
ORNL is managed by UT-Battelle
for the US Department of Energy

Explicit RMA and
Merged Requests

Swen Boehm
August, 2 2016

2 Explicit RMA and Merged Requests

Outline

• Motivation
• Proposed API
• Use Cases
•  Implementation
• Benchmark results
• Conclusion

3 Explicit RMA and Merged Requests

Motivation

• Current non-blocking operations need to be finished
using shmem_quiet, shmem_barrier or
shmem_barrier_all
– Will finish all outstanding operations

•  Improve control over outstanding RMA operations
by introducing explicit handles
– Only finish RMA operations that are needed to continue

computation

• Provide Interface to group related RMA operation

4 Explicit RMA and Merged Requests

Proposed API – Explicit requests

•  shmem_TYPE_put_nbe (TYPE *target, const TYPE *source,
size t nelems, int pe, shmem request handle t **handle);

•  shmem_putSIZE_nbe (TYPE *target, const TYPE *source,
size t nelems, int pe, shmem request handle t **handle);

•  shmem_TYPE_get_nbe (TYPE *target, const TYPE *source,
size t nelems, int pe, shmem request handle t **handle);

•  shmem_getSIZE_nbe (TYPE *target, const TYPE *source,
size t nelems, int pe, shmem request handle t **handle);

5 Explicit RMA and Merged Requests

Proposed API – Merged requests

•  shmem_TYPE_put_nbe multiple(TYPE *target,
const TYPE *source, size t nelems, int pe, shmem
request handle t **handle);

•  shmem_TYPE_get_nbe multiple(TYPE *target,
const TYPE *source, size t nelems, int pe, shmem
request handle t **handle);

6 Explicit RMA and Merged Requests

Proposed API – Requests completion

•  void shmem_test_req(shmem request handle t
*handle);
–  Test if operation is complete

•  void shmem_wait_req(shmem request handle t
*handle);
– Wait for operation to complete

7 Explicit RMA and Merged Requests

Use Cases

• Define Patterns
– Merge related operations and provide overlap with

computation
–  combine communication phase in stencil operation

• merged requests can provide the means for
customized asynchronous collectives
–  i.e. custom broadcast from any PE
–  Remove requirement for active-set
–  Provide overlap for collectives not updating the same

symmetric object

8 Explicit RMA and Merged Requests

Use Cases cont.

• Combine RMA operations of a thread into merged
request
–  allows concurrency between non-related RMA operations

issued by the same or different thread

9 Explicit RMA and Merged Requests

Explicit RMA Implementation using UCX as
Communicaton Layer

•  Implemented in the OpenSHMEM reference
Implementation
–  Reference implementation defines the new interface as

SHMEM extension
–  Implementation in UCX networking layer

COMMS

GASNet

OpenSHMEM API

Atomics RMA Collectives Utils
Symmetric
Memory

Core Components

10 Explicit RMA and Merged Requests

Benchmarks

• Ported OSU benchmarks to support implicit &
explicit RMA operations
– Micro benchmarks used to show that explicit RMA

operations do not decrease performance

• SSCA 1 benchmark ported to explicit RMA
operations
–  Synthetic Application Benchmark
–  Performance improvements of 49-72%

11 Explicit RMA and Merged Requests

Benchmarks - get-many latency

 0

 20

 40

 60

 80

 100

 120

 140

 8 16 32 64 128 512 1024 2048

L
a
te

n
cy

 o
f

G
e
t
O

p
e
ra

tio
n
 in

 m
ic

ro
se

co
n
d
s

Size of Message

Get Get−Implicit Get−Explicit

•  Implemented get_many (based on OSU get)
–  Benchmark uses get operations get data from multiple

nodes
–  Non-blocking operations outperform blocking get
–  Explicit non-blocking

operation has advantage
over implicit operation

12 Explicit RMA and Merged Requests

Benchmarks - SSCA 1

• Bioinformatics benchmark from DARPA High
Productivity Computing Systems program

• Smith- Waterman local sequence alignment
algorithm

•  Improvements focus on Kernel 1

13 Explicit RMA and Merged Requests

Benchmarks - SSCA 1

• SSCA #1
–  ssca1 and prefetch are unmodified

• Modified Benchmark in multiple steps
–  prefetch-nbi

•  Add put_nbi add the end of
the inner loop

–  prefetch-explicit
•  Replace implicit operations

with explicit operations
–  prefetch merged

•  Use merged requests

 0

 20

 40

 60

 80

 100

 120

 140

1 ppn 2 ppn 4 ppn 8 ppn

Ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

ssca1
prefetch

prefetch-nbi
prefetch-explicit

prefetch-merged

14 Explicit RMA and Merged Requests

Conclusion

• Familiar interface
• Better control over outstanding RMA operations
•  Increased performance for some communication

patterns

15 Explicit RMA and Merged Requests

Questions?

16 Explicit RMA and Merged Requests

Backup – Benchmarks

17 Explicit RMA and Merged Requests

OSU put

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 4 8 16 32 64 128 256 512 1024L
a
te

n
cy

 o
f
P

in
g
 P

o
n
g
 O

p
e
ra

tio
n
 (

R
o
u
n
d
−

tr
ip

)
in

 m
ic

ro
se

co
n
d
s

Size of Message

Put Put−Explicit Put−Implicit

18 Explicit RMA and Merged Requests

OSU get latency

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 8 16 32 64 128 256 512 1024 2048

L
a
te

n
cy

 o
f
G

e
t
O

p
e
ra

tio
n
 in

 m
ic

ro
se

co
n
d
s

Size of Message

Get Get−Explicit Get−Implicit

19 Explicit RMA and Merged Requests

OSU get-many latency

 0

 20

 40

 60

 80

 100

 120

 140

 8 16 32 64 128 512 1024 2048

L
a
te

n
cy

 o
f
G

e
t
O

p
e
ra

tio
n
 in

 m
ic

ro
se

co
n
d
s

Size of Message

Get Get−Implicit Get−Explicit

20 Explicit RMA and Merged Requests

OSU put message rate

 2×106

 2.5×106

 3×106

 3.5×106

 4×106

 4.5×106

 5×106

 5.5×106

 6×106

 6.5×106

 1 2 4 8 16 32 64 128 256 512 1024 2048

M
e
ss

a
g
e
 r

a
te

Size of Message

Put Put−Implicit Put−Explicit

21 Explicit RMA and Merged Requests

SSCA 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 nodes 4 nodes 8 nodes

Ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

ssca1
prefetch

prefetch-nbi
prefetch-explicit

prefetch-merged

