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Background on HPCG 3.0

• High Performance Conjugate Gradient benchmark 
(with emphasis on sparse matrix computations) 
available at http://hpcg-benchmark.org

• HPCG was designed to be different from floating 
point intensive High Performance Linpack (HPL) 
TOP500 benchmark for LU factorization of dense
matrices

• C++ code using OpenMP and two-sided MPI 
• Solve elliptic partial differential equations (PDE) on 

nx ! ny ! nz processor grid, each processor has Lx !
Ly ! Lz local grid



Background on HPCG (2)
• Symmetric positive linear system stored as 

unstructured sparse matrix in compressed sparse 
row format, interior nodes have 27 non-zeros

• Linear system solved by preconditioned conjugate 
gradient (CG) iterative method

• Multi-grid preconditioner with symmetric Gauss-
Seidel smoother (sparse triangular solves)

• Communication kernels:
– Sparse matrix vector multiplication performs boundary 

Halo exchange with immediate neighbor processors, 
requires data rearrangement in message buffers

– MPI_Irecv + MPI_Send used in Halo exchange
– Global reductions in computing dot products and 

determining convergence



Background on HPCG (3)

• Benchmark prints out major components:
• DDOT: Global reduction in computing vector dot 

products
• SPMV: Sparse matrix-vector multiplication used in 

iterative method, includes communication in 
boundary halo exchange (y(:) <- A * x(:) )

• WAXPBY: Vector operations (W(:) <- a*X(:) + 
b*Y(:))

• MG: Multi-grid preconditioner including Gauss-
Seidel smoothing (sparse triangular solve)



Domain Decomposition



27-point Stencil Operator



Details of One-sided Implementation

• Initialization phase precomputes sizes and offsets 
into message buffers 

• buffers allocated in shared heap using shmalloc() 
(or MPI_Alloc_mem())

• shmem_double_put() (or MPI_Put() ) used instead 
of MPI_Send()

• SHMEM reduction (e.g. shmem_double_sum_all()) 
instead of MPI reduction

• MPI_Win_create+MPI_Win_fence+MPI_Win_free
used in MPI one-sided, data transfer using 
MPI_Put()



Code for Two-sided MPI



Code for SHMEM Halo Exchange (1)

• Synchronize neighbor processors for halo exchange 
using atomic shmem_int_inc() and 
shmem_int_wait_until()



Code for SHMEM Halo Exchange (2)

• Data transfer using shmem_double_put()



Code for MPI One-sided Halo Exchange

• Note MPI_Win_fence() has implicit synchronization



Numerical Experiments

• A 104 by 104 by 104 local grid was used in all 
cases

• OpenMP not activated
• HPCG writes out benchmark summary for times in

– DDOT: dot product 
– WAXPBY: vector operations (W(:) ß a*X(:) + b*Y(:) )
– SpMV: sparse matrix times vector (y(:) ßA(:,:) * x(:))
– MG: multi-grid preconditioning

• Note time for DDOT is small compared to time in 
MG. DDOT may have implicit synchronization and 
include idle time from load imbalance



Results on SGI Turing cluster
• The SGI Turing cluster consists of 16 nodes, each 

node with two Intel Xeon E5-2660 with 10 cores 
(total 20 cores or 40 virtual cores with hyper-
threading) and 128 GBytes of memory

• Mellanox InfiniBand Edge Switch, 36 QSFP ports, 
non-blocking capacity of 7.2Tbps, 16 Mellanox
passive copper cable with 100Gb/s each

• SGI MPT 2.13 module was used. Note maximum of 
640 MPI tasks using 40 MPI tasks per node (with 
hyper-threading) over 16 nodes

• Results suggest MPI-1, SHMEM, MPI-3 one-sided 
have similar performance



SGI Turing Cluster, 16 nodes



Cray XK7 (Titan)

• Total of 18,688 nodes, each node has 16 AMD 
cores, 32 GBytes of memory, 1 Nvidia K20X GPU 
(not used)

• Gemini interconnect, 3D torus network.
• Can run 1 to 16 MPI tasks per node.
• Only 15 (out of 16 max) MPI tasks on each node
• Cray-shmem 7.2.5
• MG is not communication intensive, difference less 

than 10%



Cray XK7 (Titan)



Cray XC30 (EOS)
• EOS has 736 nodes, each node has Intel Xeon E5-

2670 with two sockets, 8 cores each, (total16 cores 
or 32 virtual cores with hyper-threading) and 64 
Gbytes of memory

• Cray Aries interconnect with a network topology 
called Dragonfly, which has higher bandwidth and 
lower latency than Gemini.



EOS, 1 MPI task per node

• Run times of SPMV 
are similar for three 
implementations

• Run times of MG are 
similar for three 
implementations



EOS, 32 MPI tasks per node
• Run times of SPMV 

for MPI one-sided 
increase with higher 
number of processors

• MG is not 
communication 
intensive

• Run times of MPI 
one-sided in MG are 
less than 10% slower

• Conjecture that a 
background progress 
thread might be 
affecting affinity and 
performance 



Summary
• Implemented SHMEM version of HPCG-3.0 

benchmark for parallel sparse matrix computation
• Implemented MPI-3 one-sided version based on 

SHMEM version of HPCG
• Performed comparison of original MPI, SHMEM, 

MPI-3 one-sided versions on SGI Turing cluster, 
Cray XK7 (Titan), Cray XC30 (Eos)

• Results suggest all three versions have similar 
performance.
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