
ORNL is managed by UT-Battelle
for the US Department of Energy

MRF HPC
RESEARCH
PROGRAM

Parallelizing the
Smith-Waterman
Algorithm using
OpenSHMEM and
MPI-3 One-Sided
Interfaces

Matthew Baker, Aaron Welch
and Manjunath Gorentla
Venkata

2
MRF HPC
RESEARCH
PROGRAM

Smith and Waterman Algorithm

• Commonly used pattern matching algorithm (mostly
in bioinformatics codes)

• Local alignment algorithm
–  Sub string can be optimal
–  Used for comparing DNA segments

• Dynamic programming algorithm
• 2d score matrix

–  Derived from main sequence length m and match
sequence length n

–  Run time is O(mn)

3
MRF HPC
RESEARCH
PROGRAM

Key optimizations
• Anti-diagonal representation

–  Keeping data as local as possible
–  Reduce memory usage by discarding old anti-diagonals

•  Memory requires reduced from O(mn) to O(m) where m >= n

• Non blocking gets
–  Don’t have to wait for data
–  Pre-fetch the next loop data

4
MRF HPC
RESEARCH
PROGRAM

Key optimizations

• Two loops
– Outer loop iterates over each antidiagnal

•  Not parallel unfortunately
–  Inner loop iterates over each entry in the antidiagnal

•  Loop independent

5
MRF HPC
RESEARCH
PROGRAM

Why OpenSHMEM for Smith-Waterman?

• Simplifies first phase
– With 2 sided communications each node must compute

who wants the local data and what remote data it wants

• Second phase of Smith-Waterman traces
backwards in dynamic programming matrix
–  Unstructured and unknown path through matrix
–  Favors short fetches

6
MRF HPC
RESEARCH
PROGRAM

Computing a score

• Algorithm scores two codon chains looking for
matches

• Each matrix element A(i,j) depends on 3 previous
matrix entries A(i-1,j) A(i,j-1) and A(i-1,j-1)

7
MRF HPC
RESEARCH
PROGRAM

Smith and Waterman data dependencies

Aij

Ai-1jAi-1j-1

Aij-1

Note how A(i,j) only depends on the pervious two anti-
diagnals

8
MRF HPC
RESEARCH
PROGRAM

Remapping score matrix

• Naive implementation very bad
–  Allocate whole array
–  Fill in each A(i,j) as data available
– Wasteful of memory
–  Poor cache performance

9
MRF HPC
RESEARCH
PROGRAM

Anti-diagonal formatted Array

10
MRF HPC
RESEARCH
PROGRAM

New score matrix shape

• Each row depends on previous two rows
• No row depends on other columns in its

11
MRF HPC
RESEARCH
PROGRAM

New dependency shape

Aij

Ai-1jAi-1j-1

Ai-2j-1

12
MRF HPC
RESEARCH
PROGRAM

Distributing Smith-Waterman

• With anti-diagonal format distribution is simple
• All data is split evenly between PEs

– Main sequence
– Match sequence
– Main gap score
– Match gap score
–  Score matrix

13
MRF HPC
RESEARCH
PROGRAM

PE data layout

score matrix

match gap

main gap

main seq
match seq

PE 0 PE 1

14
MRF HPC
RESEARCH
PROGRAM

Prefetch

• Computing next indexes trivial
• Needs non-blocking get

–  Uses Cray’s non-blocking SHMEM extensions
–  Can also use MPI3 one sided communications

15
MRF HPC
RESEARCH
PROGRAM

Restructuring loop

• Blocking inner loop in brief
–  Fetch codon from main, match, gaps, previous score
–  Score main and match codons
–  Score gaps
–  Compare new scores and keep best one
–  Update score and gaps with puts

16
MRF HPC
RESEARCH
PROGRAM

Restructuring loop

• Non-blocking inner loop
– Wait for previous gets
–  New gets for codon from main, match, gaps, previous

score
–  Score main and match codons
–  Score gaps
–  Compare new scores and keep best one
–  Update score and gaps with puts

17
MRF HPC
RESEARCH
PROGRAM

Restructuring loop

• Life is not so simple
–  No separate function for completing non-blocking

operations
– Must use shmem_quiet()
–  Bottom of inner loop updates score and gap arrays
–  Insert shmem_quiet() before puts to update scores

18
MRF HPC
RESEARCH
PROGRAM

Comparing MPI-3.0 and OpenSHMEM

• Run on ORNL’s Titan
–  Used 16, 32, 64, and 128 cores
–  SCALE=32

•  Main and match sequences are 65536 codons long
•  Score matrix is 4,294,967,296 entries.

–  Run with MPI3 blocking and non-bocking gets
–  Run with OpenSHMEM blocking and non-blocking gets
–  Used 1 PE per node (maximize internode communication)

19
MRF HPC
RESEARCH
PROGRAM

OpenSHMEM Outperforms MPI-3
Implementation

20
MRF HPC
RESEARCH
PROGRAM

Performance overview
• OpenSHMEM

–  16 nodes blocking: 2877.5
–  16 nodes non-blocking: 2142
–  128 nodes blocking: 770
–  128 nodes non-blocking: 546.5

• MPI3 one sided
–  16 nodes blocking: 6693
–  16 nodes non-blocking: 5318
–  128 nodes blocking: 1539
–  128 nodes non-blocking: 1220

21
MRF HPC
RESEARCH
PROGRAM

Highlights

• MPI3 one sided saw more performance gains from
blocking versus non-bocking

• OpenSHMEM was usually 2x as fast as MPI3 one
sided.

• OpenSHMEM non-blocking was, at worst, 34%
faster, at best 41%

22
MRF HPC
RESEARCH
PROGRAM

Acknowledgements

This work was supported by the United States
Department of Defense & used resources at Oak
Ridge National Laboratory.

23
MRF HPC
RESEARCH
PROGRAM

Questions?

MRF HPC
RESEARCH
PROGRAM

