMEM standards
●  Extensions existing as SHMEMX-routines in Cray SHMEM
●  Design Objective:

●  Provide a fairly simple way to increase concurrency in multithreaded
OpenSHMEM applications by allowing threads to make SHMEM calls and
directly mapping threads to network injection resources

●  General Usage Flow:

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
11

Create Threads
using external

threading library
like OpenMP or

pthreads

Register
Threads with
OpenSHMEM

library

Make OpenSHMEM
communication calls

within threaded region
from registered threads

Unregister and
free registered

threads

Enter
threaded

region

Basic Thread-safe Routines

●  int shmemx_init_thread (int required_threading_level);
●  required_threading_level – SHMEM_THREAD_SINGLE, SHMEM_THREAD_MULTIPLE
●  Initiate and let the OpenSHMEM implementation know about multithreaded usage

●  void shmemx_thread_register (void);
●  Register the thread with OpenSHMEM library and get network resource

●  No explicit thread-based RMA or AMO routines
●  Normal RMA and AMO routines will implicitly be converted into thread-based routines

when called by registered threads

●  void shmemx_thread_quiet / fence (void);
●  Thread-based memory ordering operations

●  void shmemx_thread_unregister (void);
●  Free the registered thread and release network resource

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
12

Contexts-Domains Proposal (Ticket #177)
●  Proposed by Dinan, et al. to be part of OpenSHMEM standards
●  Extensions prototyped as SHMEMX-routines in Cray SHMEM
●  Design Objectives:

●  Increase concurrency with independent streams of communication
●  Separate message injection resources from remote completion tracking

by introducing two new features: Contexts and Domains
●  Relation between Threads and Contexts-Domains

●  Two Independent entities, no direct mapping
●  Contexts and Domains are OpenSHMEM objects
●  Contexts and Domains are mapped to network resources
●  Any thread can make use of these objects

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
13

Basic Contexts-Domains Routines
●  typedef int shmem_ctx_t ; typedef int shmem_domain_t ;

●  Opaque handles for Context and Domain objects
●  void shmemx_domain_create(int thread_level, int num_domain, shmem_domain_t domain[]) ;
●  void shmemx_domain_destroy(int num_domain, shmem_domain_t domain[]) ;

●  Routines for creating and maintaining Domain objects
●  int shmemx_ctx_create (shmem_domain_t domain, shmem_ctx_t ∗ctx);
●  void shmemx_ctx_destroy (shmem_ctx_t ctx);

●  Routines for creating and maintaining Contexts objects
●  void shmemx_ctx_fence / quiet (shmem_ctx_t ctx);

●  Context-based memory ordering routines
●  void shmemx_ctx_TYPE_p(TYPE ∗addr , TYPE value , int pe, shmem_ctx_t ctx);
●  void shmemx_ctx_getmem(void ∗dest , const void ∗source , size t nelems , int pe ,
 shmem_ctx_t ctx);
●  void shmemx_TYPE_inc(TYPE ∗dest , int pe , shmem_ctx_t ctx);

●  Sample Context-based RMA and AMO routines

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
14

Contents

●  Introduction – The Problem
●  What is Cray SHMEM
●  Multithreading in OpenSHMEM
●  Thread-Safe and Contexts-Domains Designs in Cray SHMEM
●  Experiments for Design Decisions
●  Initial Application Level Evaluation
●  Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
15

Thread-Safe and Contexts-Domains Designs

3 Possible Solutions Evaluated:
●  Thread-Safe Design
● Domain-based Contexts-Domains Design
● Context-based Contexts-Domains Design

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
16

Cray DMAPP Overview
●  Underlying low-level communication layer for Cray SHMEM
●  Support for both Cray Aries and Cray Gemini interconnect
●  Key Aries hardware features

●  FMA – Fast Memory Access
●  BTE – Block Transfer Engine
●  CQ – Completion Queue

●  Key DMAPP software object for communication

●  CDM – Communication Domain

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
17

Network Injection Resources:
FMA – small data sizes
BTE – large data sizes
Event notification
mechanism FMA = ~120 BTE = 2 CQ = ~2K

Events = PUT / GET / AMO

DMAPP Design: Mapping to HW Resources
●  FMAs and CQs are key HW mechanisms for

communication streams
●  CDMs are SW objects to attach to FMAs and CQs

●  CDM has 1-to-1 mapping with FMA
●  CDM has 1-to-1 mapping with CQ

●  Implicit: FMA has 1-to-1 mapping with CQ

●  In single threaded OpenSHMEM Application
●  1 unique CDM per PE & PEs cannot share CDM
●  Use CQ for tracking remote completion or memory

ordering – shmem_quiet() operation
●  PEs create events on a CDM using cdm_handle

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
18

Create CDM

Map CDM to
FMA

Map CDM to CQ

Map CDM to
OpenSHMEM PE

PE creates
Events on a CDM

Track Event
completion with CQ

Max number of CDMs per node = ~120

Thread-Safe Design in Cray SHMEM

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
19

●  Each registered thread (T) mapped to a CDM
●  T < CDM - Unique CDM per thread
●  T > CDM - CDMs shared by some threads

●  The CDM associated with the thread is identified
using a handle stored in Thread Local Storage
(TLS)

●  How is the shmem_thread_quiet() performed?
●  T < CDM – Using unique CQ associated with

CDM
●  T > CDM – quiet operation is done on all

threads that share the CDM, using the
shared CQ associated with the CDM

Fig: Thread-safe Design in Cray SHMEM

Domain-based Contexts-Domains Design in
Cray SHMEM

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
20

●  Each Domain object mapped to a CDM
●  Each Domain can have multiple Contexts
●  All Contexts in a Domain share the CQ
●  Cannot use shared CQ to track events for each

individual Context
●  Each DMAPP event creates a unique sync_id
●  Track sync_id’s as separate queues in SHMEM

library level
●  Track event completion using this sync_id queue
●  shmem_ctx_quiet()

Fig: Domain-based Contexts-Domains
Design in Cray SHMEM

(Only DMAPP level mapping are shown)

Context-based Contexts-Domains Design in
Cray SHMEM

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
21

●  Each Domain can have multiple Contexts
●  Each Context mapped to a CDM based on the

thread level of the Domain it is in
●  SHMEM_THREAD_SINGLE – Unique CDM
●  SHMEM_THREAD_MULTIPLE – Shared CDM

●  How is shmem_ctx_quiet() performed?
●  Using CQ of the CDM for that Context

●  What is the functionality of Domains in this design?
●  Track Context properties ????
●  Group Contexts efficiently for

SHMEM_THREAD_MULTIPLE

Fig: Context-based Contexts-Domains
Design in Cray SHMEM

Contents

●  Introduction – The Problem
●  What is Cray SHMEM
●  Multithreading in OpenSHMEM
●  Thread-safe and Contexts-Domains Design in Cray SHMEM
●  Experiments for Design Decisions
●  Initial Application Level Evaluation
●  Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
22

Experimental Setup
●  System Details

●  Cray XC system
●  Cray Aries interconnect architecture
●  32 core Intel Broadwell processors
●  2 nodes, 1 PE per node, 32 threads per PE

●  Cray SHMEM version 7.4.0 plus modifications
●  Used existing SHMEMX-prefixed Thread-safe extensions
●  Created the prototype version of Contexts-Domains extensions

●  Hybrid OpenSHMEM Microbenchmark
●  Used OSU OpenSHMEM Microbenchmark tests and converted into

multithreaded hybrid design
●  Used OpenMP along with OpenSHMEM for hybrid design

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
23

Experiment 1: Impact of Thread Local Storage - 1

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
24

●  Experiment specific to Thread-safe design
●  For each thread to track its events, must store in TLS
●  Performance Impact of using TLS for storing CDM handle

●  USE_TLS version – use handle stored in TLS for all events
●  NO_TLS version – Explicitly pass handle as part of the event calls in a

modified API to avoid TLS
●  Modified OSU Put Microbenchmark
●  Large data size no change in performance
●  Small data size less than 512 bytes – shows NO_TLS to perform

8% better than USE_TLS version

Experiment 1: Impact of Thread Local Storage - 2

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
25

Fig: GCC Compiler 6.1 version

Experiment 2: Explicit or Implicit Non-Blocking
Operations - 1

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
26

●  Experiment specific to Domain-based Contexts-Domains
design
●  Using sync_id for tracking event completion
●  sync_id’s are not generated for all events
●  Only Explicit NB events create sync_id
●  All Domain-based events are Explicit NB

●  Performance Analysis
●  Modified OSU Put Microbenchmark
●  Create 32 Context-objects and 32 Domains
●  1 Context-object per Domain

●  All Context-objects have unique CQs

Experiment 2: Explicit or Implicit NB Operations - 1

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
27

●  Data size > 1MB – no performance change
●  Data size < 1MB – Implicit events have latency 45% of Explicit events
●  DMAPP has event chaining optimization for Implicit events

Experiment 3: Hierarchy of Threading Support - 1

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
28

●  Experiment specific to Thread-safe design
●  Only two different types of thread-levels available now

●  SHMEM_THREAD_SINGLE – No Lock
●  SHMEM_THREAD_MULTIPLE – Implicit Lock

●  Problem
●  Even if Number of Threads < CDMs

●  SHMEM_THREAD_MULTIPLE has implicit locks
●  Cannot determine the number of registered threads to

avoid implicit locking
●  Major disadvantage in mapping threads directly to

network resources

Experiment 3: Hierarchy of Threading Support - 2

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
29

●  2 PEs – 1 PE per Node
●  32 registered threads per PE
●  No-lock has latency that is 25% of lock

Efficient Network Resources Utilization - 1

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
30

●  Distinct trend in growing network resource demand w.r.t multi-core
architectures

●  Need for efficient resource mapping
●  Problems in the Thread-safe design

●  T < NIR – Excess streams are wasted
●  T > NIR – Insufficient hints for optimal mapping

●  Every thread gets equal performance priority
●  Even if over allocation is on a particular application module, performance

is normalized in all the modules
●  SHMEM_MAX_NUM_THREADS is an insufficient hint because xxx

Efficient Network Resources Utilization - 2

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
31

●  Contexts-Domains can better maximize use of CDMs
●  Threads and Context-Domain objects are separate entities
●  Context-Domain objects are mapped to CDMs
●  Any thread can pick and use the objects
●  T < NIR

●  Use multiple Context-objects per Thread for better CDM utilization
●  T > NIR

●  Create priority on particular Context-objects
●  Useful for more unbalanced loads

Efficient Network Resources Utilization - 3

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
32

Contents

●  Introduction – The Problem
●  What is Cray SHMEM
●  Multithreading in OpenSHMEM
●  Thread-safe and Contexts-Domains Design in Cray SHMEM
●  Experiments for Design Decisions
●  Initial Application Level Evaluation
●  Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
33

Initial Application Level Evaluation - 1

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
34

●  Analyze impact of efficient network resource mapping on application
●  Multithreaded implementation of all-to-all collective communication

pattern
●  Three different version

●  Thread_safe_version (TS) version
●  32 registered thread per PE

●  Context_design_1 (CTX1)
●  1 Domain, 32 Contexts, 32 Threads
●  All Contexts with SINGLE as property
●  Each thread use 1 Context-object

●  Context_design_2 (CTX2)
●  2 Domains, 32 Contexts, 32 Threads
●  Domain-1: Property SINGLE with 16 Contexts
●  Domain-2: Property MULTIPLE with 16 Contexts

Initial Application Level Evaluation - 2

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
35

Alltoall done 3 different ways

Initial Application Level Evaluation - 3

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
36

CTX1 is 18% better than TS and 7% better than CTX2

Contents

●  Introduction – The Problem
●  What is Cray SHMEM
●  Multithreading in OpenSHMEM
●  Thread-safe and Contexts-Domains Design in Cray SHMEM
●  Experiments for Design Decisions
●  Initial Application Level Evaluation
●  Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
37

Future Work
●  Analysis in this work are from implementer’s perspective

●  Identified the areas to tap complete utilization of the network resources
and computational units

●  Evaluate these proposals more from a user’s perspective
●  Study on different usage scenarios w.r.t the suitability of using features

from a particular proposal
●  Performance analysis with a balanced and unbalanced application

●  Balanced Application - Equal workload on all threads
●  Unbalanced Application - Unequal workloads on threads

●  Unequal workload on threads helps to identify the usage of Context
objects with different properties

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
38

Conclusion
●  We need an OpenSHMEM API that makes possible maximum

utilization of HW compute and network injection resources
●  Thread-Safe proposal is a simple API that can maximize utilization of

cores but not necessarily NIRs
●  Contexts-Domains proposal is somewhat more complicated but has

better potential to maximize utilization of cores and NIRs
●  Both extensions can be used in a single program but not in the

same parallel region
●  To get maximum utilization for different HW resource

combinations requires some additional API
●  Both proposals deserve attention by OpenSHMEM Committee

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
39

Thank You

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.
40

