
Surviving Errors with
OpenSHMEM

Aurelien Bouteiller, George Bosilca,
Manjunath Gorentla Venkata
OpenSHMEM Workshop 2016

Baltimore, MD

Motivation: a complicated world

2

Motivation: a complicated world

• Multiple vectors make errors more common
• Multicore/NUMA
• Accelerators
• MPI+OpenMP+OpenSHMEM
• +CUDA, +OpenCL, +MPSS, +OpenACC

3

Multiple software stacks interoperating:
more user errors, more unexpected resource exhaustions

Motivation: large scale
• Crash failures

• More common with system scale
• Already harming at Petascale

• Other “communication
environments” are getting
ready
• User Level Failure Mitigation in MPI
• +Fenix to support easy in-place C/R
• +LFLR to support easy containment

domains
• Resilient X10
• Resilient Coarrays
• …

• OpenSHMEM cannot be the
weak link in an
interoperable application!

4

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Even for today’s platforms (courtesy F. Cappello)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 8/ 207
Slide courtesy of F. Cappello

Goals
• Failure types:

• Resource exhaustion
• Processor Crash
• Network interface crash
• Byzantine errors/arbitrary corruptions
• Erroneous system software (debugging/resilience)
• Erroneous user code (for debugging)
• Memory corruption resulting in process crash
• Silent data corruption

5

At a minimum, we want to return control to the user, so that continuation with an FT
communication library (OpenSHMEM or other) is possible.

Always favor error free performance

Error codes

6

It is expected that we will add more error codes as we want to address more issues

Page 8, Section 6: library constants

Landscape of FT techniques

7

What we need is a set of flexible API that enable all these
recovery strategies, w/o paying the cost of the most demanding

OpenSHMEM API
for failure reporting,
propagation and
correction

Content of the interface

• Error Reporting

• Error Propagation

• Error Correction

8

Error Reporting

• Main objective: prevent infinite blocking/abort
on error

• Secondary objective: inform about reason

• Technical mechanism relies on Error Handler
registration

9

Registering an error handler
typedef void (*shmem_errhandler_cb_fn)

(int errcode, void* user_param);

void shmem_errhandler_set(
// IN: the managed error type

int errcode,
// IN: the error handler function

shmem_errhandler_cb_fn errh,
// IN: an user parameter to the callback

void* user_param
);
• An user can set a different handler for different error types
• An user can provide an user specific “context” to the error handler

callback through “user_param”
• Useful to track state without global variables

10

Chaining error handlers
void shmem_errhandler_get(
// IN: the query error type

int errcode,
// OUT: the error handler function

shmem_errhandler_cb_fn errh,
// OUT: the parameter provided when registering the
callback

void* user_param
);

• An user can get the previously set error handler and
user_param

• An user can then set a new handler
• and restore the previous handler when done…
• or call the previous handler from the new handler

11

Error reporting, designs not retained

• Error codes returned from OpenSHMEM calls
• Some SHMEM operations already have a return value
• shmem_fadd, shmem_alloc…
• Would break backward compatibility
• Coding style is not elegant

• shmem_errno
• Muddy semantic in multithreaded programs
• Per-thread errno requires local thread storage
• Coding style is not elegant

12

Default Error Handlers

• Handler set by default is “errhandler_gexit”
• When a custom handler returns, it has the

same effect as calling “errhandler_break”

13

Similar to the case of collective operations, a strong mandate for reporting
errors at the origin for any violation of the semantic at the target requires syn-
chronizing all one-sided operations. The di↵erence between the shmem fadd and
shmem add operations is a prime exhibit of the cost of this implicit synchroniza-
tion with the target. The former returns the result of the operation at the origin,
while the later does not, henceforth sparing the semantic synchronization with
the target. These two operations have been separated, because the addition of
this synchronization semantic has a salient impact on injection rate and latency
performance of one-sided operations.

For these reasons, uniform error reporting is not required from OpenSHMEM
operations. Instead, users are provided with additional interface to resynchronize
PEs after an error has been reported. We will see in section 6 how additional
OpenSHMEM interfaces can help users in creating error handling epochs that
ensure a clear discrimination between errors arising before and after the epoch
starts.

4 Error Reporting Interface

In this section, we present the interface that embraces the principles exposed
above, with some discussion about alternative software engineering designs that
have been considered but rejected.

1 typedef void (⇤ shmem errhandler cb fn) (int errcode , void⇤ user params) ;

2

3 void shmem errhandler set (

4 int errcode , /⇤ IN : the managed error type ⇤/
5 shmem errhandler cb fn errh , /⇤ IN : the error handling funct ion ⇤/
6 void⇤ user params) ; /⇤ IN : an user parameter to the ca l l b a c k ⇤/
7

8 void shmem errhandler get (

9 int errcode , /⇤ IN : the managed error type ⇤/
10 shmem errhandler cb fn errh , /⇤ OUT: the curren t l y s e t error handler ⇤/
11 void⇤ user params) ; /⇤ OUT: the curren t l y s e t user parameter ⇤/

Fig. 2. C Interfaces to manage error handlers in OpenSHMEM.

shmem errhandler gexit the error handler calls shmem global exit with the error
code as parameter, which e↵ectively terminates the appli-
cation. This is the default error handler.

shmem errhandler break the error handler breaks from blocking OpenSHMEM op-
erations at the PE. It has no e↵ect at other PEs.

shmem errhandler gbreak the error handler breaks from blocking OpenSHMEM op-
erations at all PEs.

Table 1. List of predefined error handlers in OpenSHMEM.

Scope of Error Reporting

• When a non-
local error
must be
reported at a
PE?
• Only when an

OpenSHMEM
operation may block

• Relaxed semantic
preserves failure free
performance (no need
to check for errors
when things are doing
fine)

14

shmem_bcast: the failure at P1 prevents
the diffusion to P3, but P2 receives the data:

errors are triggered non-uniformely

P0

P1

P2

P3

shmem_add(P1)

shmem_int_wait

shmem_int_wait: cannot decide if operation
will block forever: triggers

shmem_errhandler_break at P1

Is the missing update from P0?
or from P2 in the future?

!

!
The first wait is already satisfied, no
need to trigger an error.

P0

P1

P2

P3
!

J

shmem_bcast(P0->P0..3)

J

Fig. 1. Scope and uniformity Semantics for Error Reporting. On the left, errors are re-
ported locally, only for operations that are at risk of blocking indefinitely. On the right,
a failure results in non-uniform errors: some PEs complete the broadcast, unaware that
other PEs have triggered an error during the same collective communication.

This operation blocks until the remote updates performed from remote PEs tog-
gle a conditional statement on the value. The origin PE (or PEs) that perform
the remote updates are not specified by the operation. Consequently, if a pro-
cess crash failure happens, the communication library cannot infer if one of the
failed PEs (here P

0

) was supposed to perform the needed update, or if another
PE (for example P

2

) is soon going to post the update. In order to avoid leav-
ing the target PE blocking in the posted shmem wait operation indefinitely, the
OpenSHMEM library has to report an error, ending that operation. However,
other PEs may be able to satisfy all their blocking operations independently,
and an error may be delayed until an operation would block. An advantage of
this approach is that PEs that do not need to block (the second shmem wait at
P
3

, for which the update has already happened) can spare the cost of checking
for errors in the performance critical, non-erroneous execution path, unless an
operation e↵ectively blocks.

The general semantic is that error reporting is local, mandated to happen
only at PEs whose completion of a blocking operation is rendered impossible
by a failure (possibly multiple PEs, if they had issued a collective operations or
shmem wait operations), and is by default not propagated. However, we observe a
dichotomy in use-cases. Some errors, for example resource exhaustion and some
soft failures, can be easily corrected locally, and the local reporting permits
maximal performance in that case. Some errors demand a collective correction
action, and the proposed OpenSHMEM interface needs the capability to report
errors both locally or globally. We will further discuss how global reporting can
be triggered in Section 5.

3.2 Non-uniform Error Reporting

Conserving a strongly consistent global state, even after an error has been re-
ported, is a very natural desire for application programmers. In a distributed

Uniformity of Error Reporting
• It would be nice for collective

operations (or even semantic
synchronization) report errors
uniformely

• But…
• Heavy performance penalty to

be expected
• shmem_bcast is not

synchronizing, adding uniform
error reporting would force
synchronizing

• Same for shmem_add
• Compare to shmem_fadd performance!

• Even in synchronizing
operations, errors that
happen during the operation
could be observed differently
without adding a fault tolerant
agreement to the operation

15

shmem_bcast: the failure at P1 prevents
the diffusion to P3, but P2 receives the data:

errors are triggered non-uniformely

P0

P1

P2

P3

shmem_add(P1)

shmem_int_wait

shmem_int_wait: cannot decide if operation
will block forever: triggers

shmem_errhandler_break at P1

Is the missing update from P0?
or from P2 in the future?

!

!
The first wait is already satisfied, no
need to trigger an error.

P0

P1

P2

P3
!

J

shmem_bcast(P0->P0..3)

J

Fig. 1. Scope and uniformity Semantics for Error Reporting. On the left, errors are re-
ported locally, only for operations that are at risk of blocking indefinitely. On the right,
a failure results in non-uniform errors: some PEs complete the broadcast, unaware that
other PEs have triggered an error during the same collective communication.

This operation blocks until the remote updates performed from remote PEs tog-
gle a conditional statement on the value. The origin PE (or PEs) that perform
the remote updates are not specified by the operation. Consequently, if a pro-
cess crash failure happens, the communication library cannot infer if one of the
failed PEs (here P

0

) was supposed to perform the needed update, or if another
PE (for example P

2

) is soon going to post the update. In order to avoid leav-
ing the target PE blocking in the posted shmem wait operation indefinitely, the
OpenSHMEM library has to report an error, ending that operation. However,
other PEs may be able to satisfy all their blocking operations independently,
and an error may be delayed until an operation would block. An advantage of
this approach is that PEs that do not need to block (the second shmem wait at
P
3

, for which the update has already happened) can spare the cost of checking
for errors in the performance critical, non-erroneous execution path, unless an
operation e↵ectively blocks.

The general semantic is that error reporting is local, mandated to happen
only at PEs whose completion of a blocking operation is rendered impossible
by a failure (possibly multiple PEs, if they had issued a collective operations or
shmem wait operations), and is by default not propagated. However, we observe a
dichotomy in use-cases. Some errors, for example resource exhaustion and some
soft failures, can be easily corrected locally, and the local reporting permits
maximal performance in that case. Some errors demand a collective correction
action, and the proposed OpenSHMEM interface needs the capability to report
errors both locally or globally. We will further discuss how global reporting can
be triggered in Section 5.

3.2 Non-uniform Error Reporting

Conserving a strongly consistent global state, even after an error has been re-
ported, is a very natural desire for application programmers. In a distributed

When Error Propagation is Needed

16

P0

P1

P2

Pn

shmem_int_p(P1)

shmem_int_wait

shmem_int_wait: Error Handler!
P1 calls shmem_errhandler_gbreak

Plan A Plan B

Recovery

shmem_bcast(P1..Pn)

shmem_bcast(P1..Pn) not
matched at P1

shmem_bcast(P1..Pn): Error
handler invoked

1 i f (0==rank) {
2 shmem int p(&cond , 1 , 1) ;

3 cond++;

4 } else {
5 i f (1==rank) shmem int wa i t unt i l (&cond , comp++);

6 shmem broadcast32(&comp , &comp , 1 , 1 , 1 , 0 , npes�1, psync) ;

7 /⇤ (dest , src , count , root , PEstart , PEstride , PEsize , psync) ⇤/
8 }

Fig. 3. The transitive communication pattern plan A, from the source code, must be
interrupted before the PEs can switch to the recovery communication pattern plan B.
By calling the shmem errhandler gbreak error handler, P1 ensures that all possibly
unmatched operations in plan A, which could provoke deadlocks, are interrupted.

to have the failure of P
0

reported, as it issued a shmem wait operation. The
situation at P

1

now raises a dilemma: P
1..N wait on the contribution of P

1

to the
shmem bcast. As all processes participating in the broadcast are alive (P

1

being
a non-failed process), the operation may block until the matching shmem bcast

is posted at P
1

. However, P
1

knows that P
0

has failed, and that the application
should branch into its recovery procedure plan B ; if P

0

were to switch abruptly
to plan B, it would cease matching the broadcast P

1..N posted, following plan A.
At this point, P

1

needs an e↵ective way of interrupting operations that it does
not intend to match anymore, otherwise, the application would reach a deadlock.

The proposed solution to resolve this scenario is that, before switching to
plan B, the user code in P

1

sets the error handler to shmem errhandler gbreak,
or explicitly calls shmem errhandler gbreak from within the user supplied er-
ror handler. The invocation of the predefined shmem errhandler gbreak error
handler at any PE forces the invocation of the locally set error handler, with
the same error code, at all PEs. As a consequence, communication operations
do not block anymore and the OpenSHMEM library returns control to the user
at all PEs, thereby solving potential transitive dependence deadlocks.

Implementation Challenges: An implementation has to be able to process the re-
ception of a shmem errhandler gbreak notification. Some implementations use
an asynchronous state machine to manage communication calls, and in these
implementations, receiving the notification and interrupting ongoing operations
is relatively simple. For implementation that employ blocking transport calls,
di↵erent options are available. The implementation may employ a service thread

Error Propagation

• “errhandler_gbreak” permits propagating an error
at all PEs

• Depending on use-case, end-user can propagate
(or not) errors
• For example, errors on slaves in master-slave workloads do not require

propagation
• Some errors can be repaired locally (typically resource errors)

17

Similar to the case of collective operations, a strong mandate for reporting
errors at the origin for any violation of the semantic at the target requires syn-
chronizing all one-sided operations. The di↵erence between the shmem fadd and
shmem add operations is a prime exhibit of the cost of this implicit synchroniza-
tion with the target. The former returns the result of the operation at the origin,
while the later does not, henceforth sparing the semantic synchronization with
the target. These two operations have been separated, because the addition of
this synchronization semantic has a salient impact on injection rate and latency
performance of one-sided operations.

For these reasons, uniform error reporting is not required from OpenSHMEM
operations. Instead, users are provided with additional interface to resynchronize
PEs after an error has been reported. We will see in section 6 how additional
OpenSHMEM interfaces can help users in creating error handling epochs that
ensure a clear discrimination between errors arising before and after the epoch
starts.

4 Error Reporting Interface

In this section, we present the interface that embraces the principles exposed
above, with some discussion about alternative software engineering designs that
have been considered but rejected.

1 typedef void (⇤ shmem errhandler cb fn) (int errcode , void⇤ user params) ;

2

3 void shmem errhandler set (

4 int errcode , /⇤ IN : the managed error type ⇤/
5 shmem errhandler cb fn errh , /⇤ IN : the error handling funct ion ⇤/
6 void⇤ user params) ; /⇤ IN : an user parameter to the ca l l b a c k ⇤/
7

8 void shmem errhandler get (

9 int errcode , /⇤ IN : the managed error type ⇤/
10 shmem errhandler cb fn errh , /⇤ OUT: the curren t l y s e t error handler ⇤/
11 void⇤ user params) ; /⇤ OUT: the curren t l y s e t user parameter ⇤/

Fig. 2. C Interfaces to manage error handlers in OpenSHMEM.

shmem errhandler gexit the error handler calls shmem global exit with the error
code as parameter, which e↵ectively terminates the appli-
cation. This is the default error handler.

shmem errhandler break the error handler breaks from blocking OpenSHMEM op-
erations at the PE. It has no e↵ect at other PEs.

shmem errhandler gbreak the error handler breaks from blocking OpenSHMEM op-
erations at all PEs.

Table 1. List of predefined error handlers in OpenSHMEM.

Propagation:
Implementation Challenges

• Progress “gbreak” notifications
• Can be managed by active messages if hardware support present
• Asynchronous state machine
• Can be managed by progress thread (at worse)

• Interrupting blocking calls
• Interrupting operations is challenging if OpenSHMEM posts blocking transport calls
• Either have capability to cancel blocked calls (from AM callback or progress thread)
• Or asynchronous progress engine
• Or timeout based blocking call
• Some calls do not need to be interrupted :) (put, for example)

To preserve performance, gbreak notifications can be checked only after
unsuccessfully trying to progress normal operations (thanks to no ordering
w/application messages)

• UCX-OpenSHMEM reference implementation: all calls asynchronous,
and active messages

18

Post-error Status
void shmem_error_query(
// IN: PE whose status to query

int pe,
// OUT: PE status (0: PE in good condition)

int* code);

• After an error handler is called, OpenSHMEM may not be
able to communicate anymore

• Querying for pe==mype tells the application if the current PE
can still communicate with OpenSHMEM

• Local operation: does not synchronize the status of other
PEs implicitly

19

Post-error Stabilization
void shmem_error_barrier_all(void);

collective, synchronizing, fault-tolerant
• How can one resume communicating with OpenSHMEM

after an error?
• Problem 1: when have all errors for the current “epoch” been

captured?
• Error_barrier_all garantees that all gbreak notifications issued before the call at any PE are

triggered before the call completes at the local PE (gbreak flush)
• The error handler may be triggered withing error_barrier_all, without interrupting the

operation

• Problem 2: how can one synchronize which PE can still
communicate?
• After Error_barrier_all, shmem_error_query is synchronized

• Problem 3: collective communications
• After Error_barrier_all, collective communication are collective on the participating PEs for

which error_query reports a status of 0

20

Implementation Effort
• In OpenSHMEM-UCX
• “gbreak” based on

conversion from ULFM-
MPI “Revoke” operation

• “error_barrier_all”
based on conversion
from ULFM-MPI “Agree”
operation

• Algorithms
demonstrated scalable

• Former implementation
based on BTL bears
similarities with UCX

21

(a) ERA versus Log2phases Agreement scal-

ability in the failure-free case.

���

���

���

���

����

����

����

����

�� �� �� �� �� ��

��

����������

��������������������������

��������������������
������������������
�����������������
��������������������������
����������������������

(b) ERA performance depending on the tree

topology.

(c) Post Failure Agreement Cost.

Failed Ranks 0 (root) 4 (child of 0) 16 (node master) 17 (child of 16) 16–31 (full node)

Detecting Agreement 12,659 93,816 80,023 112,414 82,171
Stabilize Agreement 104.9 102 98.9 104.2 117.1
Post-failure Agreement 69.7 75.7 77.1 76.7 85.2

(d) Cost (µs) depending on the role of the failed process in a bin/bin ERA w/o rebalancing, 6000 procs.

Figure 2: Synthetic benchmark performance of the agreement.

resentation, it is implemented just above the Byte Trans-
fer Layer of Open MPI (below the MPI semantic layer):
this enables the reception ofRESULTREQUEST messages
even when outside an MPIX_COMM_AGREE call, as imposed by
the early returning property of the algorithm. Additionally,
based on our prior studies highlighting the fact that local
computations exhibiting linear behaviors dominate the cost,
even in medium scale environments, we have taken extra
steps to ensure that, when possible, all local operations fol-
low a logarithmic time-to-solution.

This implementation was validated using a stress test that
performs an infinite loop of agreements, where any failed
process is replaced with a new process. Failures are injected
by killing random MPI processes with di↵erent frequencies.
A 24h run on 128 processors (16 nodes, 8 cores each, TCP
over Gigabit Ethernet) completed 969,739 agreements suc-
cesfully while tolerating 146,213 failures.

5.1 Agreement Performance
We deploy a synthetic benchmark on the NICS Darter

supercomputer, a Cray XC30 (cascade) machine, to analyze
the agreement latency with and without failures at scale.
We employ the ugni transport layer to exploit the Cray
Aries interconnect, and the sm transport layer for inter-core
communication.

The benchmark calls MPIX_COMM_AGREE in a loop, with fail-
ures injected at controllable iterations and processes. We
consider four types of agreements: failure-free agreements
precede the injection of a failure. The first agreement during
which a failure manifests is the failure detecting agreement;
it returns MPI_ERR_PROC_FAILED per ULFM specification.
One additional stabilizing agreement, or more for complex
failure scenarios, is then necessary to acknowledge the fail-
ure(s), optimize the agreement tree, and return MPI_SUCCESS.
Subsequent post-failure agreements do not experience sup-
plementary failures. For each participant, we collect the

mean duration, and the standard deviation over 32k agree-
ments; the reported mean time is the maximum between the
mean times collected at all processes.

Scalability. In Figure 2a, we present the scalability trend
of ERA when no failures are disturbing the system. We con-
sider two di↵erent agreement implementations, 1) the known
state-of-the-art 2-phase-commit Agreement algorithm pre-
sented in [23], called Log2phases, and 2) our best perform-
ing version of ERA. We also add, for reference, the perfor-
mance of an Allreduce operation that in a failure-free con-
text would have had the same outcome as the agreement.
With the bin/bin topology on the darter machine using one
process per core, thus 16 processes per node, the average
branching degree of non-leaf nodes is 2.125. The ERA and
the Allreduce operations both exhibit a logarithmic trend
when the number of nodes increase, as can be observed by
the close fit (asymptotic standard error of 0.6%) of the log-
arithmic function era(x) = 6.7 log2.125(x). In contrast, the
Log2phases algorithm exhibits a linear scaling with the num-
ber of nodes, despite the expected theoretical bound pro-
posed in [23]. As a result, we stopped testing the perfor-
mance of the Log2phases algorithms at larger scale or under
the non failure-free scenarios.

Communication Topologies. In Figure 2b we compare the
performance of di↵erent architecture-aware versions of the
ERA algorithm. In the flat binary tree, all ranks are orga-
nized in a binary tree, regardless of the hardware locality of
ranks collocated on cores of the same node. In the hierar-
chical methods, one rank represents the node and partici-
pates in the inter-node binary tree; on each node, collocated
ranks are all children of the representing rank in the bin/s-
tar method, or are organized along a node-local binary tree
in the bin/bin method. The flat binary topology ERA and
the Open MPI Allreduce are both hardware locality agnos-

Agreement performance in MPI-ULFM
Compares with 2x Cray Allreduce latency at scale!

Concluding Remarks

• Error handling framework for OpenSHMEM
• Notification
• Propagation
• Correction

• WIP: implentation
• Future works: process crash replacement

interface

22

This work has been authored by UT-
Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S.
Department of Energy.

Participate!

• Discussion on ticket #195 in Redmine
• http://www.openshmem.org/redmine/issues/195

• Spec 1.3 latexdiff for the proposed changes
• http://www.openshmem.org/redmine/attachments/download/195/main

_spec.pdf
• changes are located in 2.8, 4.3, error code table in section 6, 8.1.12,

8.1.13, 8.5.1, 8.5.6 (note that the example need to be updated in the too
later instances).

• If you prefer a git diff, please look at
• https://github.com/abouteiller/specification/pull/1

23

Livelock problem

• while(shared_var != somevalue){…}

1. this is an incorrect error managing code.
shmem_wait_int(shared_var, somevalue) is correct.

24

A special problem w/ fetch&op

25

