
System-level Transparent Checkpointing for
OpenSHMEM

Rohan Garg1 Gene Cooperman1 Jerome Vienne2

1Northeastern University
Boston, MA

2Texas Advanced Computing Center
The University of Texas at Austin

Austin, TX

August 2nd, 2016

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 1 / 20



Extended Collaborative Support Service (ECSS)

ECSS experts, many with advanced degrees in domain areas, are available
for collaborations lasting months to a year to help researchers
fundamentally advance their use of XSEDE resources.
Expertise is available over a wide range of areas:

• Performance Analysis,

• Petascale Optimization,

• E�cient use of Accelerators,

• I/O Optimization,

• Data Analytics

• Visualization

• use of XSEDE by science gateways

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 2 / 20



Table of contents

1 Motivation
What is Checkpointing ?
Why do we need to use checkpointing?
DMTCP

2 Related Work and Challenges
Related Work
Challenges

3 Experimental Evaluation
Experimental Setup
Experiments

Overhead
NAS BT
NAS SP

4 Conclusion

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 3 / 20



Motivation What is Checkpointing ?

What is Checkpointing ?

Definition

Checkpoint-Restart is the ability to save a set of running processes to a
checkpoint image on disk, and to later restart it from disk.

Checkpoint-Restart involves saving and restoring

• all of user-space memory

• state of all threads

• kernel state

• network state

• etc.

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 4 / 20



Motivation Why do we need to use checkpointing?

Why do we need to use checkpointing?

• Fault tolerance

• Scheduling and process migration

• Faster startup times

• Save/restore workspace (for interactive sessions)

• Managing tails (slower thread tasks) for multi-threaded applications

• Debugging

• Speculative execution (what-if scenarios)

• etc.

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 5 / 20



Motivation DMTCP

DMTCP: Distributed MultiThreaded CheckPointing

• Open source system-level checkpointing
• Transparent to the user

• Works without modifying the source code or binary

• User-space
• No kernel modules

• Handles distributed applications
• Centralized coordinator

• Supports multiple programming language
• C/C++, Java, Haskell, Lisp, Python, Perl, Matlab, R etc.

• Handles MPI libraries, resource managers, process managers, etc.
• Open MPI, MVAPICH2, Intel MPI, ...

Available at: http://dmtcp.sourceforge.net

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 6 / 20



Related Work and Challenges Related Work

Checkpoint-Restart with OpenSHMEM

Ali et al.(2011)

Proposed an application-specific fault tolerance mechanism

Hao et al.

• Presented at OpenSHMEM Workshop 2015

• More generic approach based on User Level Fault Tolerance (ULFM)

• Use shadow memory in which the shared memory regions of peers are
backed up by peers.

• The user code is responsible for invoking a chechpoint and for
restoring correct operation during a restart

• Copy the shared memory region along with privately mapped memory
to a peer process during runtime ) This places added pressure on the
network fabric and on the RAM.

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 7 / 20



Related Work and Challenges Challenges

Design modification of DMTCP to Support OpenSHMEM

The design of DMTCP had to be extended in few areas in order to support
both checkpointing of modern MPI implementations and checkpointing of
OpenSHEM:

• Unix domain sockets (Earlier MPI implementations generally did not
use UNIX domain sockets).

• SysV shared Memory objects: Only BSD-style shared memory regions
(using mmap and “MAP SHARED”) was initially supported.

• OpenSHMEM requires support for large shared memory regions created
by the user’s application.

• Absence of virtual memory. (Alternative strategy was created).

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 8 / 20



Experimental Evaluation Experimental Setup

Experimental Setup 1/3

Stampede Cluster

• Ranked #12 on latest TOP500

• CentOS 6.4
• 6,400 nodes

• Linux Kernel 2.6.32-431-el6
• 16-cores (dual sockets) Sandy Bridge Xeon E5-2680
• At least 1 Xeon Phi (KNC)
• 32 GB RAM

• InfiniBand FDR interconnect

• SLURM resource manager

• No swapfile

• Lustre Filesystem 2.5.5

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 9 / 20



Experimental Evaluation Experimental Setup

Experimental Setup 2/3

Software used:

• Intel Compiler 13.0.2.146

• MVAPICH2-X 2.0b

• NAS Benchmarks (BT & SP) with OpenSHMEM support

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 10 / 20



Experimental Evaluation Experimental Setup

Experimental Setup 3/3

Distribution of Processes

Num Num Processes NAS class
of PE’s of Nodes per node used

4 2 2 A
9 3 3 A
16 4 4 B
36 6 6 B
64 8 8 B
121 11 11 C
256 16 16 C

For a given number of PE’s, all the runs (with and without DMTCP) were
conducted on the same set of nodes to reduce the variability due to

network topology and tra�c.

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 11 / 20



Experimental Evaluation Experiments

Runtime Overhead (NAS BT)

4 9 16 36 64 121 256
Num. of PEs

0

20

40

60

80

100

T
im

e
 t

o
 c

o
m

p
le

te
 a

 r
u
n
 (

s)

w/o DMTCP

w/ DMTCP

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 12 / 20



Experimental Evaluation Experiments

Checkpoint Times for NAS BT

4 9 16 36 64 121 256

Num. of PEs

−20

0

20

40

60

80

100

120

C
h
e
ck

p
o
in

t 
ti

m
e
 (

s)

BT.A

BT.B

BT.C

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 13 / 20



Experimental Evaluation Experiments

Uncompressed Image Sizes for NAS BT

4 9 16 36 64 121 256

Num. of PEs

0

1

2

3

4

5

6

7

8

9

C
h
e
ck

p
o
in

t 
si

ze
 p

e
r 

p
ro

ce
ss

 (
G

B
)

BT.A

BT.B

BT.C

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 14 / 20



Experimental Evaluation Experiments

Restart times for NAS BT

4 9 16 36 64 121 256

Num. of PEs

−50

0

50

100

150

200

250

300

R
e
st

a
rt

 t
im

e
 (

s)

BT.A

BT.B

BT.C

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 15 / 20



Experimental Evaluation Experiments

Checkpoint Times for NAS SP

4 9 16 36 64 121 256

Num. of PEs

−20

0

20

40

60

80

100

120

C
h
e
ck

p
o
in

t 
ti

m
e
 (

s)

SP.A

SP.B

SP.C

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 16 / 20



Experimental Evaluation Experiments

Restart times for NAS SP

4 9 16 36 64 121 256

Num. of PEs

−50

0

50

100

150

200

250

C
h
e
ck

p
o
in

t 
ti

m
e
 (

s)

SP.A

SP.B

SP.C

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 17 / 20



Experimental Evaluation Experiments

General comments

• At the largest scale, 256 processes, the total data written to the disk
is 2.2 TB, with an e↵ective bandwidth of 20 GB per second.

• In all the cases, the checkpoint times are dominated by the time to
write the checkpoint data to stable storage, and the cost for
checkpointing the state of the application is negligible.

• We observe that the largest component in a checkpoint image is an
OpenSHMEM shared-memory region (90-97% of the total image size
in these experiments).

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 18 / 20



Conclusion

Conclusion and Future Work

• A system-level approach to checkpoint OpenSHMEM was presented
• Capability of saving the state of an entire computation for restart

• Working on a leader election strategy
• Only one copy of each shared memory region will be saved on a single

node
• Will reduce the time to write to back-end storage.

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 19 / 20



Acknowledgment

Acknowledgment

We would like to thank both Kapil Arya and Jiajun Cao for many useful
discussions on the internals of DMTCP, and the design of those internal
components. This work was partially supported by the National Science
Foundation under Grant ACI-1440788. We also acknowledge the support
of the Texas Advanced Computing Center (TACC) and the Extreme
Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number ACI-1053575.

System-level Transparent Checkpointing for OpenSHMEM August 2nd, 2016 20 / 20


