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Teams and Spaces

• Proposed teams extention promises greater control over asynchronous
processing and ability to handle dynamic problems

• Memory available to teams remains globally symmetric, cumbersome,
and potentially inefficient

• Spaces aim to solve the problem by providing an efficient memory
solution for teams at minimal cost to the application
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Examining Use of pSync Arrays

• New extensions

- Collectives are being enhanced to work with teams

- Memory allocation within teams through spaces

• Old ways

- pSync/pWrk arrays still need to be carefully managed by users

• Allocation within spaces prevents headache of managing pSync arrays
across teams

- Only partly eliminates management burden
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Solution: Implementation Manages pSync Arrays

• Focus on pSync (pWrk tuned to specific operations)

• Ability to move pSync management to implementation depends on:

- Ability to obtain memory without global synchronisation (solved by spaces)

- Ability to determine when memory can be reused (open problem)

• Thus, need to focus on safe memory reuse

- Three such implementations were designed
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pSync Management Goals

• Don’t be intrusive

- No new interfaces

• Low overhead

- Avoid additional synchronisation/communication costs

- Minimise memory footprint

• How to do this?

- There is no golden goose!
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How to Reuse pSync: Strategy 1 (Additional Synchronisation)

• Maintain n pSync arrays

• Each collective locks and uses a pSync array from the pool of free arrays

• Introduce additional synchronisation to communicate when particular
array can be reused

- Does not need to block

- When all PEs agree that a pSync is no longer in use, release lock and put the array
back in pool

• If free arrays depleted, wait or allocate more
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How to Reuse pSync: Strategy 2 (Unlock on User Barrier)

• Maintain n pSync arrays

• Each collective locks and uses a pSync from the pool of free arrays

• On barrier, unlock all arrays except for the current barrier’s array

• If free arrays depleted, wait or allocate more
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How to Reuse pSync: Strategy 3 (Pairwise Synchronisation)
• No pSync arrays - synchronisation is pairwise and memory is exclusive

- Each target PE needs a separate piece of memory to synchronise on

• Maintain multiple memory locations for each target to rotate through
(similar to before)

• Memory use dependent on synchronisation algorithm(s) used
- Tree and recursive doubling algorithms are usually sufficient

• Whenever a PE needs to synchronise with another as a part of the
chosen algorithm, it selects and locks one of the dedicated locations for
that other PE

• Receipt of a synchronisation message from another PE unlocks all
buffers for that PE
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Strategy 3: Recursive doubling
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Strategy 3: Tree (Fixed Structure)
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• Maintaining balanced tree results in edges changing based on root
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Strategy 3: Tree (Fixed Edges)
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• Maintaining edges results in unbalanced tree
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Connectivity Graph: Stride 2
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Connectivity Graph: Stride 4
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Connectivity Graph: Stride 8

0

8

1

9

2

10

3

11

4

12

5

13

6

14

7

15

14 Spaces and the Need for Distributed Memory Allocation



Connectivity Graph: All Strides
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Theoretical Analysis

• Strategy 1 - Additional Synchronisation

- Communication cost: O(3 log n) (worst case)

- Memory Cost: O(n log n)

• Strategy 2 - Unlock on User Barrier

- Communication cost: O(2 log n) (worst case)

- Memory cost: O(cn log n), where c is the average distance (in collective operations)
between barriers
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Theoretical Analysis

• Strategy 3 - Pairwise Synchronisation
- Recursive doubling

I Communication cost: O(log n)

I Memory cost: O(n log n)

- Tree (fixed structure)
I Communication cost: O(log n)

I Memory cost: O(n2)

- Tree (fixed edges)
I Communication cost: O(2 log n)

I Memory cost: O(3)
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SHOC Benchmark Suite: QTC

• Scalable Heterogeneous Computing (SHOC) benchmark suite
- Collection of benchmark programs testing the performance and stability of systems

using computing devices with non-traditional architectures for general purpose
computing, and the software used to program them

- Initial focus is on systems containing graphics processing units (GPUs) and
multi-core processors

• SHOC: quality threshold clustering (QTC)
- Clustering algorithm like k -means
- Instead of finding points near k centroids, group points based on some distance

threshold
I Variable number of clusters

- As remaining free points decreases, excess PEs are pruned from working group
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QTC Results

• Memory use for pairwise strategy
• Memory requirement: log n
• Memory use with unique,

traditional pSync arrays for each
team: n log n
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Conclusion

• Moving synchronisation buffer management to implementation shown to
be possible with set degrees of overhead

• Possible to scale linearly with respect to the number of PEs in the system

• May involve making decisions on acceptable tradeoffs
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Future Work

• Investigate when it may make sense to destroy old buffers

• Consider implications and potential benefits for applying tags to collective
operations

• Analyse other potential synchronisation algorithms that may be used

• Further study optimal connectivity graphs
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