
Improving Application Scaling
using OpenSHMEM for

GPU-Initiated Communication
Sreeram Potluri

CUDA SW

GOAL

Informing the OpenSHMEM community
  Continued studies with GPU-Initiated Communication
  Single node and multi-node platforms
  Experiences with mini-apps
  Extensions to OpenSHMEM
  Being done as part of DoE Design Forward project

1

BROADER GOAL

Standard for data movement in a parallel context
  Move beyond host-managed communication
  Express communication within parallelism
  Taking advantage of the inherent GPU capabilities
  Use in applications and serve as a backend for higher-level

models/languages

2

OUTLINE

  Motivation
  NVSHMEM and Experimental Platforms
  Experience with Mini-Apps
  OpenSHMEM Extensions

3

2007 2008 2009 2010 2011 2012 2013 2014

GPU Accelerator Redefined Parallel
Computing in HPC

of

 G
PU

 D
ev

el
op

er
s

Tsubame: World’s First GPU
Supercomputer

Top500: 3 of Top 5 Supercomputers with
Tesla GPUs

Oak Ridge TITAN: World’s Fastest
Supercomputer

Breakthrough in HIV Research:
World’s Largest Simulation of Virus
Uncovers New Discovery

Summit & Sierra: U.S. Announces Two
Pre-Exascale Supercomputers Powered
by GPU & NVLink

NVIDIA Launches
CUDA

Deep Learning: Univ. of Toronto Team
Uses GPUs to Win Image-Net
Competition, Google Acquires Team

4

5

QUDA

  Algorithm of choice is Hybrid Monte Carlo
  Markov chain => no task parallelism
  Parallelize over grid points

  Presently running at 150 Tflops sustained on Titan
  Volume=403x256 split over 1152 GPUs
  At the limit of strong scaling using present algorithms (more on

this later)

  Physics goal is to run at Volume=1283x512
  200x increase in compute power needed (scales super linearly

with volume)
  Need improved strong scaling and faster computers

6

MULTI-GPU IMPLEMENTATION

  Scalable multi-GPU solver
  CUDA streams to overlap

communication and
compute

  Separate interior halo-
region
update kernels

  Use MPI for node-to-node
communication

7

CASE STUDY WITH QUDA

Interior
update

Halo updates Device to
Host

Host to
device

Kernel launch
blocked by serialized

cudaMemcpy API overhead
Kernel launch

latency

CUDA APIs cannot
be called until

MPI is complete
Gaps in

runtime are
MPI

8

WHAT IS THE SOLUTION?

  Possible solution with GPU-initiated communication
  Software overhead from calling CUDA API routines

  Avoid API overhead by using GPU-driven communication

  Hardware overhead from launching a CUDA kernel
  Use a single kernel for all updates (or fewer kernels)

  Inability to issue MPI / CUDA asynchronously with respect to
each other

  GPU kernel-level communication without having to synchronize
with Host

  Performance on the GPU
  Highly parallel architecture (lot of state to hide latencies)
  Scheduling
  Data coalescing

9

WHY SHMEM?

  Overheads of send/recv operations
  Synchronization coupled with data movement
  Request allocation and queuing
  Message matching and unexpected messages

  Light-weight one-sided communication
  Avoid synchronization and artificial serialization
  Massively parallel and fine-grained communication
  GPU-initiated SHMEM

10

OUTLINE

  Motivation
  NVSHMEM and Experimental Platforms
  Experience with Mini-Apps
  OpenSHMEM Extensions

11

OpenSHMEM influenced – mostly identical but a subset

Works with MPI/OpenSHMEM, in CUDA kernels or OpenACC regions

initialization and cleanup (host)
nvstart_pes

allocation and cleanup (host)
nvshmalloc

nvshmem_barrier_all (host)

nvshmem_get_ptr (host/GPU)

put and get routines (GPU)
nvshmem_(float/int)_(p/g)

nvshmem_(float/int)_(put/get)

loads/stores/atomics (GPU)

nvshmem_(quiet/fence) (GPU)

nvshmem_wait/wait_until (GPU)

NVSHMEM

12

EXPERIMENTAL PLATFORMS – SINGLE NODE

  CUDA IPC (Inter-process (P2P) Communication)
  Since CUDA 4.2
  Allows inter-process mapping of GPU buffers (similar to IPC in linux)

  GPUs should be in the same PCIe root complex

  Direct transfers between GPUs, bypassing CPU memory and from kernels
  Data can be moved using direct access (loads/store) or copy API

(cudaMemcpy/cudaMemcpyAsync)

Upto 8 GPUs – 2 per card – 4
cards under same PCIe root
complex using raiser cards with
PCIe switch

13

EXPERIMENTAL PLATFORMS – MULTI NODE

ExpressFabric switches from Avago Technologies
  Base mode and Fabric mode
  Multi-host configuration
  Host-host communication capabilities

  TWC - tunneled window connection (fine grained transfers)
  Similar to non-transparent bridging
  More scalable and secure

14
Source: http://www.avagotech.com/
applications/datacenters/expressfabric/

Host 1

PCIe Switch

PCIe
Cable

Adapte
r

G
P
U

PCIe Switch

Host 2

PCIe Switch

PCIe
Cable

Adapter

Host Port Host Port

G
P
U

G
P
U

G
P
U

G
P
U

G
P
U

Management
Port

OUTLINE

  Motivation
  NVSHMEM and Experimental Platforms
  Experience with Mini-Apps
  OpenSHMEM Extensions

15

2DSTENCIL

u[i][j] = u[i][j]
+ (v[i+1][j] + v[i-1][j]

+ v[i][j+1] + v[i][j+1])/x

16

CHANGE IN THE MODEL

Loop {

 Interior Compute (kernel launch)

 Pack Boundaries (kernel launch)

 Stream Synchronize

 Exchange (MPI/OpenSHMEM)

 Unpack Boundaries (kernel launch)

 Boundary Compute (kernel launch)

 Stream/Device Synchronize

}

-  Kernel launch overheads
-  CPU based blocking synchronization

Traditional

Compute, Exchange and Synchronize
(single kernel launch)

-  Support SHMEM communication and
synchronization primitives from
inside GPU kernel

Envisioned

17

VISUAL PROFILE - TRADITIONAL

(Time marked for one step, Domain size/GPU – 1024, Boundary – 16, Ghost Width – 1)

18

VISUAL PROFILE - TRADITIONAL

(Time marked for one step, Domain size/GPU – 128, Boundary – 16, Ghost Width – 1)

19

VISUAL PROFILE – PERSISTENT KERNEL

(Time marked for complete run – 30 steps)
(Domain size/GPU– 128, Boundary – 16, Ghost Width – 1)

20

Domain Size/
GPU Traditional Persistent Kernel

64 195.33 13.88
128 193.7 21.32
256 193.18 39.77
512 220.28 132.61
1024 375.8 389.65
2048 1319.74 1312.59
4096 5299.23 4776.31
8192 21480.32 18394.88

Time per Step (usec)
(Ghost Width – 1; Boundary – 16)

(Threadsperblock – 512; blocks -15)
(4 Processes – 1 Process/GPU)

tl

Time per Step (usec)
(Domain size – 2048; Ghost Width – 1; Boundary – 2)

(Extrapolation by reducing problem size per GPU, assuming
constant exchange and synchronization time)

GPU Count Traditional Persistent Kernel
4 375 389
16 226 132
64 196 39
256 194 21
1K 192 13
4K 202 13
16K 193 12
64K 194 13

0"

500"

1000"

1500"

64" 128" 256" 512" 1K" 2K"

Ti
m
e%
pe

r%S
te
p%
(u
se
c)
%

Stencil%Size%%

tradi/onal" persistent"kernel"

1"

10"

100"

1000"

4" 16" 64" 256" 1K" 4K" 16K" 64K"

Ti
m
e%
pe

r%
St
ep

%(u
se
c)
%

Number%of%GPUs%

Tradi.onal" Persistent"Kernel"

21
4 K40m GPUs connected on a Xeon
E5-2690 socket using PLX switches

PERFORMANCE

COMMUNICATION API PROFILE

Traditional MPI NVSHMEM

Injec&on(profile(at(process(0,(for(10(itera&ons(

22

MULTI-GPU TRANSPOSE OPERATION

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

rows%

columns%

GPU%0%

GPU%1%

0 8 16 24 32 40 48 56

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

Common(algorithm(in(signal(&(image(processing.(
Similar(to(mul&=node(FFT(algorithms(

GPU%0%

GPU%1%

23

MULTI-GPU TRANSPOSE OPERATION

  MPI Version
  Local transpose
  Data transfer using MPI
  Copy data to target (cudaMemcpy2D)

  SHMEM Version
  Local transpose
  Write to destination

24

PERFORMANCE

Matrix%Dim% Tradi8onal% NVSHMEM%
384% 5.56% 16.8%
768% 9.99% 19.1%
1536% 13.6% 20%
3072% 15.4% 20%
6144% 16% 20%
12288% 16% 20%

Bi-directional Bandwidth (GB/sec)
(3 Processes – 1 Process/GPU)

0

5

10

15

20

25

384 768 1536 3072 6144 12288

 B
i-

di
re

ct
io

na
l B

an
dw

id
th

(G

B/
se

c,
 G

=1
e9

)

Matrix dimension

Traditional NVSHMEM

Reduced code complexity significantly
Complex pipelining in wrapper to Simple direct access
LOC for transpose function from 280 to 100

4 Tesla K40m – CUDA 6.5

25

CoMD

Proxy for Classical Moelcular Dynamics codes
ExMatEx Co-Design Center

  Short inter-atomic potentials
  each atom interacts with other atoms in its cell or in the twenty-six

immediately neighboring cells

  Force exchange
  MPI version - pack/unpack

 + send/recv
  NVSHMEM: Communication merged into

compute kernels
  Atoms exchange

  Also ported to use NVSHMEM

26

Source: http://www.exmatex.org/comd.html

SHMEM vs. MPI Speedup

PERFORMANCE

2 Tesla K40m – CUDA 6.5
27

CAFFE

Deep learning framework
Two phases

Train : (tagged) input data -> (apply operations) -> (tagged) signatures

Test : input data -> (apply operations) -> signature -> compare with
tagged signatures to find relevant tags (by score)

Train Data
(225 MB)

Data Set
N GBs

Diff
(225 MB)

Each batch is
split over GPUs

Forward Backward Broadcast
(Train Data)

Reduce
(Diff)

Forward Backward Broadcast
(Train Data)

Reduce
(Diff)

Forward Backward Broadcast
(Train Data)

Reduce
(Diff)

Forward Backward Broadcast
(Train Data)

Reduce
(Diff)

Update

28

BCAST/REDUCE IN CAFFE

Replace Tree-based by Pipelined (not at scale)
 0

1
2
3
4
5
6
7

Copy to 4 Copy to 2

Copy to 6

Copy to 1

Copy to 5

Copy to 7

Copy to 3

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

P2P Add

Iteration

P2P Add

P2P Add

P2P Add P2P Add

P2P Add

P2P Add

0
1
2
3
4
5
6
7

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Iteration Copy to 1

Copy to 2

Copy to 3

Copy to 4

Copy to 5

Copy to 6

Copy to 7

Copy to 8

Add from 7

Add from 6

Add from 5

Add from 4

Add from 3

Add from 2

Add from 1

CPU-Initiated
Tree-based
Bcast/Reduce
Few
synchronizations

GPU-
Initiated
Pipelined
Bcast/
Reduce
Allow frequent
synchronizatio
n

29

SPEEDUP

Tree vs Pipeline

It
er

at
io

ns
 /

 s

hsw231@PSG Cluster, 8x K80
Clocks : 2505,875

GPU count

1

2

4

8

16

1 2 4 8 16 32 64

Tree

Pipeline
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Comm

Compute

GPU count

Ti
m

e
(s

)

30

OUTLINE

  Motivation
  NVSHMEM and Experimental Platforms
  Experience with Mini-Apps
  OpenSHMEM Extensions

31

OPENSHMEM EXTENSIONS

32

Support for thread safety

Memory consistency model

Isolated traffic flows

Threaded collectives

Memory locality

OPENSHMEM EXTENSIONS

33

Support for thread safety

Memory consistency model
Too strong ordering guarantees

Too weak ordering requirements

Isolated traffic flows

Threaded collectives

Memory Locality

MP USING OPENSHMEM

shmem_int_p (&x, 1, 1)

PE 0

do {
 r1 = *((volatile int *) &y)
} while(r1 != 1)

r2 = x

PE 1

shmem_quiet

Message Passing Idiom

Guaranteed in OpenSHMEM!!

All Put, AMOs, memory store operations to symmetric data objects are
guaranteed to be completed and visible to all PEs

shmem_quiet

r1=1, r2=1

shmem_fence would provide similar guarantees

shmem_int_p (&y, 1, 1)

34

SHMEM_QUIET INSUFFICIENT

35

shmem_int_p (&x, 1, 1)

PE 0

do {
 r1 = *((volatile int *) &y)
} while(r1 != 1)

r2 = x

PE 1

shmem_quiet

Message Passing Idiom

shmem_quiet

r1=1, r2=1

shmem_int_p (&y, 1, 1)
lwsync

shmem_quiet is not sufficient
On weakly ordered machines like NVIDIA GPU, IBM Power, ARM

On Power: lwsync between L1 and L2 at PE1

FIRST STEP SOLUTION

PE 0

shmem_wait_until(&y, EQ, 1)

r2=x

PE 1

Message Passing Idiom

 r2=1

shmem_int_p (&x, 1, 1)

shmem_quiet

shmem_quiet

shmem_int_p (&y, 1, 1)

36

Address this in the OpenSHMEM specification explicitly
Clarify what shmem_quiet guarantee

Advise developers to use shmem_wait/shmem_wait_until

shmem_ptr MEMORY

shmem_ptr exposes remote memory for load/store

Same ordering guarantees as put/get
Accesess to same address are not ordered

Can cause unexpected behavior
Evident in presence of compiler optimizations

37

USE AS REAL MEMORY

38

int *p = shmem_ptr(P, pe);

*p = RAX; // Spill temporary value.
RAX = *p; // Restore temporary value.

*p = 1;

*p = 1;

This works fine on regular memory (same address ordering)

May not be so on memory exposed by nvshmem_ptr
Valid OpenSHMEM implementation

Cannot be used as regular memory

Memory exposed by shmem_ptr cannot be used as real
memory

//a valid compiler optimization

POSSIBLE SOLUTIONS

39

  Not define behavior of memory exposed through
shmem_ptr
  Provide same address ordering guarantee for memory
exposed for loads/stores

  all shared memory platforms today provide this
  if there is a hypothetical platform that does not guarantee this,

shmem_ptr can return NULL

OTHER ORDERING EXTENSIONS

40

  Identify the ordering variable/operation
  Not done with shmem_fence/shmem_quiet today
  Can allow optimizations

  Ordering flag on network operation
  Store release instruction on ARM

  Global ordering (operations to multiple PEs)
  Only way is quiet – complete all operations before proceeding
  Should not force an implementation

  SC-DRF – Sequential Consistency for Data Race Free
  default model in Java and C++11
  relaxed memory model
  formal proof of support on Power, ARM

CONCLUDING REMARKS

41

  Strong scaling applications
  GPU-Initiated communication

  Communication within parallelism
  Taking advantage of GPU architecture
  Improving programmability

  OpenSHMEM as the communication model
  On-going application studies
  On-going discussions on OpenSHMEM extensions

Thank you!!

