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Introduction - What is the Problem? 

●  Typical modern compute nodes have  
●  Multiple cores for computation 
●  Memory sharable by cores on node 
●  Multiple network injection resources (NIR) 

for communication with other nodes 
●  We want an OpenSHMEM program to utilize 

as many HW resources as possible 
●  The OpenSHMEM API doesn’t support this 
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Introduction - What is the Problem? 

In what way does the OpenSHMEM API not 
support this? 
●  Computation performance on-node can be 

improved with multithreading  
●  This decreases the number of PEs as the 

number of threads increases: 
●  nPEs * nThreads = nCores 

●  But only a PE can make SHMEM calls; so 
fewer NIRs are utilized 

●  Interaction between threads and OpenSHMEM 
routines is NOT yet standardized 

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.  
4 

multi-core 
node 

network 

network 

NIRs 

NIRs 



Introduction - What is the Problem? 

Architecture Cores per 
Node 

Aries  NIRs 
per Node 

Ivy Bridge 10+ ~120 

Haswell 28+ ~120 

Broadwell 36+ ~120 

Knights 
Landing 

250+ ~120 
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Introduction – Possible Solutions 

What OpenSHMEM extensions can make it possible to 
maximum utilization of compute and network resources? 
●  Thread-Safe routines? 
●  Contexts-Domains routines? 
We will evaluate two different proposals: 

●  “Thread-safe” proposal from Cray – Ticket #186 
●  “Contexts-Domains” proposal from Intel – Ticket #177 

We will evaluate performance using implementations in Cray 
SHMEM 
  

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.  
6 



Contents 

●  Introduction – The Problem 
●  What is Cray SHMEM 
●  Multithreading in OpenSHMEM  
●  Thread-safe and Contexts-Domains Design in Cray SHMEM 
●  Experiments for Design Decisions 
●  Initial Application Level Evaluation 
●  Future Work and Conclusion 

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.  
7 



Cray SHMEM - Background 
●  Closed source vendor-specific OpenSHMEM implementation 
●  Part of Message Passing Toolkit (MPT) software stack from Cray Inc. 
●  OpenSHMEM specification version-1.3 compliant 
●  Uses Cray DMAPP library as a low-level communication layer 
●  Apart from standard OpenSHMEM features, supports: 

●  Thread-safety 
●  Multiple-symmetric heaps for heterogeneous memory kinds 
●  Flexible PE subsets (teams) creation and management 
●  Alltoallv 
●  Point-to-point Put with signal 
●  Local shared-memory pointers 

●  Extra features are supported as SHMEMX-prefixed extensions 
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Multithreading in OpenSHMEM   
●  Interaction between threads and OpenSHMEM routines are not 

standardized 
●  Multithreading API Objectives: 

●  Able to initiate OpenSHMEM communications from multiple threads 
●  Provide the maximum possible utilization of: 

●  Computational units (N) - cores and hyper-threads  
●  Network Injection Resources (NIR) 

 
●  Isolate users and OpenSHMEM routines from network and hardware 

resource details as much as possible 
●  Two different approaches: “Thread-safe” and “Contexts-Domains” 
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Possible Utilizations Example Utilization Use Case 
N < NIR Using Intel Broadwell nodes on Cray Aries Interconnect 

N > NIR Using Intel KNL nodes on Cray Aries Interconnect 



Thread-safe Proposal (Ticket #186) 
●  Proposed by Cray to be a part of OpenSHMEM standards 
●  Extensions existing as SHMEMX-routines in Cray SHMEM 
●  Design Objective: 

●  Provide a fairly simple way to increase concurrency in multithreaded 
OpenSHMEM applications by allowing threads to make SHMEM calls and 
directly mapping threads to network injection resources 

●  General Usage Flow: 
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Basic Thread-safe Routines 

●  int shmemx_init_thread ( int required_threading_level ); 
●  required_threading_level – SHMEM_THREAD_SINGLE, SHMEM_THREAD_MULTIPLE 
●  Initiate and let the OpenSHMEM implementation know about multithreaded usage 

●  void shmemx_thread_register (void ); 
●  Register the thread with OpenSHMEM library and get network resource 

●  No explicit thread-based RMA or AMO routines 
●  Normal RMA and AMO routines will implicitly be converted into thread-based routines 

when called by registered threads 

●  void shmemx_thread_quiet / fence (void ); 
●  Thread-based memory ordering operations 

●  void shmemx_thread_unregister (void ); 
●  Free the registered thread and release network resource 
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Contexts-Domains Proposal (Ticket #177) 
●  Proposed by Dinan, et al. to be part of OpenSHMEM standards 
●  Extensions prototyped as SHMEMX-routines in Cray SHMEM 
●  Design Objectives: 

●  Increase concurrency with independent streams of communication  
●  Separate message injection resources from remote completion tracking 

by introducing two new features: Contexts and Domains 
●  Relation between Threads and Contexts-Domains 

●  Two Independent entities, no direct mapping 
●  Contexts and Domains are OpenSHMEM objects 
●  Contexts and Domains are mapped to network resources 
●  Any thread can make use of these objects 
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Basic Contexts-Domains Routines 
●  typedef int shmem_ctx_t ; typedef int shmem_domain_t ; 

●  Opaque handles for Context and Domain objects 
●  void shmemx_domain_create(int thread_level, int num_domain, shmem_domain_t domain[ ]) ; 
●  void shmemx_domain_destroy( int num_domain, shmem_domain_t domain[ ] ) ; 

●  Routines for creating and maintaining Domain objects 
●  int shmemx_ctx_create (shmem_domain_t domain, shmem_ctx_t ∗ctx ); 
●  void shmemx_ctx_destroy ( shmem_ctx_t ctx ); 

●  Routines for creating and maintaining Contexts objects 
●  void shmemx_ctx_fence / quiet ( shmem_ctx_t ctx ); 

●  Context-based memory ordering routines 
●  void shmemx_ctx_TYPE_p(TYPE ∗addr , TYPE value , int pe, shmem_ctx_t ctx); 
●  void shmemx_ctx_getmem(void ∗dest , const void ∗source , size t nelems , int pe ,          
                                      shmem_ctx_t ctx); 
●  void shmemx_TYPE_inc(TYPE ∗dest , int pe , shmem_ctx_t ctx ); 

●  Sample Context-based RMA and AMO routines 
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Thread-Safe and Contexts-Domains Designs  

3 Possible Solutions Evaluated: 
●  Thread-Safe Design 
● Domain-based Contexts-Domains Design 
● Context-based Contexts-Domains Design  
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Cray DMAPP Overview 
●  Underlying low-level communication layer for Cray SHMEM 
●  Support for both Cray Aries and Cray Gemini interconnect 
●  Key Aries hardware features 

●  FMA – Fast Memory Access  
●  BTE – Block Transfer Engine 
●  CQ – Completion Queue 

 
●  Key DMAPP software object for communication 

●  CDM – Communication Domain 
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Network Injection Resources: 
FMA – small data sizes 
BTE – large data sizes 
Event notification 
mechanism FMA = ~120 BTE = 2 CQ = ~2K 

Events   = PUT / GET / AMO 



DMAPP Design: Mapping to HW Resources  
●  FMAs and CQs are key HW mechanisms for 

communication streams 
●  CDMs are SW objects to attach to FMAs and CQs 

●  CDM has 1-to-1 mapping with FMA 
●  CDM has 1-to-1 mapping with CQ 

●  Implicit: FMA has 1-to-1 mapping with CQ 
 

●  In single threaded OpenSHMEM Application 
●  1 unique CDM per PE & PEs cannot share CDM 
●  Use CQ for tracking remote completion or memory 

ordering – shmem_quiet() operation 
●  PEs create events on a CDM using cdm_handle 
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Thread-Safe Design in Cray SHMEM 
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●  Each registered thread (T) mapped to a CDM 
●  T < CDM - Unique CDM per thread 
●  T > CDM - CDMs shared by some threads 

●  The CDM associated with the thread is identified 
using a handle stored in Thread Local Storage 
(TLS) 

●  How is the shmem_thread_quiet()  performed? 
●  T < CDM – Using unique CQ associated with 

CDM 
●  T > CDM – quiet operation is done on all 

threads that share the CDM, using the 
shared CQ associated with the CDM 

Fig: Thread-safe Design in Cray SHMEM 



Domain-based Contexts-Domains Design in  
Cray SHMEM 
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●  Each Domain object mapped to a CDM 
●  Each Domain can have multiple Contexts 
●  All Contexts in a Domain share the CQ 
●  Cannot use shared CQ to track events for each 

individual Context 
●  Each DMAPP event creates a unique sync_id 
●  Track sync_id’s as separate queues in SHMEM 

library level 
●  Track event completion using this sync_id queue 
●  shmem_ctx_quiet()  

Fig: Domain-based Contexts-Domains 
Design in Cray SHMEM 

(Only DMAPP level mapping are shown) 



Context-based Contexts-Domains Design in  
Cray SHMEM  
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●  Each Domain can have multiple Contexts 
●  Each Context mapped to a CDM based on the 

thread level of the Domain it is in 
●  SHMEM_THREAD_SINGLE – Unique CDM 
●  SHMEM_THREAD_MULTIPLE – Shared CDM 

●  How is shmem_ctx_quiet()  performed? 
●  Using CQ of the CDM for that Context 

●  What is the functionality of Domains in this design? 
●  Track Context properties ???? 
●  Group Contexts efficiently for 

SHMEM_THREAD_MULTIPLE 

Fig: Context-based Contexts-Domains 
Design in Cray SHMEM 
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Experimental Setup 
●  System Details 

●  Cray XC system 
●  Cray Aries interconnect architecture 
●  32 core Intel Broadwell processors 
●  2 nodes, 1 PE per node, 32 threads per PE 

●  Cray SHMEM version 7.4.0 plus modifications 
●  Used existing SHMEMX-prefixed Thread-safe extensions 
●  Created the prototype version of Contexts-Domains extensions 

●  Hybrid OpenSHMEM Microbenchmark 
●  Used OSU OpenSHMEM Microbenchmark tests and converted into 

multithreaded hybrid design 
●  Used OpenMP along with OpenSHMEM for hybrid design 
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Experiment 1: Impact of Thread Local Storage - 1 
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●  Experiment specific to Thread-safe design 
●  For each thread to track its events, must store in TLS 
●  Performance Impact of using TLS for storing CDM handle 

●  USE_TLS version – use handle stored in TLS for all events 
●  NO_TLS version – Explicitly pass handle as part of the event calls in a 

modified API to avoid TLS 
●  Modified OSU Put Microbenchmark  
●  Large data size no change in performance 
●  Small data size less than 512 bytes – shows NO_TLS to perform 

8% better than USE_TLS version 
 



Experiment 1: Impact of Thread Local Storage - 2 
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Fig: GCC Compiler 6.1 version 



Experiment 2: Explicit or Implicit Non-Blocking 
Operations - 1 
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●  Experiment specific to Domain-based Contexts-Domains 
design 
●  Using sync_id for tracking event completion 
●  sync_id’s are not generated for all events 
●  Only Explicit NB events create sync_id 
●  All Domain-based events are Explicit NB 

●  Performance Analysis 
●  Modified OSU Put Microbenchmark  
●  Create 32 Context-objects and 32 Domains 
●  1 Context-object per Domain 

●  All Context-objects have unique CQs 
 



Experiment 2: Explicit or Implicit NB Operations - 1 
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●  Data size > 1MB – no performance  change 
●  Data size < 1MB – Implicit events have latency 45% of Explicit events 
●  DMAPP has event chaining optimization for Implicit events 



Experiment 3: Hierarchy of Threading Support - 1 
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●  Experiment specific to Thread-safe design 
●  Only two different types of thread-levels available now 

●  SHMEM_THREAD_SINGLE – No Lock 
●  SHMEM_THREAD_MULTIPLE – Implicit Lock 

●  Problem 
●  Even if Number of Threads < CDMs 

●  SHMEM_THREAD_MULTIPLE has implicit locks 
●  Cannot determine the number of registered threads to 

avoid implicit locking 
●  Major disadvantage in mapping threads directly to 

network resources 



Experiment 3: Hierarchy of Threading Support - 2 
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●  2 PEs – 1 PE per Node 
●  32 registered threads per PE 
●  No-lock has latency that is 25% of lock 



Efficient Network Resources Utilization - 1 
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●  Distinct trend in growing network resource demand w.r.t multi-core 
architectures 

●  Need for efficient resource mapping 
●  Problems in the Thread-safe design 

●  T < NIR – Excess streams are wasted 
●  T > NIR – Insufficient hints for optimal mapping 

●  Every thread gets equal performance priority 
●  Even if over allocation is on a particular application module, performance 

is normalized in all the modules 
●  SHMEM_MAX_NUM_THREADS is an  insufficient hint because xxx 



Efficient Network Resources Utilization - 2 
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●  Contexts-Domains can better maximize use of CDMs 
●  Threads and Context-Domain objects are separate entities 
●  Context-Domain objects are mapped to CDMs 
●  Any thread can pick and use the objects 
●  T < NIR 

●  Use multiple Context-objects per Thread for better CDM utilization 
●  T > NIR 

●  Create priority on particular Context-objects 
●  Useful for more unbalanced loads  



Efficient Network Resources Utilization - 3 
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Initial Application Level Evaluation - 1 
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●  Analyze impact of efficient network resource mapping on application 
●  Multithreaded implementation of all-to-all collective communication 

pattern 
●  Three different version 

●  Thread_safe_version (TS) version  
●  32 registered thread per PE 

●  Context_design_1 (CTX1) 
●  1 Domain, 32 Contexts, 32 Threads 
●  All Contexts with SINGLE as property 
●  Each thread use 1 Context-object 

●  Context_design_2 (CTX2) 
●  2 Domains, 32 Contexts, 32 Threads 
●  Domain-1: Property SINGLE with 16 Contexts 
●  Domain-2: Property MULTIPLE with 16 Contexts 



Initial Application Level Evaluation - 2 
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Alltoall done 3 different ways 



Initial Application Level Evaluation - 3 
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CTX1 is 18% better than TS and 7% better than CTX2 
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Future Work 
●  Analysis in this work are from implementer’s perspective 

●  Identified the areas to tap complete utilization of the network resources 
and computational units 

●  Evaluate these proposals more from a user’s perspective 
●  Study on different usage scenarios w.r.t the suitability of using features 

from a particular proposal 
●  Performance analysis with a balanced and unbalanced application   

●  Balanced Application - Equal workload on all threads 
●  Unbalanced Application - Unequal workloads on threads 

●  Unequal workload on threads helps to identify the usage of Context 
objects with different properties 
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Conclusion 
●  We need an OpenSHMEM API that makes possible maximum 

utilization of HW compute and network injection resources 
●  Thread-Safe proposal is a simple API that can maximize utilization of 

cores but not necessarily NIRs 
●  Contexts-Domains proposal is somewhat more complicated but has 

better potential to maximize utilization of cores and NIRs 
●  Both extensions can be used in a single program but not in the 

same parallel region 
●  To get maximum utilization for different HW resource 

combinations requires some additional API 
●  Both proposals deserve attention by OpenSHMEM Committee 
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Thank You 
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