
Center for Information Services and High Performance Computing (ZIH)

Andreas Knüpfer (andreas.knuepfer@tu-dresden.de)

Tobias Hilbrich (tobias.hilbrich@tu-dresden.de)

Joachim Protze (protze@itc.rwth-aachen.de)

Joseph Schuchart (joseph.schuchart@tu-dresden.de)

Technische Universität Dresden, Germany

Dynamic Analysis to Support Program

Development with the Textually Aligned

Property for OpenSHMEM Collectives

OpenSHMEM Workshop 2015, Annapolis, 2015-08-05

Motivation – A Medical Application (1)

Calculation of blood flow with 3D Lattice-
Boltzmann method

MPI parallelization

Could be done with OpenSHMEM as well

Around 6500 lines of code

Different input files describe geometry of
artery: tube, tube-stenosis, bifurcation

Vorname Nachname 2

Motivation – A Medical Application (2)

Tube-stenosis geometry: just a tube with varying radius

Running the application in parallel:

mpirun -np 3 B_Stream 500. tube-stenosis

 Application hangs

Vorname Nachname 3

What’s happening:

PE 0

timestamp= 9321: MPI_Reduce(comm = MPI_COMM_WORLD)

PE 1

timestamp= 9325: MPI_Bcast(*buffer, count = 3, datatype = MPI_DOUBLE,
root = 0, comm = MPI_COMM_WORLD)

PE 2

timestamp= 9327: MPI_Bcast(*buffer, count = 3, datatype = MPI_DOUBLE,
root = 0, comm = MPI_COMM_WORLD)

Vorname Nachname

Motivation – A Medical Application (3)

 Collective mismatch (PE 0: MPI_Reduce vs other PEs: MPI_Bcast)

4

Motivation – A Medical Application (4)

main {

…

num_iter = calculate_number_of_iterations();

for (i=0; i < num_iter; i++) {

computeBloodflow();

}

writeResults();

….

}

Vorname Nachname

// communicate results with

neighbours MPI_Bcast(…);

CalculateSomething();

// exchange results with neighbors

MPI_Reduce(…);

if (radius < x) num_iter = 50;

if (radius >= x) num_iter = 200;

// ERROR: it is not ensured here that all

// procs do the same (maximal) number

// of iterations

5

Introduction – SPMD (1)

SPMD is the dominating parallel programming style in HPC

even MPMD codes really use few sets of SPMD codes

Pure functional decomposition is lacking enough distinct functions to scale

Example:

Vorname Nachname 6

int main (…) {

shmem_init();

me = shmem_my_pe ();

npes = shmem_n_pes ();

…

shmem_barrier(0,0,npes,...) ;

…

}

(0,0,npes)

=> Stride expression identifies
participating PEs, here all PEs

Ideal SPMD (textually aligned):

If you see a collective in code, then all
PEs enter it

=> Easy to read, maintain, refactor, …

Introduction – SPMD (2)

HPC codes frequently violate the SPMD idea … intentionally so!

Vorname Nachname 7

if (0 == shmem_my_pe()) {

read_input_files(…);

do_initialization(…);

print_status_output();

}

if (! is_border_element()) {

shmem_double_put(…,

neighnor_pe);

…

}

Introduction – Textual Alignment

Definition textually aligned:

– Strict SPMD

– Every PE executes same operations in same routine (function) from same

call stack

Vorname Nachname 8

int main (void) {

...

shmem_barrier(0,0,npes,...) ;

if (me % 2 == 0) {

shmem_barrier(0,0,npes,...) ;

} else {

shmem_barrier(0,0,npes,...);

}

Textually Aligned

Violation to textually Aligned

(Called from two distinct callstacks,

differing in their line numbers)

Contributions – Textual Alignment Levels for OpenSHMEM

Here, limit the scope of textual aligned programing to collective operations

– they have a well-defined notion of “simultaneous”

Classification of textual aligned strategies:

– Full textual alignment: only global collective calls (all PEs) allowed, need to be

from identical call stacks

– Subset tolerant alignment: non-global collective calls allowed, full textual

alignment required within the group of matching calls (“active set”)

– Weak textual alignment: source lines may differ, but must be from the same

routine (also the call stacks may be different, e.g., recursion levels)

– Weak subset tolerant alignment: Both generalizations apply

Vorname Nachname 9

Contributions – Textual Alignment Levels for OpenSHMEM, Examples (1)

Examples for the alignment classes:

– All examples are valid OpenSHMEM codes sniplets

Vorname Nachname 10

int main (...) {

...

shmem_barrier_all();

...

}

int main (...) {

...

if (0 == me%2) // odd/even

shmem_barrier_all();

else

shmem_barrier_all();

...

}

Full textual alignment: Weak textual alignment:

Contributions – Textual Alignment Levels for OpenSHMEM, Examples (2)

Vorname Nachname 11

int main (...) {

...

shmem_barrier(me % 2, 1,

(npes + (me+1)%2) / 2,

...);

...

}

...

// root has special handling

if (0 == me)

shmem_broadcast32(0, 1,

(npes + (me+1)%2) / 2, …);

else

shmem_broadcast32(me % 2, 1,

(npes + (me+1)%2) / 2, ...);

...

Subset tolerant alignment: Weak subset tolerant alignment:

Example: 5 PEs

 Group A: PEs 0, 2, 4

 Group B: PEs 1, 3

Contributions – Textual Alignment Levels for OpenSHMEM, Examples (3)

Vorname Nachname 12

int main (...) {

...

// odd/even

if (0 == me % 2)

foo ();

else

bar ();

...

}

void foo () {

shmem_barrier_all();

}

void bar () {

shmem_barrier_all();

}

Violation of weak textual alingment:

Challenge

OpenSHMEM applications with high level of textual alignment

 Easier to maintain, read, extend, …

How to find out:

– What overall alignment level is?

– Where are (possibly unintended) violations?

– Are there other correctness issues, e.g., collective mismatch?

Vorname Nachname 14

Static code analysis

E.g.: OpenSHMEM Analyzer

Our approach:

Dynamic (runtime) analysis

Approach

Vorname Nachname 15

Run on HPC systemApplication

Results

Correctness report

Contributed
prototype tool

“MUST-
Oshmem”

Approach – Example

Vorname Nachname 16

if (0 == me%2) // odd/even

shmem_broadcast32 (…, 0, 0, npes,…);

else

shmem_broadcast32 (…, 0, 0, npes,…);

Approach – Prototype Functionality

Vorname Nachname 17

Basic OpenSHMEM
Correctness

• Collective type mismatch
(motivation example)

• Root PE mismatch

• „nreduces“ mismatch

• „nelems“ mismatch

Textual Alignment

• Overall alignment level

• Instances of weak [subset]
alignments or unaligned [subset]
collectives

Approach – Tool Architecture

Goal: Scalability

– Introduce additional tool PEs

– Arrange all PEs in a tree: Tree Based Overlay Network (TBON)

– Events about collective calls are passed to parent nodes

– Every tool node joins event objects for matching collective operations

Vorname Nachname 18

Approach – Scalable Correctness Analysis

Vorname Nachname 19

T1

0 1 2 3

T0

T2

Application

Tool

Colective:

shmem_broadcast32 (<data0>)

Colective:

shmem_broadcast32 (<data1>)

Colective:

shmem_broadcast32 (<data1>)

Approach – Scalable Correctness Analysis

Vorname Nachname 20

T1

0 1 2 3

T0

T2
1) Input events:

2) Run checks

3) Output Event = representative event: data0-1

Participant events available to T0

data0 data1

data0
Single event for:

data0 and data1

Event for:

shmem_broadcast32 (<data0>)

Event for:

shmem_broadcast32 (<data1>)

Approach – Scalable Correctness Analysis

Vorname Nachname 21

T1

0 1 2 3

T0

T2

data0-1
Single event for:

data0 and data1

Recursive
repetition
on all
layers

Recursive repetition on all
layers

Collective:
shmem_broadcast32

Communication load:
O(p k)

k … payloadp … #PEs

Tool analysis cost can be O(1)

Approach – Scalable Correctness Analysis

Vorname Nachname 22

T1

0 1 2 3

T0

T2

a cb d

Communication cost O(1)

Proposal Beyond Textual Alignment Checks

Vorname Nachname 23

if (0 == me%2) // odd/even

shmem_broadcast32 (…, 0, 0, npes,…);

else

shmem_broadcast32 (…, 0, 0, npes,…);

Highlight intended
cases of reduced
alignment in the
code

 Documents
them

 Filter tool
output

Proposal Beyond Textual Alignment Checks

Vorname Nachname 24

if (0 == me%2) { // odd/even

annonshmem_weak_coll ();

shmem_broadcast32 (…, 0, 0, npes,…);

} else {

annonshmem_weak_coll ();

shmem_broadcast32 (…, 0, 0, npes,…);

}

Conclusions

Parallel programming is hard

OpenSHMEM applications with textually aligned collectives simplify access to code

Contributions:

– Definitions of textual alignment levels for OpenSHMEM

– Prototype tool to detect violations to these levels

Based on Dyninst and MUST
https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST

– Scalable implementation of checks

– Basic correctness checks for OpenSHMEM collectives

Vorname Nachname 25

https://doc.itc.rwth-aachen.de/display/CCP/Project+MUST

Future Work

Deeper evaluation (beyond small examples)

User feedback

What can we do with one-sided communication?

Development beyond research prototype

Deadlock detection

Vorname Nachname 26

Thank you!

Questions?

Vorname Nachname 27

