
From MPI to OpenSHMEM:
Porting LAMMPS

C. Tang, A. Bouteiller, T. Herault,
M.G. Venkata, G. Bosilca

OpenSHMEM Workshop 2015, Aug. 5, Annapolis, MD

Motivation
•  1 sided model: potential for large gains (major on

injection rate, minor in latency)
•  How hard is it to deploy, in practice ?
•  The community needs some recipes and guidelines

2

�����������������������������������

��
��
�
��
�
�
��
�
��
���
�
��
��
�

���������

������������

������������������������
����������������������
����������

��

�����

�����

�����

�����

�����

�����

� � �� �� ��� ��
��������������������

����������������

�����������������������
���������������������������������
���������������������

� � �� �� ��� �� �� ��� ���

Why LAMMPS
•  Large-scale Atomic/Molecular Massively Parallel

Simulator
•  Widely used in production
•  Solid-state materials (metals, semiconductors)
•  Soft matter (biomolecules, polymers)
•  Etc.

•  MPI based application

3

by Sandia National Lab

Why LAMMPS

•  Rhodopsin
(8x8x8x32k atoms)

•  Strong Scaling
shows potential for
substantial
improvement

4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

256
512

1024
2048

4096

T
im

e
 E

la
p
se

d
 (

se
c)

Number of Processes

Computation
MPITime

nprocs MPI%
256 5.5
512 12.6
1024 18.1
2048 25.4
4096 38.5

86.5%&

8.3%&

1.7%&
1.1%&

0.7%&

0.5%&

1.1%&13.5%&

Computa2on&

MPI_Send&

MPI_Init&

MPI_Wait&

MPI_Allrecude&

MPI_Waitany&

Others&MPI&func2ons&

MPI Usage in LAMMPS
•  Goal: hybrid MPI/Shmem application, upgrade to high

return routines first
•  Profiling with mpiP: more than 167 MPI call sites
•  MPI_Send dominates the MPI wait time.
•  Remap_3d() sends 32.45% of the data
•  Initial effort on this operation

5 @512 processes

2-D decomposition of 3D-FFTs

6

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 52

 56

 60

 64

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

P
ro

ce
ss

Process

 0

 2000

 4000

 6000

 8000

 10000

 12000

D
a

ta
 (

B
yt

e
)

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 52

 56

 60

 64

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

P
ro

ce
ss

Process

 0

 2000

 4000

 6000

 8000

 10000

 12000

D
a

ta
 (

B
yt

e
)

8x8
process

grid

1d-fft fast axis 1d- fft mid axis 1d-fft slow axis

Remap1 Remap2

Fast

Slow

Mid

3D-FFT in LAMMPS – P(x,y,z,e)
•  Multiple 3D FFTs per iteration, work on separate data

structures

7

1d-fft fast axis 1d- fft mid axis 1d-fft slow axis

Remap1 Remap2 Remap3 Remap0

1d-fft fast axis 1d- fft mid axis 1d-fft slow axis

Remap4 Remap5 Remap6

1d-fft fast axis 1d- fft mid axis 1d-fft slow axis

Remap4 Remap5 Remap6

1d-fft fast axis 1d- fft mid axis 1d-fft slow axis

Remap4 Remap5 Remap6

3D-FFT_e

3D-FFT_x

3D-FFT_y

3D-FFT_z

MPI and its implicit synchros

8

Pack

in

PE0 - Sender PE1 - Receiver

MPI_send

out

Scratch
unPack

MPI_Irecv

Matching

FFT_x FFT_x

FFT_y

Eager data

RDMA Data

Scratch

Rendez-vous:
Scratch is ready

MPI_Wait

Simplified view: every process sends and receive from/to multiple peers

MPI and its implicit synchros

9

Pack

in

PE0 - Sender PE1 - Receiver

MPI_send

out

Scratch
unPack

MPI_Irecv

Matching

FFT_x FFT_x

FFT_y

Eager data

RDMA Data

Scratch

Rendez-vous:
Scratch is ready

MPI_Wait 2 sided: each side
provides the target

address

MPI and its implicit synchros

10

Pack

in

PE0 - Sender PE1 - Receiver

MPI_send

out

Scratch
unPack

MPI_Irecv

Matching

FFT_x FFT_x

FFT_y

Eager data

RDMA Data

Scratch

Rendez-vous:
Scratch is ready

MPI_Wait

Implicit
synchronization

Memory
exposure

starts

Memory
exposure

ends

Conversion: put target offsets

• 1sided: other processes need to understand
each others’ memory layout
•  Scratch buffers allocated in the symmetric address space
•  Each PE has a different communication plan
•  PE1 receives 1MB from PE0, PE2’s offset in target scratch is then at base+1MB
•  PE2 receives 2MB from PE0, PE1’s offset in target scratch is then at base+2MB

•  The plan is invariant: we exchange all offsets once, during startup

11

1 . . .

2 shmem int max to a l l (& s c r a t c h s i z e , &s c r a t c h s i z e , 1 , 0 , 0 , nprocs ,

3 pWrk1 , pSync1) ;

4 plan�>s c ra t ch = (FFT DATA ⇤) shmem malloc (s c r a t c h s i z e ⇤ s izeof (FFT DATA)) ;

5 . . .

Listing 1.1: Allocating the scratch bu↵ers in the Partitioned Global memory
space, as needed for making them targets in shmem put.

1 . . .

2 plan�>r emo t e o f f s e t = (int ⇤) shmem malloc (nprocs⇤ s izeof (int)) ;

3 for (i = 0 ; i < plan�>nrecv ; i++)

4 shmem int p(&plan�>r emo t e o f f s e t [me] , plan�>r e c v bu f l o c [i] ,

5 plan�>r e cv proc [i]) ;

6 shmem fence () ;

7 . . .

Listing 1.2: Exchanging the o↵sets in the target scratch bu↵ers; a parameter to
shmem put that was not required with MPI Send.

As a consequence, although processes may receive a di↵erent amount of data
during the irregular communication pattern, the scratch bu↵er must still be of
an identical size at all PEs, which must be su�cient to accommodate the maxi-
mum size across all PEs. This concept simplifies the management of the global
memory space at the expense of potentially increasing the memory consumption
at some PEs. Another benign consequence is the need to determine, upon the
creation of the plan structure, the largest memory space among all PEs (line 2
in Listing 1.1).

Irregular communication patterns and target o↵sets: Except for the above com-
munication semantics di↵erence, most of the communication parameters at the
sender remain the same (e.g., send bu↵er address and size, target peer pro-
cesses). A notable exception is that, unlike in the two-sided model in which the
receiver is in charge of providing the target bu↵er address during the MPI Irecv,
in the OpenSHMEM version it must be known at the origin before issuing the
shmem put. Although the scratch bu↵ers are in the symmetric address space,
and it is therefore simple to compute the start address of this bu↵er, the partic-
ular o↵set at which a process writes into the scratch bu↵er is dependent upon
the cumulative size of messages sent by processes whose PE identifier is lower.
As the communication pattern is irregular, that o↵set is not symmetric between
the di↵erent PEs and cannot be inferred at the origin independently. Ultimately,
this complication stems from the di↵erent synchronization models between one-
sided and two-sided operations: as the sender doesn’t synchronize to establish a
rendezvous with the receiver before performing the remote update, in the one-
sided model, the target address must be pre-exchanged explicitly. Fortunately,
we noted that, in the remap 3d function, the o↵set in the target bu↵er is in-
variant for a particular plan, hence we only need to transmit the o↵set in the

Conversion: put completion signaling

•  In two sided, MPI_Waitany tracks the
completion of iRecv
•  In one sided, the target cannot tell directly

when put has completed
•  Plan->remote_status is initialized in status “WAIT”, the target issues
•  shmem_putmem(plan->offset[me], …, tgt);
•  shmem_fence();
•  shmem_int_p(plan->remote_status[me],
READY, tgt);

•  Unpack starts when status is read as READY in a while loop over all
statuses

12

Conversion: signaling exposure
•  The same remap plan is reused multiple times
•  Risk of scratch buffer overwrite between different axis

•  Multiple possible strategies
•  Bulk synchronization (Barrier)
•  Fine grain synchronization (per-scratch readyness with shmem_int_p)

13

Pack

in

PE0 - Sender PE1 - Receiver

Shmem_put

out

Scratch
unPack

Data

Shmem_fence
Shmem_int_p

Signal

FFT_x FFT_x

MPI_Barrier()
MPI_Barrier()

FFT_y FFT_y Everyone’s scratch is ready

Symmetric
Object

Scratch Pack

in

PE0 - Sender PE1 - Receiver

Shmem_put

out

Shmem_fence

Scratch

unPack

Shmem_int_p

Scratch ready
Shmem_int_p

Data

Signal

FFT_x FFT_x

FFT_y

HybridBarrier ChkBuff/AdvChkBuff

Conversion: signaling exposure
•  The same remap plan is reused multiple times
•  Risk of scratch buffer overwrite between different axis

•  Multiple possible strategies
•  Bulk synchronization (Barrier)
•  Fine grain synchronization (per-scratch readyness with shmem_int_p)

14

Pack

in

PE0 - Sender PE1 - Receiver

Shmem_put

out

Scratch
unPack

Data

Shmem_fence
Shmem_int_p

Signal

FFT_x FFT_x

MPI_Barrier()
MPI_Barrier()

FFT_y FFT_y Everyone’s scratch is ready

Symmetric
Object

Scratch Pack

in

PE0 - Sender PE1 - Receiver

Shmem_put

out

Shmem_fence

Scratch

unPack

Shmem_int_p

Scratch ready
Shmem_int_p

Data

Signal

FFT_x FFT_x

FFT_y

Technical shortcoming:
Shmem_barrier_all takes a
fixed stride PE distribution

The group of PE participating
in a plan are not distributed

that way, we have to use
MPI_Barrier to cover the right

group….

Conversion: signaling exposure
•  The same remap plan is reused multiple times
•  Risk of scratch buffer overwrite between different axis

•  Multiple possible strategies
•  Bulk synchronization (Barrier)
•  Fine grain synchronization (per-scratch readyness with shmem_int_p)

15

Pack

in

PE0 - Sender PE1 - Receiver

Shmem_put

out

Scratch
unPack

Data

Shmem_fence
Shmem_int_p

Signal

FFT_x FFT_x

MPI_Barrier()
MPI_Barrier()

FFT_y FFT_y Everyone’s scratch is ready

Symmetric
Object

Scratch Pack

in

PE0 - Sender PE1 - Receiver

Shmem_put

out

Shmem_fence

Scratch

unPack

Shmem_int_p

Scratch ready
Shmem_int_p

Data

Signal

FFT_x FFT_x

FFT_y

This sync pattern looks like 2 sided, but:
1.  Rendez-vous to notify exposure

comes earlier
2.  Opportunistic unpacking can overlap

“target not ready” wait time with
unpack computation

Taking advantage of injection rate

• Remove packing
•  multiple small puts
•  1 less memory copy
•  Bulk put-completion

synchronization with one
fence();
shmem_int_p();

16

in

PE0 - Sender PE1 - Receiver

Shmem_put

out

Shmem_fence

Scratch

unPack

Shmem_int_p

MPI_Barrier()
MPI_Barrier()

Data_p1

Signal

FFT_x FFT_x

FFT_y FFT_y Everyone’s Scratch is Ready

Shmem_put

Shmem_put

Data_p2

Data_p3

NoPack

Performance

• Titan Cray XK7 supercomputer (@ORNL)
•  Cray MPICH 6.3.0, Cray-shmem 6.3.0
•  Rhodopsin protein input problem, 8x8x8x32k atoms (strong scaling) or

32k atoms per PE (weak scaling)

17

Pack/NoPack

18

this machine, even when two di↵erent allocations request the same number of
nodes, they may be deployed on di↵erent physical machines, connected by a dif-
ferent physical network topology. This has been known to cause undesired per-
formance variability that prevents directly comparing the performance obtained
from di↵erent allocations. We eliminate this e↵ect by comparing MPI versus
OpenSHMEM on the same allocation, and by taking averages over 10 samples
of each experiment. We present the total time of the LAMMPS application with
error bars to illustrate any increase (or lack thereof) in the performance variabil-
ity, and we then present the speedup of the considered OpenSHMEM enhanced
variants over the MPI implementation.

���

���

���

���

����

����

����

��� ��� ���� ���� ����

��

��

��

��

��

��

��

���

���

��
�
��
��
��
��
��
��
�

��
��
��
��

��
���
��
���

��
���

�

����������

���
�������������

��������
������������������

��������
������������������

��������

(a) Strong Scaling.

���

���

���

���

����

����

����

� �� ��� ����

��

��

��

��

��

��

��

���

���

��
�
��
��
��
��
��
��
�

��
��
��
��

��
���
��
���

��
���

�

����������

���
�������������

��������
������������������

��������
������������������

��������

(b) Weak Scaling.

Fig. 3: Total LAMMPS execution time comparison between the following ver-
sions: original MPI, HybridBarrier , and NoPack (with and w/o non-blocking
shmem put).

5.2 Comparison between the HybridBarrier and MPI versions

Figure 3 presents the strong scaling and weak scaling of LAMMPS for the orig-
inal version where the remap 3d function is purely implemented with MPI, and
the two hybrid versions (HybridBarrier and NoPack) where the remap 3d func-
tion features shmem put communication and OpenSHMEM based communica-
tion completion signaling; yet the protection against premature inter-iteration
data overwrite relies on an MPI Barrier synchronization. The first observation
is that the standard deviation of results is very similar between all versions.
The conversion to OpenSHMEM has not increased the performance variability.
In terms of speedup, the HybridBarrier version enjoys better performance than

Std. dev of
results similar

w/o non-
blocking put,

nopack is
slow

10% impr
overall, only

30%
communication
time: speedup

is huge!

Fine grain signaling

• a

19

puts, the NoPack version closely matches the performance of the HybridBarrier
version.

���

���

���

���

����

����

����

��� ��� ���� ���� ����

��

��

��

��

��

��

��

���

���

��
�
��
��
��
��
��
��
�

��
��
��
��

��
���
��
���

��
���

�

����������

���
�������

��������
����������

��������

(a) Strong Scaling.

���

���

���

���

����

����

����

� �� ��� ����

��

��

��

��

��

��

��

���

���

��
�
��
��
��
��
��
��
�

��
��
��
��

��
���
��
���

��
���

�

����������

���
�������

��������
����������

��������

(b) Weak Scaling.

Fig. 4: Total LAMMPS execution time comparison between the following ver-
sions: original MPI, ChkBu↵ , and AdvChkBu↵ .

5.4 Performance when Eliminating Group Barriers

The goal of the ChkBu↵ and AdvChkBu↵ versions is to eliminate the group
synchronization, employed in the HybridBarrier version, that avoid the prema-
ture overwrite of the scratch bu↵er by a process that has advanced to the next
iteration. Their performance is compared to the MPI version in Figure 4. The
strong scaling of these versions (Figure 4a) generally perform better than the
MPI version, with a 2% improvement from 512 PEs, and upto 5% for 4096 PEs.
In the weak scaling case, the benefit manifests only for larger PEs counts, with
a 3% improvement.

However, when comparing to the HybridBarrier version, presented in the
previous Figure 3, no further performance improvement is achieved. Although
the barrier has been removed, it is likely that the introduction of synchroniza-
tion between pairs of peers still transitively synchronize these same processes. In
addition, the busy waiting loop on the peer’s bu↵er status scans the memory and
increases the memory bus pressure. It finally appears that, in the OpenSHMEM
model, trying to optimize the scope of synchronizations can result in decreasing
performance, by synchronizing at too fine a granularity, which actually mimics
the traditional implicit synchronization pattern found in MPI two-sided appli-
cations.

Fine grain signaling
SLOWER than barrier

sync.

Overlap
between

chkbuff and
unpack can
delay puts

Conclusions
•  Accelerated the remap3d routine in LAMMPS with

OpenSHMEM
•  J Shmem does improve performance vs MPI
•  No costly handling of unexpected messages, no internal buffering, early exposure of “recv”

buffers, bulk synchronization, etc.

•  K Missing features (but soon?)
•  Weird structure for groups on which collective operate, porting MPI code with collective on

MPI groups is hard!
•  shmem_put too synchronizing by default: if one can relax put-completion semantic at the

origin, huge performance gains
•  Missing shmem_put_notify (a proposal is ongoing in the std body)

•  L Hard to predict performance
•  Explicit handling of all synchronization can be cumbersome to end-users
•  Default bulk synchronization not available (see missing features) => one has to implement it

himself
•  Bad handling of synchronization can get worse performance than implicit sync. in MPI
•  Often hard to predict the best strategy, performance portability diminished

20

