
ORNL is managed by UT-Battelle 
for the US Department of Energy

Oak Ridge National Laboratory
Computing and Computational Sciences Directorate

Ed D’Azevedo (dazevedoef@ornl.gov) 

Sarah Powers (powersss@ornl.gov)

Neena Imam (imamn@ornl.gov)

Oak Ridge National Laboratory

OpenSHMEM 2016
August 3, 2016

OpenSHMEM
Implementation of HPCG 
Benchmark



Background on HPCG 3.0

• High Performance Conjugate Gradient benchmark 
(with emphasis on sparse matrix computations) 
available at http://hpcg-benchmark.org

• HPCG was designed to be different from floating 
point intensive High Performance Linpack (HPL) 
TOP500 benchmark for LU factorization of dense
matrices

• C++ code using OpenMP and two-sided MPI 
• Solve elliptic partial differential equations (PDE) on 

nx ! ny ! nz processor grid, each processor has Lx !
Ly ! Lz local grid



Background on HPCG (2)
• Symmetric positive linear system stored as 

unstructured sparse matrix in compressed sparse 
row format, interior nodes have 27 non-zeros

• Linear system solved by preconditioned conjugate 
gradient (CG) iterative method

• Multi-grid preconditioner with symmetric Gauss-
Seidel smoother (sparse triangular solves)

• Communication kernels:
– Sparse matrix vector multiplication performs boundary 

Halo exchange with immediate neighbor processors, 
requires data rearrangement in message buffers

– MPI_Irecv + MPI_Send used in Halo exchange
– Global reductions in computing dot products and 

determining convergence



Background on HPCG (3)

• Benchmark prints out major components:
• DDOT: Global reduction in computing vector dot 

products
• SPMV: Sparse matrix-vector multiplication used in 

iterative method, includes communication in 
boundary halo exchange (y(:) <- A * x(:) )

• WAXPBY: Vector operations (W(:) <- a*X(:) + 
b*Y(:))

• MG: Multi-grid preconditioner including Gauss-
Seidel smoothing (sparse triangular solve)



Domain Decomposition



27-point Stencil Operator



Details of One-sided Implementation

• Initialization phase precomputes sizes and offsets 
into message buffers 

• buffers allocated in shared heap using shmalloc() 
(or MPI_Alloc_mem())

• shmem_double_put() (or MPI_Put() ) used instead 
of MPI_Send()

• SHMEM reduction (e.g. shmem_double_sum_all()) 
instead of MPI reduction

• MPI_Win_create+MPI_Win_fence+MPI_Win_free
used in MPI one-sided, data transfer using 
MPI_Put()



Code for Two-sided MPI



Code for SHMEM Halo Exchange (1)

• Synchronize neighbor processors for halo exchange 
using atomic shmem_int_inc() and 
shmem_int_wait_until()



Code for SHMEM Halo Exchange (2)

• Data transfer using shmem_double_put()



Code for MPI One-sided Halo Exchange

• Note MPI_Win_fence() has implicit synchronization



Numerical Experiments

• A 104 by 104 by 104 local grid was used in all 
cases

• OpenMP not activated
• HPCG writes out benchmark summary for times in

– DDOT: dot product 
– WAXPBY: vector operations (W(:) ß a*X(:) + b*Y(:) )
– SpMV: sparse matrix times vector (y(:) ßA(:,:) * x(:))
– MG: multi-grid preconditioning

• Note time for DDOT is small compared to time in 
MG. DDOT may have implicit synchronization and 
include idle time from load imbalance



Results on SGI Turing cluster
• The SGI Turing cluster consists of 16 nodes, each 

node with two Intel Xeon E5-2660 with 10 cores 
(total 20 cores or 40 virtual cores with hyper-
threading) and 128 GBytes of memory

• Mellanox InfiniBand Edge Switch, 36 QSFP ports, 
non-blocking capacity of 7.2Tbps, 16 Mellanox
passive copper cable with 100Gb/s each

• SGI MPT 2.13 module was used. Note maximum of 
640 MPI tasks using 40 MPI tasks per node (with 
hyper-threading) over 16 nodes

• Results suggest MPI-1, SHMEM, MPI-3 one-sided 
have similar performance



SGI Turing Cluster, 16 nodes



Cray XK7 (Titan)

• Total of 18,688 nodes, each node has 16 AMD 
cores, 32 GBytes of memory, 1 Nvidia K20X GPU 
(not used)

• Gemini interconnect, 3D torus network.
• Can run 1 to 16 MPI tasks per node.
• Only 15 (out of 16 max) MPI tasks on each node
• Cray-shmem 7.2.5
• MG is not communication intensive, difference less 

than 10%



Cray XK7 (Titan)



Cray XC30 (EOS)
• EOS has 736 nodes, each node has Intel Xeon E5-

2670 with two sockets, 8 cores each, (total16 cores 
or 32 virtual cores with hyper-threading) and 64 
Gbytes of memory

• Cray Aries interconnect with a network topology 
called Dragonfly, which has higher bandwidth and 
lower latency than Gemini.



EOS, 1 MPI task per node

• Run times of SPMV 
are similar for three 
implementations

• Run times of MG are 
similar for three 
implementations



EOS, 32 MPI tasks per node
• Run times of SPMV 

for MPI one-sided 
increase with higher 
number of processors

• MG is not 
communication 
intensive

• Run times of MPI 
one-sided in MG are 
less than 10% slower

• Conjecture that a 
background progress 
thread might be 
affecting affinity and 
performance 



Summary
• Implemented SHMEM version of HPCG-3.0 

benchmark for parallel sparse matrix computation
• Implemented MPI-3 one-sided version based on 

SHMEM version of HPCG
• Performed comparison of original MPI, SHMEM, 

MPI-3 one-sided versions on SGI Turing cluster, 
Cray XK7 (Titan), Cray XC30 (Eos)

• Results suggest all three versions have similar 
performance.



This work was supported by the United States
Department of Defense (DoD) and used resources
of the Computational Research and Development
Programs at Oak Ridge National Laboratory.

Acknowledgements


