
C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions Towards
Hybrid Programming and

Heterogeneous Computing

David Knaak and Naveen Namashivayam
Cray Inc.

OpenSHMEM Workshop 2015

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 2

Objectives for this talk

● Overview of 6 features being proposed for
OpenSHMEM that are based on features currently in
Cray SHMEM

● Our goal is to advance OpenSHMEM with new,
desirable, and proven features

● Today’s audience:

● For some, these are new concepts

● For some, you are asking for these

● For some, you are already involved in discussing

● See our paper for more details; see Redmine for full

● A starting point for discussion with OpenSHMEM
community

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 3

What makes for a desirable, new OpenSHMEM feature?

● Improves ease of OpenSHMEM programming

● Improves performance of OpenSHMEM programs

● User friendly API

● Aids portability by hiding system differences in

specific implementations

● Consistent with existing OpenSHMEM API

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 4

Why do we need more than current API?

Primarily due to trends in system architectures for
exascale:

● Increased complexity

● Increasing number of cores in multi-core processors

● memory hierarchies

● distributed and shared and high bandwidth

● Processor accelerators

● Increased network capabilities to offload

communication work from compute processors

● Other new concepts that help programmability and

performance

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 5

The 6 Proposed Features (Redmine Ticket #)

● Alltoall Collectives

● Flexible PE Subsets, a.k.a. Teams

● Thread-Safety

● Local Shared Memory Pointers

● Put With Signal

● Non-Blocking Put and Get

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 6

Alltoall Collectives (Redmine #182, #183)

● All-to-all pattern of communication is common in

programs

● Each PE exchanging data with every other PE in the

defined set

● Naive implementation usually far from optimal

● Sophisticated implementation complex and can be

system-specific - best to hide it in the library

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 7

Alltoall Collectives API – 3 routines

● shmem_alltoall - fixed size data

● shmem_alltoallv - variable size data and

variable source/dest offsets

● shmem_team_alltoall - using teams syntax

(using proposed Teams, see below)

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 8

Alltoall Collectives Performance

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 9

Flexible PE Subsets, a.k.a. Teams (Redmine #185)

● An alternative Teams proposal (Redmine #179)

● Current active set specification not flexible enough

● Proposed feature allows a set of PEs to be divided in

arbitrary ways

● Similar to MPI and UPC teams : color and key

● Lots of issues to be hashed out

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 10

Flexible PE Subsets API – 7 routines

● shmem_team_split - split existing team as

needed using color and key

● shmem_team_create_strided - w/ stride

argument, NOT power-of-2

● shmem_team_translate_pe - rank in one team

to corresponding rank in another team

● shmem_team_npes - how many in this team

● shmem_team_mype - my rank in this team

● shmem_team_barrier - barrier for just this

team

● shmem_team_free - release resources

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 11

Thread-Safety (Redmine #186)

● Hybrid programming such as SHMEM and OpenMP

● Execution by multiple threads per PE can be more

efficient than by PEs alone

● Multiple threads per PE can directly access PE's

symmetric memory

● OpenSHMEM needs to be thread safe

● Proposed support is basic - Puts, Gets, AMOs

● Can expand API in future as need arises

● Can be used with "Communications Contexts"

(Redmine #177)

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 12

Thread-Safety API – 6 routines
● shmem_init_thread - in place of shmem_init

● shmem_query_thread - query current level

● shmem_thread_register - required before
using a thread

● shmem_thread_unregister - when done using a
thread

● shmem_thread_quiet - completion of
outstanding communication

● shmem_thread_fence - ordering of
communication

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 13

Thread-Safety Performance

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 14

Thread-Safety Performance

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 15

Local Shared-Memory Pointers (Redmine #70)

● shmem_local_ptr is different from shmem_ptr which

supports off-node direct references

● shmem_local_ptr is for on-node references

● Local in sense of on same node; define node:

● group of processors, memory, and network

components that acts as a network end point

● the memory on a node is addressable by all processors

on the node without having to go through the network

● direct addressability can have lower latency and higher

bandwidth

● Use when direct on-node references can be more efficient

than through API calls

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 16

Local Shared-Memory Pointers API – 3 routines
● shmem_local_ptr - returns address or NULL

● shmem_local_npes - how many PEs are local

● shmem_local_pes - which PEs are local

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 17

Non-Blocking Put and Get (Redmine #113)

● Desirable to overlap communication between PEs and

computation by PEs

● Current blocking Put and Get don't allow this

● Overlap by issuing non-blocking call, than later wait for

completion

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 18

Non-Blocking Put and Get API

● shmem_<type>_put_nb

● shmem_put<size>_nb

● shmem_<type>_get_nb

● shmem_get<size>_nb

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 19

Put With Signal (Redmine #77)

● Combines sending data with sending a signal that data

has arrived

● Easier to program

● Potential for better performance

● Blocking and non-blocking implicit versions

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 20

Put With Signal API – many routines

● shmem_<type>_put_signal

● shmem_put<size>_signal

● shmem_<type>_put_signal_nb

● shmem_put<size>_signal_nb

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 21

Put With Signal Performance

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 22

Conclusion

● These 6 features have been implemented in Cray

SHMEM and are already being used

● We believe these are valuable for many OpenSHMEM

programs

● We request all 6 features be given careful

consideration for OpenSHMEM API

● We will work within the OpenSHMEM community for

consensus

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 23

Acknowledgements

● Monika ten Bruggencate, Kim McMahon, Steve
Oyanagi, Nick Radcliffe.

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 24

Question?

C O M P U T E | S T O R E | A N A L Y Z E

OpenSHMEM Extensions

August 2015 OpenSHMEM Workshop 2015 25

