Surviving Errors with
OpenSHMEM

Aurelien Bouteiller, George Bosilca,
Manjunath Gorentla Venkata

OpenSHMEM Workshop 2016
Baltimore, MD

icLor %

OAK
INNOVATIVE RIDGE

e UNIVERSITY of TENNESSEE National Laboratory

Motivation: a complicated world

Single-source approach to Multi- and Many-Core

Parallel
Sxo

Y /L
. Compilers
Librares, \
’ Parallel Models

Multicore CPU Multicore “
CPU £

Intel® MIC
architecture

ST Muilticore Cluster Clusters with Multicore

and Many-core

2SS o
) o <

\} I
‘\» \;’
B >
“ ‘\/ \»:v>
\/ -

“Unparalleled productivity... most of this software does
not run on a GPU” - Robert Harrison, NICS, ORNL

R. Hamizon, "Oppartunifies and Chalenges Posad by Exascale Camputing
ORNL's Plans and Perspedives”, Natond Insttute of Computationa Scences, Nav
217

Motivation: a complicated world

. : ' KEPLER GPU PASCAL GPU
Single-source approach to Multi- and Many-Core —— —7+7—~— T

Parallel
Sxo

XL

PPPPPPPP

“Unparalleled productivity... most of this software does X86 ARM64 X86 ARM64
pppppppp
not run on a GPU” - Robert Harrison, NICS, ORNL i powsacpu—

Hamizon, “Opportunifies and Chalenges Posad by Exascale Camputing
ORNL's Plans and Perspacives”, Naond InsStute of Computasonad " N

« Multicore/NUMA
. Accelerators agﬂ OpenMP
MPI+OpenMP+0penSHMEM

- OpenACC
- +CUDA, +OpenCL, +MPSS, +0OpenACC 'MPI p eeeeeeeeeeeeeeeeee

_ Multiple software stacks interoperating:

more user errors, more unexpected resource exhaustions

Motivation: large scale
'°':'L:mp Also;an issue at Petasc NERNUINE

Vi «\\ Fault tolerance becomes critical at Petascale (MTTI <= 1day)
.V Poor fault tolerance design may lead to huge overhead

Overhead of checkpoint/restart
JCost of non optimal checkpoint intervals: LOO’
A 10%
Today, 20% or more of the computing capacity in a large high-performance
computing system is wasted due to failures and recoveries.
Dr. E.N. (Mootaz) EInozahyet al. System Resilience at Extreme Scale,

DARPA
/ 13U 0% 1
=300
v 30min ckpt 60 0%
20% " {min ckpt 0%
5min ckpt
10% ? 0%
Checkpoint %
160 0% Interval (min)
1d 1 10 100 1000 10000

Slide courtesy of F. Cappello

8

KEEP CALM
REPORT

AND

RECOVER

e Crash failures

« More common with system scale
« Already harming at Petascale

e Other “communication

environments” are getting
ready

» User Level Failure Mitigation in MPI
« +Fenix to support easy in-place C/R

 +LFLR to support easy containment
domains

« Resilient X10
« Resilient Coarrays

OpenSHMEM cannot be the
weak link in an
Interoperable application!

ERRORS

—
Goals

« Failure types:
* Resource exhaustion
* Processor Crash
» Network interface crash
* Erroneous system software (debugging/resilience)
* Erroneous user code (for debugging)
 Memory corruption resulting in process crash

 Silent data corruption

At a minimum, we want to return control to the user, so that continuation with an FT
communication library (OpenSHMEM or other) is possible.

Always favor error free performance

—
Error codes

Page 8, Section 6: library constants

2 C/C++: _ . .
SHMEM ERR ARG An invalid argument value was passed to an operation.
3 — L

Fortran:
SHMEM_ERR_ARG

o C/C++:)
7 SHMEM_ERR_NOMEM Not enough memory to perform the operation.
8 Fortran:
9 SHMEM_ERR_NOMEM
10
, C/C++:)
SHMEM_ERR_UNREACH Impossible to contact a remote PE.

12

Fortran:
= SHMEM_ERR_UNREACH

It is expected that we will add more error codes as we want to address more issues

Landscape of FT techniques

Coordinated Checkpoint/Restart, Automatic, Naturally Fault Tolerant Applications, Master-Worker,
Compiler Assisted, User-driven Checkpointing, etc. Domain Decomposition, etc.

In-place restart (i.e., without disposing of non-failed processes) Application continues a simple communication pattern,
accelerates recovery, permits in-memory checkpoint ignoring failures

=IE=)=
Worker1
—> Worker2
OpenSHMEM API
for failure reporting,

Uncoordinated Checkpoint/Restart, prODagatlon and Algorithm Fault Tolerance
Transactional FT, Migration, correction
Replication, etc. ABFT
ULFM makes these approaches portable across MPIl implementations ULFM allows for the deployment - ______ :;
of ultra-scalable, algorithm O ———— > g
— M _ specific FT techniques. trailing matrix g
& protection o
- — — f— update by °
d w M M h applying the §
same &
operations

What we need is a set of flexible API that enable all these
recovery strategies, w/o paying the cost of the most demanding

—
Content of the interface

* Error Reporting

* Error Propagation

e Error Correction

Error Reporting

* Main objective: prevent infinite blocking/abort
on error

« Secondary objective: inform about reason

 Technical mechanism relies on Error Handler
registration

Registering an error handler

typedef void (*shmem _errhandler_cb_fn)
(int errcode, void* user param);

void (

// IN: the managed error type
int errcode,

// IN: the error handler function
shmem_errhandler_cb_fn errh,

// IN: an user parameter to the callback
void* user_ param

) ;

« An user can set a different handler for different error types

* An user can provide an user specific “context” to the error handler
callback through “user_param”

» Useful to track state without global variables

—
Chaining error handlers

void shmem_errhandler_get(

// IN: the query error type
int errcode,

// OUT: the error handler function
shmem_errhandler_cb_fn errh,

// OUT: the parameter provided when registering the
callback

void* user_ param

)

« An user can get the previously set error handler and
user_param

« An user can then set a new handler
and restore the previous handler when done..
or call the previous handler from the new handler

icL>ur

Error reporting, designs not retained

* Error codes returned from OpenSHMEM calls

« Some SHMEM operations already have a return value
 shmem_fadd, shmem_alloc...

« Would break backward compatibility

« Coding style is not elegant

* Shmem_errno

 Muddy semantic in multithreaded programs
» Per-thread errno requires local thread storage
« Coding style is not elegant

Default Error Handlers

shmem_errhandler_gexit |the error handler calls shmem_global_exit with the error
code as parameter, which effectively terminates the appli-
cation. This is the default error handler.

shmem_errhandler_break |the error handler breaks from blocking OpenSHMEM op-
erations at the PE. It has no effect at other PESs.

shmem_errhandler_gbreak|the error handler breaks from blocking OpenSHMEM op-
erations at all PESs.

Table 1. List of predefined error handlers in OpenSHMEM.

« Handler set by default is “errhandler_gexit”

* When a custom handler returns, it has the
same effect as calling “errhandler_break”

Scope of Error Reporting

shmem_int_wait: cannot decide if operation ° W h en a Nnon-
will block forever: triggers

shmem_errhandler_break at P, IOca | error
must be

reported at a
shmem_int_wait* 22

Is the missing update from P,? /]
or from P, in the future? :'I . On|y when an

P>
OpenSHMEM
P I operation may block
3 .
The first wait is already satisfied, no * Relaxed semantic
need to trigger an error. preserves failure free

performance (no need
to check for errors
when things are doing
fine)

—
Uniformity of Error Reporting

« |t would be nice for collective
shmem_bcast: the failure at P, prevents operations (or even semantic
the diffusion to P3, but P, receives the data: synchronization) report errors
errors are triggered non-uniformely uniformely
« But...

« Heavy performance penalty to
be expected

« shmem_bcast is not
synchronizing, adding uniform
error reporting would force
synchronizing

« Same for shmem_add

Compare to shmem_fadd performance!

« Even in synchronizing
operations, errors that
happen during the operation
could be observed differently
without adding a fault tolerant
agreement to the operation

shmem_bcast(P,->Py_3)

‘

—
When Error Propagation is Needed

shmem_int_wait: Error Handler!
P, calls shmem_errhandler_gbreak

shmem_int_wait
P,) not

Alanooay

shmem_bcast(P;..
matched at P4

shmem_bcast(P..Py): Error :

shmem_bcast(P;..P,) i

if(0==rank) {
shmem_int_p(&cond, 1, 1);
cond—++;
} else {
if(l==rank) shmem_int_wait_until(&cond, comp-++);
shmem _broadcast32(&comp, &comp, 1, 1, 1, 0, npes—1, psync);
/* (dest, src, count, root, PEstart, PEstride, PFEsize, psync) x/

OO Ul WK

Fig. 3. The transitive communication pattern plan A, from the source code, must be
interrupted before the PES can switch to the recovery communication pattern plan B.
By calling the shmem_errhandler_gbreak error handler, P, ensures that all possibly
unmatched operations in plan A, which could provoke deadlocks, are interrupted.

Error Propagation

shmem_errhandler_gexit |the error handler calls shmem_global_exit with the error
code as parameter, which effectively terminates the appli-
cation. This is the default error handler.

shmem_errhandler_break |the error handler breaks from blocking OpenSHMEM op-
erations at the PE. It has no effect at other PESs.

shmem_errhandler_gbreak|the error handler breaks from blocking OpenSHMEM op-
erations at all PESs.

Table 1. List of predefined error handlers in OpenSHMEM.

« “errhandler_gbreak” permits propagating an error
at all PEs

* Depending on use-case, end-user can propagate
(or not) errors

» For example, errors on slaves in master-slave workloads do not require
propagation

« Some errors can be repaired locally (typically resource errors)

Propagation:
Implementation Challenges

* Progress “gbreak” notifications

Can be managed by active messages if hardware support present

* Asynchronous state machine
Can be managed by progress thread (at worse)

. Interruptlng blocking calls
Interrupting operations is challenging if OpenSHMEM posts blocking transport calls
Either have capability to cancel blocked calls (from AM callback or progress thread)
Or asynchronous progress engine
Or timeout based blocking call
Some calls do not need to be interrupted :) (put, for example)

To preserve performance, gbreak notifications can be checked only after
unsuccessfully trying to progress normal operations (thanks to no ordering
w/application messages)

« UCX-OpenSHMEM reference implementation: all calls asynchronous,
and active messages

Post-error Status

void (
// IN: PE whose status to query
int pe,

// OUT: PE status (0: PE in good condition)
int* code);

« After an error handler is called, OpenSHMEM may not be
able to communicate anymore

* Querying for pe==mype tells the application if the current PE
can still communicate with OpenSHMEM

» Local operation: does not synchronize the status of other
PEs implicitly

Post-error Stabilization

void (void) ;
collective, synchronizing, fault-tolerant

How can one resume communicating with OpenSHMEM
after an error?

Problem 1: when have all errors for the current “epoch” been
captured?

« Error_barrier_all garantees that all gbreak notifications issued before the call at any PE are
triggered before the call completes at the local PE (gbreak flush)

« The error handler may be triggered withing error_barrier_all, without interrupting the
operation

Problem 2: how can one synchronize which PE can still
communicate?

« After Error_barrier_all, shmem_error_query is synchronized

Problem 3: collective communications

« After Error_barrier_all, collective communication are collective on the participating PEs for
which error_query reports a status of O

Implementation Effort

* In OpenSHMEM-UCX 160 T IovoReee Gy O
+ “gbreak” based on T e
: 140 | 77 Oper(1 MPI I,&Illlr:gl)wemBytes) ““““““““““““““
conversion from ULFM- —+— Cray Allreduce(4Bytes) 5
MPI “Revoke” operation ™[/NS
- “error_barrier_all” B I A .
based on conversion 2 80 Lt e o e)
from ULFM-MPI “Agree” L= = el e

operation

« Algorithms
demonstrated scalable
» Former implementation Wa k dc s e
based on BTL bears

similarities with UCX

Agreement performance in MPI-ULFM
Compares with 2x Cray Allreduce latency at scale!

Concluding Remarks

 Error handling framework for OpenSHMEM

« Notification
« Propagation
« Correction

* WIP: implentation

* Future works: process crash replacement
interface

2, U.S. DEPARTMENT OF

Y/ A
5 <
(= =

o

- ’N

Y So\

OAK
RIDGE _,

This work has been authored by UT-
Battelle, LLC under Contract No. DE-
ACO05-000R22725 with the U.S.
Department of Energy.

National Laboratory

Participate!

e Discussion on ticket #195 in Redmine

e http://www.openshmem.org/redmine/issues/195

« Spec 1.3 latexdiff for the proposed changes

e http://www.openshmem.org/redmine/attachments/download/195/main
spec.pdf

« changes are located in 2.8, 4.3, error code table in section 6, 8.1.12,
8.1.13, 8.5.1, 8.5.6 (nhote that the example need to be updated in the too

later instances).

* If you prefer a git diff, please look at

« https://github.com/abouteiller/specification/pull/1

—
Livelock problem

*whille (shared var != somevalue) {..}

1. thisis an incorrect error managing code.
shmem wait int (shared var, somevalue) IS correct.

—
A special problem w/ fetch&op

\begin{Csynopsis} 7 \begin{Csynopsis}
-int shmem_int_fadd(int *dest, int value, int pe); 8 +int shmem_int_fadd(int *dest, int value, int *old, int pe);
-long shmem_long fadd(long *dest, long value, int pe); 9 +int shmem_long fadd(long *dest, long value, long *old, int pe);
-long long shmem_longlong fadd(long long *dest, long long value, 10 +int shmem_longlong fadd(long long *dest, long long value, long
int pe); long *old, int pe);
\end{Csynopsis} 11 \end{Csynopsis}
12
\begin{Fsynopsis} 13 \begin{Fsynopsis}
-INTEGER pe 14 +INTEGER pe, errcode
-INTEGER*4 SHMEM_INT4_FADD, ires_i4, value_i4 15 +INTEGER*4 old_i4, value_i4
-ires_i4 = SHMEM_INT4_FADD(dest, value_i4, pe) 16 +errcode = SHMEM_INT4_FADD(dest, value_i4, old_i4, pe)
-INTEGER*8 SHMEM_INT8_FADD, ires_i8, value_i8 17 +INTEGER*8 old_i8, value_i8
’-ires_iS = SHMEM_INT8_FADD(dest, value_i8, pe) 18 +errcode = SHMEM_INT8_ FADD(dest, value_i8, old_i8, pe)
\end{Fsynopsis} 19 \end{Fsynopsis}

28 +\apiargument{OUT}{old}{The value stored at \VAR{dest} address
on the remote \ac{PE}

29 + prior to the atomic operation. The type of \VAR{old} should
match that implied in

30 | 4+ the SYNOPSIS section.}

i \VAR{value} to \VAR{dest} on \VAR{pe} and return the 42 \VAR{value} to \VAR{dest} on \VAR{pe} and return the
previous contents of previous contents of
- \VAR{dest} as an atomic operation. 43 + \VAR{dest} as an atomic operation.

4+ The contents that had been at the \VAR{dest} address on the
remote \ac{PE}

45 + prior to the atomic addition operation is available in
\VAR{old}.

icL>ur

