
1 / 23

Naveen Namashivayam, Dounia Khaldi, Deepak Eachempati, Barbara Chapman

University of Houston
{nravi, dounia, dreachem, chapman}@cs.uh.edu

August 5, 2015

Extending Strided Communication Interface
in OpenSHMEM

OpenSHMEM 2015: Second workshop on OpenSHMEM and Related Technologies

Extending
OpenSHMEM

Strides

Introduction and Motivation

2 / 23

Introduction

Background

Assessment

Motivation

Proposal

Experimental
Analysis

Related Work

Conclusion &

Future Work

• Data transfers in OpenSHMEM:
 Contiguous vs Non-contiguous

• Utilization vs Implementations – how optimized are the

strided API routines in different implementations?

• Support different stride orientations?

• Support for aggregate data types – e.g. array of structures?

• Existing proposals and extensions for strided routines

Extending
OpenSHMEM

Strides

Strided Communication Routines

3 / 23

Introduction

Background

Assessment

Motivation

Proposal

• shmem_TYPE_iget and shmem_TYPE_iput routines are used
to remotely access strided data

• All RMA routines usually take source (src_ptr) and destination
pointers (dest_ptr) along with the remote PE (pe_id)

• Strided routines in particular takes stride size (src_stride,
dest_stride) and number of elements (nelems)

• Fixed to a particular data type
 (short, int, long, double, float, long long, long double)

shmem_double_put(dest_ptr, src_ptr, nelems, pe_id);

shmem_double_iput(dest_ptr, src_ptr, dest_stride, src_stride,

 nelems, pe_id);

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Assessment of Strided Routines

4 / 23

Introduction

Background

Assessment

Motivation

Proposal

• Baseline algorithm – implement
single strided access as multiple
contiguous RMA accesses

• Alternative 1:
 Use network Scatter-Gather

• Alternative 2:
 Software approach - pack/unpack

void shmem_long_iput(

 long *dest_ptr,

 const long *src_ptr,

 ptrdiff_t dest_stride,

 ptrdiff_t src_stride,

 size_t nelems, int pe)

{

 for (int i = 1; i <= nelems; i++) {

 shmem_long_put(dest, src,

 nelems,

 pe_id);

 dest_ptr += dest_stride;

 src_stide += src_stride;

 }

}

Experimental
Analysis

Related Work

Conclusion &

Future Work

A[0]

long

A[1]

long

A[2]

long

A[3]

long

A[4]

long

A[5]

long

A[6]

long

A[7]

long

A[8]

long

A[9]

long

long A[10]

Extending
OpenSHMEM

Strides

Purpose of Assessment and Comparison Details

5 / 23

Introduction

Background

Assessment

Motivation

Proposal

• Compared 6 different OpenSHMEM Implementations

• Purpose of the assessment
• Not to compare different implementations
• But to compare strided routines in different

implementations against the baseline algorithm

• Compared shmem_TYPE_iput and shmem_TYPE_iget with
multiple shmem_TYPE_put and shmem_TYPE_get calls

1. Cray SHMEM in Cray MPT 2. SGI SHMEM in SGI MPT

3. UH SHMEM – GASNet 4. UH SHMEM – UCCS

5. OpenSHMEM in Open MPI 6. OpenSHMEM in MVAPICH2-X

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Experimental Setup

6 / 23

Introduction

Background

Assessment

Motivation

Proposal

Name Nodes Cores per
Node

Processor
Type

Interconnect

Cray
XC 30

64 32 Intel Xeon E5
Sandy Bridge

Dragonfly
Interconnect with

Aries

SGI Altix 12 12 Intel Xeon
X5660

Mellanox
ConnectX-2 QDR

HCA 1 port

Whale 81 8 AMD Opteron 4xInfiniBand DDR
2012 switch

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Results Analysis

7 / 23

Introduction

Background

Assessment

Motivation

Proposal

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Different Stride Orientations – 1

Introduction

Background

Assessment

Motivation

Proposal

• Contiguous data of same basic data type (yes, with TYPE_put/get)

• Element-wise strided data of same basic data type (yes, with TYPE_iput/iget)

• Block-wise strided data of same basic data type

• Contiguous data of structure data type (yes, with putmem/getmem)

• Strided data of structure data type – strides should be blocks

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Different Stride Orientations – 2

9 / 23

Introduction

Background

Assessment

Motivation

Proposal

• Single element

• Group of elements of same
data type

• Group of elements of
different data types

(a) Checker Board Orientation (b) Matrix Orientation

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Proposal for Generic Strided Routines

10 / 23

Introduction

Background

Assessment

Motivation

Proposal

• Generic strided routine – support aggregate data types
(e.g. blocks of basic-type elements, structure types)

• Similar to shmem_putmem and shmem_getmem

• src_stride, dest_stride and blksize specified in bytes

• nblks being the number of blocks

 void shmem_iputmem (void *dest_ptr, const void *src_ptr,

 ptrdiff_t dest_stride, ptrdiff_t src_stride,

 size_t blksize, size_t nblks, int pe_id);

void shmem_igetmem (void *dest_ptr, const void *src_ptr ,

 ptrdiff_t dest_stride , ptrdiff_t src_stride,

 size_t blksize, size_t nblks, int pe_id);

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Implementation for shmem_iputmem

Introduction

Background

Assessment

Motivation

Proposal

• Different Algorithms, Hardware and Software Techniques

• Implement on top of existing OpenSHMEM routines

• Algorithm 1* – Use shmem_putmem

• Algorithm 2* – Use combinatons of shmem_iput128,

shmem_iput64, and shmem_iput32

• Algorithm 3 – Uses a predicate table to select between
Algorithm 1 and Algorithm 2

Experimental
Analysis

Related Work

Conclusion &

Future Work

* use corresponding OpenSHMEM get routines for shmem_igetmem

Extending
OpenSHMEM

Strides

Algorithm 1: Using shmem_putmem

12 / 23

Introduction

Background

Assessment

Motivation

Proposal

for (i = 1, i ≤ nelems, i++) do

 shmem putmem(dest_ptr, src_ptr, blksize, pe_id)

 dest_ptr += dest_stride

 src_ptr += src_stride

end for

• Implementing using multiple
shmem_putmem

• Call shmem_putmem along the y-axis
• Number of shmem_putmem will be equal

to the number of elements (nelems)
• More number of SHMEM calls
• Normal implementation – support all

possible src_stride, dest_stride and
blksize

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Implementation – Algorithm 2

13 / 23

Introduction

Background

Assessment

Motivation

Proposal

if (check whether shmem_iput32 can be used)

 if (check whether shmem_iput128 can be used)

 call shmem_iput128 for each 16 byte chunk

 update dest_ptr and src_ptr

 if (check whether shmem_iput64 can be used)

 call shmem_iput64 for each remaining 8 byte chunk

 update dest_ptr and src_ptr

 if (check whether shmem_iput32 can be used)

 call shmem_iput32 for each remaining 4 byte chunk

else

 use ALGORITHM 1

• Implementing using multiple shmem_iput128,
shmem_iput64, and/or shmem_iput32 calls

• Call iput routines along the x-axis
• Shift between different types
• Suitable for small data sizes
• Does not support all the values for src_stride,

dest_stride and blksize

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Performance Analysis – Algorithm 1 and 2

14 / 23

Introduction

Background

Assessment

Motivation

Proposal

Stride size – Block size (bytes)

Block Size (bytes) 4 16 64 256 1024 4096

16 iput iput iput iput iput iput

64 iput iput iput iput iput iput

128 putmem iput iput iput iput iput

256 putmem putmem iput iput iput iput

512 putmem putmem putmem putmem putmem putmem

1024 putmem putmem putmem putmem putmem putmem

4096 putmem putmem putmem putmem putmem putmem

16384 putmem putmem putmem putmem putmem putmem

• Implemented shmem_iputmem using Algorithm 1
(shmem_putmem) and Algorithm 2 (shmem_iputX)

• Compared both the implementations for different stride and block
size

• Total array size is kept fixed at 64 MiB
• Algorithm 1 performs well for large block size and Algorithm 2 for

small block sizes

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Tuned Baseline Algorithm - Analysis

15 / 23

Introduction

Background

Assessment

Motivation

Proposal

• Based on previous analysis, designed a tuned baseline Algorithm
using both Algorithm 1 and Algorithm 2

• Tuned Algorithm – will select either Algorithm 1 or Algorithm 2
based on the block size

• For small block sizes will select Algorithm 2 and for large block
sizes will select Algorithm 1

bool α = predicate_lookup_table(dest_stride, src_stride, blksize);

if (α == 0) then

 call Algorithm_1(using shmem_putmem)

else

 call Algorithm_2(using shmem_TYPE_iput)

end if

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Tuned Baseline Algorithm - Implementation

16 / 23

Introduction

Background

Assessment

Motivation

Proposal

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

2D Halo Exchange Benchmark

17 / 23

Introduction

Background

Assessment

Motivation

Proposal

• Data decomposition across single dimension
• Performance of three Algorithms
• Fixed Data Size of 128 MiB

• Cray SHMEM 7.2.2

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Related Work

18 / 23

Introduction

Background

Assessment

Motivation

Proposal

• complementary to shmem_TYPE_aput and shmem_TYPE_aget *
proposed at OUG last year

• would be identical for TYPE=“byte”
• may be adapted as shmem_aputmem and

shmem_agetmem within that framework

• Other PGAS models – Coarray Fortran (CAF)
• Strided support in CAF – generic and support data transfers in

blocks
• Derived Data Types in MPI

http://nic.uoregon.edu/pgas14/oug_submissions/oug2014_submission_4.pdf
http://www.csm.ornl.gov/OpenSHMEM2014/documents/talk2_hammond_OUG14.pdf

Experimental
Analysis

Related Work

Conclusion &

Future Work

*For reference, see:

http://nic.uoregon.edu/pgas14/oug_submissions/oug2014_submission_4.pdf
http://nic.uoregon.edu/pgas14/oug_submissions/oug2014_submission_4.pdf
http://nic.uoregon.edu/pgas14/oug_submissions/oug2014_submission_4.pdf
http://www.csm.ornl.gov/OpenSHMEM2014/documents/talk2_hammond_OUG14.pdf
http://www.csm.ornl.gov/OpenSHMEM2014/documents/talk2_hammond_OUG14.pdf

Extending
OpenSHMEM

Strides

Conclusion and Future Work

19 / 23

Introduction

Background

Assessment

Motivation

Proposal

• Block-wise strided data transfer should be supported by
OpenSHMEM

• Support for aggregate data types like array of structures

• Performance results on basic benchmarks and the usage of these
block-wise strides in applications are discussed; early evaluations
shows 64% improvements on using predicate_lookup_table

• Exploring use of additional parameters for predicate lookup table
to optimize selection logic

• Exploring other options for optimizations, rather than using the
existing APIs

Experimental
Analysis

Related Work

Conclusion &

Future Work

Extending
OpenSHMEM

Strides

Acknowledgements

20 / 23

Introduction

Background

Assessment

Motivation

Proposal

Experimental
Analysis

Related -
Future Work

Conclusion

• TOTAL

• HPC Tools, University of Houston

• Oak Ridge Leadership Computing Facility (OLCF) at the
Oak Ridge National Laboratory

• Redmine: Extension #58

21 / 23

Naveen Namashivayam, Dounia Khaldi, Deepak Eachempati, Barbara Chapman

University of Houston
{nravi, dounia, dreachem, chapman}@cs.uh.edu

August 5, 2015

Extending Strided Communication Interface
in OpenSHMEM

OpenSHMEM 2015: Second workshop on OpenSHMEM and Related Technologies

