Using Hybrid Model
OpenSHMEM + CUDA
to Implement |
the SHOC
Benchmark Suite

Megan Grodowitz
(presenter)
grodowitzml@ornl.gov

Ed D’'Azevedo
dazevedoef@ornl.gov

Sarah Powers
powersss@ornl.gov

Neena Imam
imamn@ornl.gov

ORNL is managed by UT-Battelle %OAK RIDGE
for the US Department of Energy National Laboratory

Outline

* The Hybrid Programming Model Problem
« SHOC Benchmark Suite

* Required Communication & Synchronization
Structures for SHOC

 Performance Results

%OAK RID(,E

al Labor:

Accelerator Programming

 Accelerators in HPC systems
— Xeon Phi or GPUs in current systems
— Lower power per calculation
— Can provide speedup

* Programming single accelerator
— Run a CUDA or OpenCL kernel
— The hardware vendors must focus on
this first
* Distributed Systems

— Use a distributed model (MPI) as the
communication layer

%OAK RIDGE

- National Laboratory

Hybrid CUDA+MPI Programming Model

Current Hybrid Model

Used in SHOC and other
HPC applications

MPI Rank on CPU

Communicate with
Other Ranks

Prepare Data

Move Data to GPU

Unified Model

Launch CUDA kernel >
Accelerator

Retrieve Results from
GPU Execute Kernel

A

Communicate with
Other Ranks

Enabled by upcoming
hardware advancements...

Accelerator

Launch Calculations

Communicate Directly
with Other Accelerators

Wait for Data from other
Accelerators

Launch Calculations

OAK RIDGE

- National Laboratory

Using SHMEM for Hybrid Applications

* Current Hybrid model has limitations
— No communication within kernels programmers have

gotten used to this...
— Focus on work distribution to accelerators

* Leads to pgttgrn_s of prqgrammlng So hybrid programs
— Communication is done in bulk look a certain way ...
— Synchronization/Collectives on per device (per node) basis

* Porting Hybrid HPC applications...

— Accelerator user base is a subset of HPC programmers

— What if someone wants to switch to SHMEM from MPI?

« Why are they switching? (Probably they are working on a part of the
code that is particularly ugly in MPI)

* What constructs are needed to support the switch?

— What is a path this user base can follow from Hybrid MPI code
to unified SHMEM code?

And changing these codes depends on a relatively
small group of people. ¥ OAK RIDGE

- National Laboratory

SHOC Benchmarks

» Scalable HeterOgeneous NI
Computing Benchmark Suite s /‘
— https://github.com/vetter/shoc/wiki OpenCL

* Variety of algorithmic kernels ’ \
written in both CUDA and OpenCL
. Divided into 3 “Levels” | CUDA. |

— Level 0 : Raw speed tests
* Max bandwidth, memory speed, flops, compile time
— Level 1 : Fundamental Algorithms

« 12 total: BFS, FFT, GEMM, MD, MD5HASH, Neural Net,
Reduction, Scan, Sort, Spmyv, Stencil2D, Triad

— Level 2 : Application Inspired kernels
« S3D, QT Clustering

%OAK RIDGE

al Labor:

Parallelism in SHOC Benchmarks

 CUDA or OpenCL kernels

— Serial = Single device, parallel across device cores

« MPI for communication

— EP = embarrassingly parallel implementation
— TP = truly parallel implementation

* Out of 14 total Level 1, Level 2 benchmarks
— 4 have TP implementation
— Other have EP only

* Run Serial version on all devices, aggregate results
* Can test contention for multi-device nodes

« Cannot test internode communication

%QAK RIDGE

- National Laboratory

Parallelism in SHOC Benchmarks

* All benchmarks are parallelized at the kernel level
— Data parallel in CUDA/OpenCL programming mode

* Almost no computation done on CPUs
* One MPI rank / SHMEM PE per accelerator device

« Communication occurs after kernel completion
— Basic TP model is compute results per device, then
compute results across all ranks / pes
* Total inter-device communication time

— TP benchmarks: Extremely small communication time
compared to kernel computation time
— EP benchmarks : No communication time
%OAK RID(;E

al Labor:

SHOC feature Requirements

Benchmark Requirements

QTC Team Split, Team Barrier, Team Broadcast,
Team AllReduce Sum

Scan Parallel Prefix Scan

Reduction AllReduce Sum

Stencil2D Reduce Sum, AllReduce Sum

Parallel Results DB

AllGather

 Two main features needed

— Teams

— Collectives supporting teams

» Two part porting

— Port on Cray using the Cray teams extensions
— Port to OpenSHMEM

%OAK RIDGE

- National Laboratory

QTC Main Loop

procedure QTC MAIN Loop
Calculate total number of ranks needed for current work
if my rank is needed to do work then
color + 1
else
color <+ 0
end if
mygroup < result of split mygroup by color
if color == 0 then
Exit Main Loop
end if
Move Data to CUDA device
Find local results using CUDA device
Use mygroup communicator to find global results using collectives
Use global results to create work for next iteration
goto top of main loop
end procedure

» Reasonable pattern for distributed applications

— Work proceeds asynchronously, with devices dropping out as work
decreases

» Using a team split on color will support this pattern easily
%OAK RIDGE

- National Laboratory

Teams API

void shmem_team_split (shmem_team_t parent_team , int color,
int key, shmem_team_t *newteam)

int shmem_team_translate_pe(shmem_team_t teaml, int teaml_pe,
shmem_team_t team2)

void shmem_team_barrier (shmem_team_t myteam, long *pSync)
void shmem _team_free(shmem _team_t *newteam)
int shmem_team_npes(shmem_team_t newteam)

int shmem_team mype(shmem_team_t newteam)

* This is the subset that was needed..

* Translate PE get heavily used, since this is how point to
point get/put is made to work with teams

— For arbitrary team composition, fast translate needs a table of
all pes in the team stored locally

— |Is there a scalable fast translate pe?
¥ OAK RIDGE

- National Laboratory

Teams Implementation

- Initial implementation used the Cray shmem teams
extension

— Something is working, so we want to make it portable

— This is not unreasonable. If | normally use a Cray (or whatever
| normally use), but just need something to run on other
systems some of the time...

* S0, we made a portable version that implements teams
API as used on Cray

— Only variation is addition of a symmetric work space for using
allgather to perform a split operation

— There are better algorithms for split, but using allgather is not
that out of the ordinary...

« Exascale Algorithms for Generalized MPI_Comm__split,, Adam Moody,
2D5>1r11g H. Ahn, and Bronis R. de Supinski, European MPI Users Group,

%OAK RIDGE

al Labor:

Teams Implementation

Lower is better

K Cray Split = OpenSHMEM Split

1.20E-03
1.00E-03
8.00E-04
6.00E-04
4.00E-04
2.00E-04

0.00E+00

ciiandll

2 4 8 16 32 64 128256512
Number of PEs

i Cray Bcast = OpenSHMEM Bcast

5.00E-05

4.00E-05

3.00E-05

2.00E-05

1.00E-05

0.00E+00

2 4 8 16 32 64 128256512
Number of PEs

& Cray Barrier “ OpenSHMEM Barrier

1.60E-04
1.40E-04
1.20E-04
1.00E-04
8.00E-05
6.00E-05
4.00E-05
2.00E-05
0.00E+00

. Luiid
2 4 8 16 32 64 128256512
Number of PEs

« Poor Scaling on split was expected, due to allgather, and it starts
to lose out at 32 nodes

- Broadcast spends excess time signaling that data has arrived.

 Barrier behavior for the Cray implementation indicates something
very different than the point'to point synchronization we used

%OAK RIDGE

- National Laboratory

Collectives

template<class T>
void gather (vector<T>& gvec, T *xval, int root,
shmem_team_t tm, long *pSyncBar);

template<class T>
void all_gather (vector<I>& gvec, T xval, shmem_team_t tm,
long *pSyncBar);

template<class T>
T reduction_sum (T val, int root, shmem_team_t tm,
long *pSyncBar);

template<class T>
T reduction_sum_all (T val, shmem _team_t tm,
long *pSyncBar);

template<class T>
T prefix_scan (T val, shmem_team_t tm, long *xpSyncBar);

template<class T>
T ex_prefix_scan (T val, shmem_team_t tm, long *pSyncBar);

template<class T>
void bcast (T *buf, int count, int root, shmem_team_t tm,
long *pSyncBar);
OAK RIDGE

- National Laboratory

Collective Implementation Notes
» Gather

— Uses nonblocking get from root PE
— Only requires O(1) symmetric space per PE

* Reduction
— Kway tree of Pes
— Relies on put to move data and wait to synchronize
— Various values of K tried, ended up using binary tree to avoid
waiting on counters
» Broadcast
— Uses same tree structure as reduction

* Prefix Scan
— Uses standard algorithm
— Relies on team barrier and point to point communication

%OAK RIDGE

al Labor:

Collectives Performance Comparison

Lower is better

K MPI AllGather ESHMEM AllGather Z MPI Sum ESHMEM Sum K MPI Gather © SHMEM Gather
10 1 10 7
= 1 S 0.1 =4 1
=] S =
E’_ 0.1 — g’_ 0.01 7 1 B | — B B g 0.1
(] (] (1]
£ £ £
- ITTTER TN A
0,001 !,.Jl};ljlll I | an l ‘ 0001
2 4 8 16 32 64 128256512 2 4 8 16 32 64 128 256 512 2 4 8 16 32 64 128256512
Number of PEs Number of PEs Number of PEs

* These are all team-based implementations
— S0 we are not using shmem_*sum_to_all or shmem_*collect

« Gather using nonblocking get was a win

. ﬁ)/l’igler collectives need better implementations to match

#,OAK RIDGE

- National Laboratory

SHOC Performance of TP benchmarks

4096

1024

GB/s

256

64

2

of Nodes (1 GPU / 1 rank per node)

4

8 16

==MP| Reduction==MPI Scan

MPI QTC

==MPI Stencil

Boring results are... Good?
The overall benchmark performance is dominated by time to move data

32

4096

1024

GB/s

256

64
2 4 8 16 32

of Nodes (1 GPU / 1 rank per node)

==SHMEM Reduction===SHMEM Scan
SHMEM QTC ==SHMEM Stencil

over PCIl Express Bus + time to execute kernel

SHMEM is being used as an MP| emulation layer, with no overall penalty
We only use one PE per node, since we only have 1 device per node

OAK RIDGE

- National Laboratory

Conclusions and Future Directions

» Hybrid accelerator codes tend to be device focused
— Moving data to and from devices
— Using teams to represent groups of devices
— Using collectives and synchronization to coordinate
between devices

« SHMEM can replace MPI, but ends up looking more
like MPI due to lack of SHMEM within kernels

» Adding SHMEM to accelerator kernels...

— Want to preserve per device focus for performance and
locality

— Adding multiple pes per device makes sense, but will
want teams of pes which are 1 per device, 1 per node

%OAK RID(,E

al Labor:

Thank you!

%OAK RIDGE

National Laboratory

