-
]
CRAY
v

)

S \
\

An Evaluation of Thread-Safe and
Contexts-Domains Features in Cray SHMEM

David Knaak

Cray Inc.

OpenSHMEM 2016: Third workshop on OpenSHMEM and
Related Technologies

3-August-2016

\
Contents CRANY

Introduction — The Problem \
What is Cray SHMEM

Multithreading in OpenSHMEM

Thread-safe and Contexts-Domains Design in Cray SHMEM
Experiments for Design Decisions

Initial Application Level Evaluation

Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

\
Introduction - What is the Problem? SRSy
=) \
e Typical modern compute nodes have network
e Multiple cores for computation 1 $ \
e Memory sharable by cores on node " NIRs
e Multiple network injection resources (NIR)
for communication with other nodes multi-core
e We want an OpenSHMEM program to utilize node
as many HW resources as possible _ NIRs
e The OpenSHMEM API doesn’t support this i $

network

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

\
Introduction - What is the Problem? SRSy
S \
In what way does the OpenSHMEM API not network \
support this?
e Computation performance on-node can be I $ ‘
improved with multithreading " NIRs
e This decreases the number of PEs as the]
number of threads increases: multi-core
e NPEs * nThreads = nCores node
e But only a PE can make SHMEM calls; so \. NIRs
fewer NIRs are utilized i $
e Interaction between threads and OpenSHMEM

routines is NOT yet standardized network

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Introduction - What is the Problem?

Architecture Cores per | Aries NIRs

Node per Node
vy Bridge 10+ ~120
Haswell 28+ ~120
Broadwell 36+ ~120
Knights 250+ ~120

Landing

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

\
Introduction — Possible Solutions CRAY

What OpenSHMEM extensions can make it possible to
maximum utilization of compute and network resources?

Thread-Safe routines?
Contexts-Domains routines?
We will evaluate two different proposals:
“Thread-safe” proposal from Cray — Ticket #186
“Contexts-Domains” proposal from Intel — Ticket #177

We will evaluate performance using implementations in Cray
SHMEM

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

\
Contents CRANY

Introduction — The Problem \
What is Cray SHMEM

Multithreading in OpenSHMEM

Thread-safe and Contexts-Domains Design in Cray SHMEM
Experiments for Design Decisions

Initial Application Level Evaluation

Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

\
Cray SHMEM - Background SR
Closed source vendor-specific OpenSHMEM implementation RS

Part of Message Passing Toolkit (MPT) software stack from Cray Inc.
OpenSHMEM specification version-1.3 compliant \
Uses Cray DMAPP library as a low-level communication layer
Apart from standard OpenSHMEM features, supports:
Thread-safety
Multiple-symmetric heaps for heterogeneous memory kinds
Flexible PE subsets (teams) creation and management
Alltoallv
Point-to-point Put with signal
e Local shared-memory pointers
e Extra features are supported as SHMEMX-prefixed extensions

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

\
Contents S S

Introduction — The Problem \
What is Cray SHMEM

Multithreading in OpenSHMEM

Thread-safe and Contexts-Domains Design in Cray SHMEM
Experiments for Design Decisions

Initial Application Level Evaluation

Future Work and Conclusion

COMPUTE | STORE | ANALYZE
OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

n
=
_/

Multithreading in OpenSHMEM CRAY

[\
S \

e Interaction between threads and OpenSHMEM routines are not !
standardized
e Multithreading API Objectives: \
e Able to initiate OpenSHMEM communications from multiple threads
e Provide the maximum possible utilization of:
e Computational units (N) - cores and hyper-threads
e Network Injection Resources (NIR)

Possible Utilizations Example Utilization Use Case

N < NIR Using Intel Broadwell nodes on Cray Aries Interconnect

\
A

N > NIR Using Intel KNL nodes on Cray Aries Interconnect
e [SOIEAIE USETS ana UPENnSHIVIEIVI TOUTTES TTOIMT NEeTWOrK dna narawdre
resource details as much as possible

e Two different approaches: “Thread-safe” and “Contexts-Domains”

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Thread-safe Proposal (Ticket #186) :l:Ayf '

)
S \

e Proposed by Cray to be a part of OpenSHMEM standards \
e Extensions existing as SHMEMX-routines in Cray SHMEM

e Design Objective:
e Provide a fairly simple way to increase concurrency in multithreaded
OpenSHMEM applications by allowing threads to make SHMEM calls and
directly mapping threads to network injection resources

e General Usage Flow:

Create Threads

using external Make OpenSHMEM

communication calls

Register

Threads with Unregister and

free registered
threads

Enter

fieeteling] Moy OpenSHMEM threaded within threaded region

like OpenMP or library reglon from registered threads
pthreads

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Basic Thread-safe Routines =o'

e int shmemx_init_thread (int required_threading_level);
e required_threading_level - SHMEM_ THREAD_SINGLE, SHMEM_THREAD_MULTIPLE
e Initiate and let the OpenSHMEM implementation know about multithreaded usage

e void shmemx_thread_register (void);
e Register the thread with OpenSHMEM library and get network resource

e No explicit thread-based RMA or AMO routines

e Normal RMA and AMO routines will implicitly be converted into thread-based routines
when called by registered threads

e void shmemx_thread_quiet / fence (void);
e Thread-based memory ordering operations

e void shmemx_thread_unregister (void);
e Free the registered thread and release network resource

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Contexts-Domains Proposal (Ticket #177) oy

(Y \
S \

e Proposed by Dinan, et al. to be part of OpenSHMEM standards \

e Extensions prototyped as SHMEMX-routines in Cray SHMEM

e Design Objectives: ‘
e Increase concurrency with independent streams of communication

e Separate message injection resources from remote completion tracking
by introducing two new features: Contexts and Domains

e Relation between Threads and Contexts-Domains
e Two Independent entities, no direct mapping
e Contexts and Domains are OpenSHMEM objects
e Contexts and Domains are mapped to network resources
e Any thread can make use of these objects

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

\
Basic Contexts-Domains Routines CRANY |

e typedefint shmem_ctx_t ; typedef int shmem_domain _t; S \
e Opaque handles for Context and Domain objects
e void shmemx_domain_create(int thread_level, int num_domain, shmem_domain_t domain[]) ;
e void shmemx_domain_destroy(int num_domain, shmem_domain_t domain[]) ; \
e Routines for creating and maintaining Domain objects
e int shmemx_ctx_create (shmem_domain_t domain, shmem_ctx_t *ctx);
e void shmemx_ctx_destroy (shmem_ctx_t ctx);
e Routines for creating and maintaining Contexts objects
e void shmemx_ctx_fence / quiet (shmem_ctx_t ctx);
e Context-based memory ordering routines
e void shmemx_ctx_TYPE_p(TYPE *addr, TYPE value, int pe, shmem_ctx_t ctx);
e void shmemx_ctx_getmem(void *dest , const void *source , size t nelems , int pe ,
shmem_ctx_t ctx);
e void shmemx_TYPE_inc(TYPE *dest , int pe , shmem_ctx_t ctx);
e Sample Context-based RMA and AMO routines

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

\
Contents S S

Introduction — The Problem

What is Cray SHMEM

Multithreading in OpenSHMEM

Thread-Safe and Contexts-Domains Designs in Cray SHMEM
Experiments for Design Decisions

Initial Application Level Evaluation

Future Work and Conclusion

COMPUTE | STORE | ANALYZE
OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

7N
_/

Thread-Safe and Contexts-Domains Designs

3 Possible Solutions Evaluated:
e Thread-Safe Design

e Domain-based Contexts-Domains Design
e Context-based Contexts-Domains Design

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Cray DMAPP Overview cRas

[\
e Underlying low-level communication layer for Cray SHMEM M
e Support for both Cray Aries and Cray Gemini interconnect

o Key Aries hardware features \
e FMA — Fast Memory Access Network Injection Resources:
: FMA — | '
e BTE — Block Transfer Engine :|’ small data sizes

. BTE — large data sizes
e CQ - Completion Queue —— Eyent notification

FMA =~120

Events =PUT/GET/AMO

o Key DMAPP software object for communication
e CDM — Communication Domain

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

DMAPP Design: Mapping to HW Resources ==A:Yf '
Create CDM . \

\

e FMAs and CQs are key HW mechanisms for
communication streams Map CDM to
e CDMs are SW objects to attach to FMAs and CQs SYIN

e CDM has 1-to-1 mapping with FMA
e CDM has 1-to-1 mapping with CQ
e Implicit: FMA has 1-to-1 mapping with CQ

Map CDM to CQ

i

Map CDM to
OpenSHMEM PE

Max number of CDMs per node =~120
e In single threaded OpenSHMEM Application

e 1 unique CDM per PE & PEs cannot share CDM PE creates
e Use CQ for tracking remote completion or memory Events on a CDM
ordering — shmem__quiet() operation

o PEs create events on a CDM using ecdm_handle Track Event
completion with CQ

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Thread-Safe Design in Cray SHMEM

e Each registered thread (T) mapped to a CDM
e T <CDM - Unique CDM per thread
e T>CDM - CDMs shared by some threads
e The CDM associated with the thread is identified
using a handle stored in Thread Local Storage
(TLS) &
o How is the shmem _thread quiet() performed?
e T <CDM - Using unique CQ associated with
CDM
e T > CDM - quiet operation is done on all
threads that share the CDM, using the
shared CQ associated with the CDM

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

/ Thread-1 [

.

CDM1 events from thread 1

—>

Thread-2

CDM2 events from thread 2

— |4

>

Thread-3

cQ1

cQ2

Fig: Thread-safe Design in Cray SHMEM

Domain-based Contexts-Domains Design in

Cray SHMEM

e Each Domain object mapped to a CDM
e Each Domain can have multiple Contexts
e All Contexts in a Domain share the CQ

e Cannot use shared CQ to track events for each
individual Context

e Each DMAPP event creates a unique sync _id

e Track sync_id's as separate queues in SHMEM
library level

e Track event completion using this sync _id queue
e shmem_ctx_quiet()

PE-1

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

" multiple
ontexts

C

Domain-2

>>

" multiple
ontexts

C

>

CDM1 events from domain 1

CDM2 events from domain 2

N
N ¢
(8]

Fig: Domain-based Contexts-Domains

Design in Cray SHMEM

(Only DMAPP level mapping are shown)

20

Context-based Contexts-Domains Design in AN

Cray SHMEM .

e Each Domain can have multiple Contexts
Each Context mapped to a CDM based on th

CDM1 events from domain 1 context 1

thread level of the Domain it is in 3
e SHMEM THREAD SINGLE — Unique CDM ilggm/'/vc[;omz events from domain 1 context 2 ;
¢ SHMEM_THREAD_MULTIPLE — Shared CDM#| __— B g
HOW iS Shmem CtX Uiet erformed? vy CDM3 events from domain200ntext3&:'1’
’ X q () P | gon:ex:-fl §j g

e Using CQ of the CDM for that Context
e What is the functionality of Domains in this design?
e Track Context properties ?7?7?

e Group Contexts efficiently for
SHMEM_THREAD_ MULTIPLE

Fig: Context-based Contexts-Domains
Design in Cray SHMEM

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

\
Contents CRANY

Introduction — The Problem

What is Cray SHMEM

Multithreading in OpenSHMEM

Thread-safe and Contexts-Domains Design in Cray SHMEM
Experiments for Design Decisions

Initial Application Level Evaluation

Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

22

Experimental Setup —eane

e System Details
e Cray XC system
e Cray Aries interconnect architecture
e 32 core Intel Broadwell processors
e 2 nodes, 1 PE per node, 32 threads per PE
e Cray SHMEM version 7.4.0 plus modifications
e Used existing SHMEMX-prefixed Thread-safe extensions
e Created the prototype version of Contexts-Domains extensions

e Hybrid OpenSHMEM Microbenchmark

e Used OSU OpenSHMEM Microbenchmark tests and converted into
multithreaded hybrid design

e Used OpenMP along with OpenSHMEM for hybrid design

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

23

\
Experiment 1: Impact of Thread Local Storage -1 &RAaY,

[Y \
S \
e Experiment specific to Thread-safe design \
e For each thread to track its events, must store in TLS

e Performance Impact of using TLS for storing CDM handle
e USE_TLS version — use handle stored in TLS for all events

e NO_TLS version — Explicitly pass handle as part of the event calls in a
modified API to avoid TLS

e Modified OSU Put Microbenchmark
e Large data size no change in performance

e Small data size less than 512 bytes — shows NO_TLS to perform
8% better than USE_TLS version

24
OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Experiment 1: Impact of Thread Local Storage - 2

chml-hancljle-usle-TLIS :
cdm-handle-no-TLS] ' =

-—

g ;E = =
s ezt T1eT g B

Latency in microseconds[logscale]

- N <& 00 O N 9«
- o O

128
256
512

Block size in Bytes
Fig: GCC Compiler 6.1 version

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Experiment 2: Explicit or Implicit Non-Blocking
Operations - 1

e Experiment specific to Domain-based Contexts-Domains
design
e Using sync_id for tracking event completion
e Sync _id’s are not generated for all events
e Only Explicit NB events create sync _id
e All Domain-based events are Explicit NB
e Performance Analysis
e Modified OSU Put Microbenchmark
e Create 32 Context-objects and 32 Domains
e 1 Context-object per Domain
¢ All Context-objects have unique CQs

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

\
Experiment 2: Explicit or Implicit NB Operations - 1 ==»A‘Y® '

\

10000 ¢ . .) \
: explicit-events —— \
é 1 000 L im p|ICIt-eventS """ o
o) I
o \
8 L
o 100 ¢
Q -
E I G g
= y 2
> 10 I [
() /;
3 b, —
3 LR -n---»--o’i:;;";ﬁ*””"
0.1

Block size in Bytes
Data size > 1MB — no performance change
Data size < 1MB — Implicit events have latency 45% of Explicit events
DMAPP has event chaining optimization for Implicit events

27
OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Experiment 3: Hierarchy of Threading Support - 1

e Experiment specific to Thread-safe design
e Only two different types of thread-levels available now
e SHMEM THREAD SINGLE — No Lock
o SHMEM THREAD MULTIPLE — Implicit Lock
e Problem
e Even if Number of Threads < CDMs
e SHMEM THREAD MULTIPLE has implicit locks
e Cannot determine the number of registered threads to
avoid implicit locking
e Major disadvantage in mapping threads directly to
network resources

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Experiment 3: Hierarchy of Threading Support - 2

10000

1000 |-

Lock ——
No-lock ===

100

N/
‘0

10

Latency in microseconds

-
L

@
”---&---“....“---”"'”"«

[’
4
4
()
4
Y
ok
—_— ¢

210 215

Block size in Bytes

2 PEs — 1 PE per Node
32 reqistered threads per PE
No-lock has latency that is 25% of lock

OpenSHMEM 2016: Workshop

Copyright 2016 Cray Inc.

220

29

Efficient Network Resources Utilization - 1 cRas |

(Y \
S \
e Distinct trend in growing network resource demand w.r.t multi-core)

architectures
e Need for efficient resource mapping \

e Problems in the Thread-safe design
e T <NIR - Excess streams are wasted
e T > NIR - Insufficient hints for optimal mapping
e Every thread gets equal performance priority
e Even if over allocation is on a particular application module, performance
is normalized in all the modules
e SHMEM_ MAX NUM_THREADS is an insufficient hint because xxx

30
OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Efficient Network Resources Utilization - 2 cRas |

Contexts-Domains can better maximize use of CDMs
Threads and Context-Domain objects are separate entities
Context-Domain objects are mapped to CDMs
Any thread can pick and use the objects
T <NIR
e Use multiple Context-objects per Thread for better CDM utilization
e T>NIR
e Create priority on particular Context-objects
e Useful for more unbalanced loads

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Efficient Network Resources Utilization - 3

Threads
- -
£ m CDM1 - CQ1
(b}
- _—
Context-2
. [Context-2 | [comz- ca2
I
o [coms ca3
—_—
Registered Contexts and DMAPP Library
or Domain objects Level - Resource
Unregistered created and Mapping based on
Threads in handles made either Context-based
the visible for or domain-based
Application threads design

OpenSHMEM 2016: Workshop

Copyright 2016 Cray Inc.

[9A971-ddVING

32

\
Contents CRANY

Introduction — The Problem

What is Cray SHMEM

Multithreading in OpenSHMEM

Thread-safe and Contexts-Domains Design in Cray SHMEM
Experiments for Design Decisions

Initial Application Level Evaluation

Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

33

Initial Application Level Evaluation - 1 AN
\
e Analyze impact of efficient network resource mapping on application : \

e Multithreaded implementation of all-to-all collective communication \
pattern
e Three different version \
o Thread _safe version (TS) version
e 32 registered thread per PE
o Context _design_1 (CTX1)
e 1 Domain, 32 Contexts, 32 Threads
e All Contexts with SINGLE as property
e Each thread use 1 Context-object
o Context_design_2 (CTX2)
e 2 Domains, 32 Contexts, 32 Threads
e Domain-1: Property SINGLE with 16 Contexts
e Domain-2: Property MULTIPLE with 16 Contexts

34
OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

Initial Application Level Evaluation - 2

Alltoall done 3 different ways

Domain-1 Domain-1 Domain-2
Threads with thread with thread with thread
level SINGLE level level
SINGLE MULTIPLE
—_—
X 32 —A— ——t
SR x32] | [B] [E[x 16+ [F] |B]x 16
Yvy ol o] [o ol |o ol o
A;;I::g;" Design-1 of All-to-all Design-2 of All-to-all
Implementation Pattern Pattern
P with Implementation with Implementation with
Thread-saf Context-Domain Context-Domain
read-sale Extensions Extensions
Extensions

OpenSHMEM 2016: Workshop

Copyright 2016 Cray Inc.

35

Initial Application Level Evaluation - 3

10000 ' TS All-to-all Implementation

[72]

§e)

S CTX1 All-to-all Implementation
Q

CTX2 All-to-all Implementation
o

o

= 1000 ¢

= :

>

[

(5]

©

—1

100

—_ —
(o 0) ©
N (Te)
<~ N
N— N
< (e o]

16(512)
32(1024)
64(2048)

Number of Nodes(Number of Threads)

CTX1 is 18% better than TS and 7% better than CTX2

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

36

\
Contents CRANY

Introduction — The Problem

What is Cray SHMEM

Multithreading in OpenSHMEM

Thread-safe and Contexts-Domains Design in Cray SHMEM
Experiments for Design Decisions

Initial Application Level Evaluation

Future Work and Conclusion

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

37

Future Work cRANY

(Y \

\
e\

. S \
e Analysis in this work are from implementer’s perspective \

e lIdentified the areas to tap complete utilization of the network resources
and computational units \
e Evaluate these proposals more from a user’s perspective

e Study on different usage scenarios w.r.t the suitability of using features
from a particular proposal

e Performance analysis with a balanced and unbalanced application
e Balanced Application - Equal workload on all threads
e Unbalanced Application - Unequal workloads on threads

e Unequal workload on threads helps to identify the usage of Context
objects with different properties

OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc. S~

\
Conclusion CRANY |

(Y \
e We need an OpenSHMEM API that makes possible maximum AN
utilization of HW compute and network injection resources

e Thread-Safe proposal is a simple APl that can maximize utilization of |
cores but not necessarily NIRs

e Contexts-Domains proposal is somewhat more complicated but has
better potential to maximize utilization of cores and NIRs

e Both extensions can be used in a single program but not in the
same parallel region

e To get maximum utilization for different HW resource
combinations requires some additional API

e Both proposals deserve attention by OpenSHMEM Committee

39
OpenSHMEM 2016: Workshop Copyright 2016 Cray Inc.

OpenSHMEM 2016: Workshop

Thank You

Copyright 2016 Cray Inc.

40

