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Motivation 

• Current non-blocking operations need to be finished 
using shmem_quiet, shmem_barrier or 
shmem_barrier_all 
– Will finish all outstanding operations 

•  Improve control over outstanding RMA operations 
by introducing explicit handles 
– Only finish RMA operations that are needed to continue 

computation 

• Provide Interface to group related RMA operation 
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Proposed API – Explicit requests 

•  shmem_TYPE_put_nbe (TYPE *target, const TYPE *source, 
size t nelems, int pe, shmem request handle t **handle); 

•  shmem_putSIZE_nbe (TYPE *target, const TYPE *source, 
size t nelems, int pe, shmem request handle t **handle); 

•  shmem_TYPE_get_nbe (TYPE *target, const TYPE *source, 
size t nelems, int pe, shmem request handle t **handle); 

•  shmem_getSIZE_nbe (TYPE *target, const TYPE *source, 
size t nelems, int pe, shmem request handle t **handle);  
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Proposed API – Merged requests 

•  shmem_TYPE_put_nbe multiple(TYPE *target, 
const TYPE *source, size t nelems, int pe, shmem 
request handle t **handle); 

•  shmem_TYPE_get_nbe multiple(TYPE *target, 
const TYPE *source, size t nelems, int pe, shmem 
request handle t **handle);  
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Proposed API – Requests completion 

•  void shmem_test_req( shmem request handle t 
*handle); 
–  Test if operation is complete 

•  void shmem_wait_req( shmem request handle t 
*handle); 
– Wait for operation to complete 
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Use Cases 

• Define Patterns 
– Merge related operations and provide overlap with 

computation 
–  combine communication phase in stencil operation 

• merged requests can provide the means for 
customized asynchronous collectives 
–  i.e. custom broadcast from any PE 
–  Remove requirement for active-set 
–  Provide overlap for collectives not updating the same 

symmetric object 
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Use Cases cont. 

• Combine RMA operations of a thread into merged 
request 
–  allows concurrency between non-related RMA operations 

issued by the same or different thread  
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Explicit RMA Implementation using UCX as 
Communicaton Layer  

•  Implemented in the OpenSHMEM reference 
Implementation 
–  Reference implementation defines the new interface as 

SHMEM extension 
–  Implementation in UCX networking layer 

COMMS

GASNet

OpenSHMEM API

Atomics RMA Collectives Utils
Symmetric
Memory

Core Components



10 Explicit RMA and Merged Requests 

Benchmarks 

• Ported OSU benchmarks to support implicit & 
explicit RMA operations 
– Micro benchmarks used to show that explicit RMA 

operations do not decrease performance 

• SSCA 1 benchmark ported to explicit RMA 
operations 
–  Synthetic Application Benchmark 
–  Performance improvements of 49-72%  
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Benchmarks - get-many latency 
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•  Implemented get_many (based on OSU get) 
–  Benchmark uses get operations get data from multiple 

nodes 
–  Non-blocking operations outperform blocking get 
–  Explicit non-blocking 

operation has advantage 
over implicit operation 
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Benchmarks - SSCA 1 

• Bioinformatics benchmark from DARPA High 
Productivity Computing Systems program 

• Smith- Waterman local sequence alignment 
algorithm 

•  Improvements focus on Kernel 1 
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Benchmarks - SSCA 1 

• SSCA #1 
–  ssca1 and prefetch are unmodified 

• Modified Benchmark in multiple steps 
–  prefetch-nbi 

•  Add put_nbi add the end of 
the inner loop 

–  prefetch-explicit 
•  Replace implicit operations 

with explicit operations 
–  prefetch merged 

•  Use merged requests 
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Conclusion 

• Familiar interface 
• Better control over outstanding RMA operations 
•  Increased performance for some communication 

patterns 
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Questions? 



16 Explicit RMA and Merged Requests 

Backup – Benchmarks  
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OSU put 
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OSU get latency 
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OSU get-many latency 
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OSU put message rate 
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SSCA 1 
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