
ORNL is managed by UT-Battelle
for the US Department of Energy

Using Hybrid Model
OpenSHMEM + CUDA
to Implement
the SHOC
Benchmark Suite
Megan Grodowitz
(presenter)
grodowitzml@ornl.gov

Ed D’Azevedo
dazevedoef@ornl.gov

Sarah Powers
powersss@ornl.gov

Neena Imam
imamn@ornl.gov

2 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Outline

• The Hybrid Programming Model Problem
• SHOC Benchmark Suite
• Required Communication & Synchronization

Structures for SHOC
• Performance Results

3 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Accelerator Programming

• Accelerators in HPC systems
–  Xeon Phi or GPUs in current systems
–  Lower power per calculation
–  Can provide speedup

• Programming single accelerator
–  Run a CUDA or OpenCL kernel
–  The hardware vendors must focus on

this first

• Distributed Systems
–  Use a distributed model (MPI) as the

communication layer

4 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Hybrid CUDA+MPI Programming Model

Current Hybrid Model

Used in SHOC and other
HPC applications

Unified Model

Enabled by upcoming
hardware advancements…

5 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Using SHMEM for Hybrid Applications
• Current Hybrid model has limitations

–  No communication within kernels
–  Focus on work distribution to accelerators

•  Leads to patterns of programming
–  Communication is done in bulk
–  Synchronization/Collectives on per device (per node) basis

•  Porting Hybrid HPC applications…
–  Accelerator user base is a subset of HPC programmers
–  What if someone wants to switch to SHMEM from MPI?

•  Why are they switching? (Probably they are working on a part of the
code that is particularly ugly in MPI)

•  What constructs are needed to support the switch?
–  What is a path this user base can follow from Hybrid MPI code

to unified SHMEM code?

Programmers have
gotten used to this…

So hybrid programs
look a certain way…

And changing these codes depends on a relatively
small group of people.

6 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

SHOC Benchmarks
• Scalable HeterOgeneous

Computing Benchmark Suite
–  https://github.com/vetter/shoc/wiki

• Variety of algorithmic kernels
written in both CUDA and OpenCL

• Divided into 3 “Levels”
–  Level 0 : Raw speed tests

•  Max bandwidth, memory speed, flops, compile time

–  Level 1 : Fundamental Algorithms
•  12 total: BFS, FFT, GEMM, MD, MD5HASH, Neural Net,

Reduction, Scan, Sort, Spmv, Stencil2D, Triad
–  Level 2 : Application Inspired kernels

•  S3D, QT Clustering

7 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Parallelism in SHOC Benchmarks

• CUDA or OpenCL kernels
–  Serial = Single device, parallel across device cores

• MPI for communication
–  EP = embarrassingly parallel implementation
–  TP = truly parallel implementation

• Out of 14 total Level 1, Level 2 benchmarks
–  4 have TP implementation
– Other have EP only

•  Run Serial version on all devices, aggregate results
•  Can test contention for multi-device nodes
•  Cannot test internode communication

8 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Parallelism in SHOC Benchmarks

• All benchmarks are parallelized at the kernel level
–  Data parallel in CUDA/OpenCL programming mode

• Almost no computation done on CPUs
• One MPI rank / SHMEM PE per accelerator device
• Communication occurs after kernel completion

–  Basic TP model is compute results per device, then
compute results across all ranks / pes

• Total inter-device communication time
–  TP benchmarks: Extremely small communication time

compared to kernel computation time
–  EP benchmarks : No communication time

9 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

SHOC feature Requirements

•  Two main features needed
–  Teams
–  Collectives supporting teams

•  Two part porting
–  Port on Cray using the Cray teams extensions
–  Port to OpenSHMEM

10 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

QTC Main Loop

•  Reasonable pattern for distributed applications
–  Work proceeds asynchronously, with devices dropping out as work

decreases

•  Using a team split on color will support this pattern easily

11 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Teams API

•  This is the subset that was needed..
•  Translate PE get heavily used, since this is how point to

point get/put is made to work with teams
–  For arbitrary team composition, fast translate needs a table of

all pes in the team stored locally
–  Is there a scalable fast translate pe?

12 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Teams Implementation

•  Initial implementation used the Cray shmem teams
extension
–  Something is working, so we want to make it portable
–  This is not unreasonable. If I normally use a Cray (or whatever

I normally use), but just need something to run on other
systems some of the time…

•  So, we made a portable version that implements teams
API as used on Cray
–  Only variation is addition of a symmetric work space for using

allgather to perform a split operation
–  There are better algorithms for split, but using allgather is not

that out of the ordinary…
•  Exascale Algorithms for Generalized MPI_Comm_split,� Adam Moody,

Dong H. Ahn, and Bronis R. de Supinski, European MPI Users Group,
2011.

13 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Teams Implementation

•  Poor Scaling on split was expected, due to allgather, and it starts
to lose out at 32 nodes

•  Broadcast spends excess time signaling that data has arrived.
•  Barrier behavior for the Cray implementation indicates something

very different than the point to point synchronization we used

Lower is better

14 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Collectives

15 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Collective Implementation Notes
• Gather

–  Uses nonblocking get from root PE
–  Only requires O(1) symmetric space per PE

• Reduction
–  Kway tree of Pes
–  Relies on put to move data and wait to synchronize
–  Various values of K tried, ended up using binary tree to avoid

waiting on counters

•  Broadcast
–  Uses same tree structure as reduction

•  Prefix Scan
–  Uses standard algorithm
–  Relies on team barrier and point to point communication

16 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Collectives Performance Comparison

•  These are all team-based implementations
–  So we are not using shmem_*sum_to_all or shmem_*collect

• Gather using nonblocking get was a win
• Other collectives need better implementations to match

MPI

Lower is better

17 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

SHOC Performance of TP benchmarks

•  Boring results are... Good?
•  The overall benchmark performance is dominated by time to move data

over PCI Express Bus + time to execute kernel
•  SHMEM is being used as an MPI emulation layer, with no overall penalty
•  We only use one PE per node, since we only have 1 device per node

18 SHMEM+CUDA to implement SHOC
OpenSHMEM Workshop 2016

Conclusions and Future Directions

• Hybrid accelerator codes tend to be device focused
– Moving data to and from devices
–  Using teams to represent groups of devices
–  Using collectives and synchronization to coordinate

between devices

• SHMEM can replace MPI, but ends up looking more
like MPI due to lack of SHMEM within kernels

• Adding SHMEM to accelerator kernels…
– Want to preserve per device focus for performance and

locality
–  Adding multiple pes per device makes sense, but will

want teams of pes which are 1 per device, 1 per node

Thank you!

