
Latest in OpenSHMEM: 
Specification, API, and 

Programming 
Presenters: 

Graham Lopez, Dounia Khaldi, Pavel Shamis, 
Manjunath Gorentla Venkata 



Tutorial Outline  

•  The OpenSHMEM API  
•  Solving SAT with OpenSHMEM  
•  OpenSHMEM Serial to Parallel Code  

 Distributed Hash Table  
•  OpenSHMEM implementation: from the 

hardware layer to the user layer  



The OpenSHMEM API 

Graham Lopez 
ORNL 

 
Material: Swaroop Pophale 



Outline 

•  Background 
•  Introduction to OpenSHMEM 
•  History of SHMEM 
•  OpenSHMEM Effort 
•  OpenSHMEM Concepts 
•  OpenSHMEM API 

4 



We assume … 

•  Knowledge of C 
•  Familiarity with parallel computing 
•  Linux/UNIX command-line 

5 



Background 

•  Global vs. distributed Address Spaces 
•  OpenMP has global (shared) space 
•  MPI has partitioned space; private data exchanged via 

messages 
•  OpenSHMEM uses “partitioned global address 

space” (PGAS) 
•  Implemented as a library 

6 



Background 
•  SPMD – single program, multiple data 

•  Program launches many processes 
•  Each starts with the same code (SP) 
•  But then typically operates on some specific part of the data 

(MD) 
•  Processes may then communicate with each other 

•  Share common data   
•  Broadcast work 
•  Collect results 
•  Synchronization  

7 



Background 
•  The PGAS family 

•  Libraries include: 
•  GASNet, ARMCI / Global Arrays, UCCS, CCI, GASPI/GPI, 

OpenSHMEM 
•  Languages include: 

•  Chapel, Titanium, X10, UPC, CAF 

•  A language or library can be used on many machine types, 
their implementation hides differences & leverages features 

8 



Background 

PGAS Languages vs Libraries 
9 

Program 
written in 

given language 

Compiler  
for Language exec 

Program 
written using 
library API 

Some Compiler exec 

library 
implementation 



Background 

PGAS Languages vs Libraries 
10 

Languages	
   Libraries	
  

O"en	
  more	
  concise	
   More	
  informa/on	
  redundancy	
  in	
  program	
  

Requires	
  compiler	
  support	
   Generally	
  not	
  dependent	
  on	
  a	
  par/cular	
  compiler	
  

More	
  compiler	
  op/miza/on	
  opportuni/es	
   Library	
  calls	
  are	
  a	
  "black	
  box"	
  to	
  compiler,	
  typically	
  
inhibi/ng	
  op/miza/on	
  

User	
  may	
  have	
  less	
  control	
  over	
  performance	
   O"en	
  usable	
  from	
  many	
  different	
  languages	
  through	
  
bindings	
  

Examples:	
  UPC,	
  CAF,	
  Titanium,	
  Chapel,	
  X10	
   Examples:	
  OpenSHMEM,	
  Global	
  Arrays,	
  MPI-­‐3	
  



Background 
PGAS Language - UPC 

•  A number of threads working independently in an SPMD 
fashion 

•  Number of threads specified at compile-time or run-time; 
program variable THREADS 

•  MYTHREAD specifies thread index (0..THREADS-1) 
•  upc_barrier is a global synchronization: all wait 
•  upc_forall is the work sharing construct 

•  There are two compilation modes 
•  Static and Dynamic threads mode  

11 



Background 

Hello World in UPC 
•  Any legal C program is also a legal UPC program 
•  If you compile and run it as UPC with N threads, it will 

run N copies of the program. 
•  Example of a parallel hello world using UPC: 

12 

#include <upc.h>  /* needed for UPC extensions */ 
#include <stdio.h> 
 
  main() { 
    printf("Thread %d of %d: hello UPC world\n",  

    MYTHREAD, THREADS); 
  } 



Background 
•  PGAS Language - Coarray Fortran (CAF) 

•  Multiple executing images 
•  Explicit data decomposition and movement across images achieved by 

declaring and accessing coarrays 
•  Image control statements  

•  subdivide program into execution segments 
•  determine partial ordering of segments among images 
•  define scope for compiler optimization 

•  Part of Fortran 2008 standard 
•  Other languages enhancements (teams, expanded collectives and atomics, 

semaphore synchronization, resilience) are being considered for next revision 

13 



Introduction to OpenSHMEM 
•  An SPMD parallel programming library 

•  Library of functions similar in feel to MPI (e.g. shmem_get()) 
•  Available for C / Fortran 
•  Used for programs that  

•  perform computations in separate address spaces and  
•  explicitly pass data to and from different processes in the program. 

•  The processes participating in shared memory applications are 
referred to as processing elements (PEs).  

•  OpenSHMEM routines supply remote data transfer, work-shared 
broadcast and reduction, barrier synchronization, and atomic memory 
operations. 

14 



Introduction to OpenSHMEM 
•  An OpenSHMEM “Hello World” 
#include <stdio.h> 
#include <shmem.h> 
 
int main (int argc, char **argv) { 
  int me, npes; 
  shmem_init (); /*Library Initialization*/ 
  me = shmem_my_pe ();  
  npes = shmem_n_pes (); 
  printf ("Hello World from PE %4d of %4d\n", me, npes); 
  return 0; 
} 

15 



History of SHMEM 
•  Cray 

•  SHMEM first introduced by Cray Research Inc. in 1993 for Cray T3D 
•  Platforms: Cray T3D, T3E, PVP, XT series 

•  SGI 
•  Owns the “rights” for SHMEM 
•  Baseline for OpenSHMEM development (Altix) 

•  Quadrics (company out of business) 
•  Optimized API for QsNet 
•  Platform: Linux cluster with QsNet interconnect 

•  Others 
•  HP SHMEM, IBM SHMEM 
•  GPSHMEM (cluster with ARMCI & MPI support, old) 

•  Note: SHMEM was not defined by any one standard.  

16 



Divergent Implementations 

•  Many forms of initialization  
•  Include header shmem.h to access the library  

•  #include <shmem.h>  
•  #include <mpp/shmem.h> 

•  start_pes, shmem_init: Initializes the shmem portion of 
the program 

•  my_pe: Get the PE ID of local processor 
•  num_pes: Get the total number of PEs in the system 

17 



Divergent Implementations 
 

18 

SGI Quadrics Cray 
Fortran C/C++ C/C++ Fortran C/C++ 

start_pes start_pes(0) shmem_init start_pes start_pes 
shmem_init shmem_init 

shmem_my_pe shmem_my_pe shmem_my_pe shmem_my_pe 
shmem_n_pes shmem_n_pes shmem_n_pes shmem_n_pes 
NUM_PES _num_pes num_pes NUM_PES 
MY_PE _my_pe my_pe 



Divergent Implementations 

#include <stdio.h> 
#include <mpp/shmem.h> 
int main(void) 
{ 
   int me, npes; 
   start_pes(0); 
   npes = _num_pes(); 
   me = _my_pe(); 
   printf("Hello from %d of %d\n", 
     me, npes); 

   return 0; 
} 

 
19 

Hello World  (SGI on Altix) Hello World  (Cray) 
#include <stdio.h> 
#include <shmem.h> 
int main(void) 
{ 
   int me, npes; 
   shmem_init(); 
   npes = num_pes(); 
   me = my_pe(); 
   printf("Hello from %d of %d\n", 

   me, npes); 
   return 0; 
} 



OpenSHMEM Concepts 

•  Symmetric Variables 
•  Arrays or variables that exist with the same name, size, type, and 

relative address on all PEs. 
•  The following kinds of data objects are  symmetric:  

•  Fortran data objects in common blocks or with the SAVE 
attribute.  

•  Non-stack C and C++ variables.  
•  Fortran arrays allocated with shpalloc 
•  C and C++ data allocated by shmalloc 

20 



OpenSHMEM Concepts 

 
Dynamic allocation of Symmetric Data 

21 

int main (void) 
{ 
   int *x; 
   … 
   shmem_init(); 
   … 
   x = (int*)        
   shmalloc(sizeof(*x)); 
   … 
   … 
   shmem_barrier_all(); 
   … 
   shfree(x); 
   return  0; 
} 

x x 

x x 

PE 0  PE 1  

PE 2  PE 3  
Same offset in  

Symmetric memory 



OpenSHMEM API 

•  Initialization, Query and Exit Routines 

•  Memory Management Routines 

•  Data transfers 

•  Synchronization mechanisms 

•  Collective communication 

•  Atomic Memory Operations 

22 



OpenSHMEM Initialization, Query and Exit 
void shmem_init(void) 

•  Same functionality as deprecated void start_pes(int n) 
•  Number of PEs taken from invoking environment 

•  E.g. from MPI or job scheduler 
•  PEs numbered 0 .. (N – 1) in flat space 

int shmem_n_pes(void) 
•  return number of PEs in this program 

int shmem_my_pe(void) 
•  return “rank” of calling PE 

void shmem_finalize(void)  
•  collective operation to exit the OpenSHMEM environment 

void shmem_global_exit(int status) 
•  one PE may force all PEs to exit the OpenSHMEM environment 

23 



OpenSHMEM Memory Management Routines 
void *shmem_malloc(size_t size) 

•  Allocate symmetric memory on all PEs. 
void *shmem_free(void *ptr) 

•  Deallocate symmetric memory. 
void *shmem_realloc(void *ptr, size_t size) 

•  Resize the symmetric memory  
void *shmem_align(size_t alignment, size_t size) 

•  Allocate symmetric memory with alignment 

24 



OpenSHMEM Memory Management Routines  
/* shmem_alloc() & shmem_free() */ 
#include <stdio.h> 
#include <shmem.h> 
int main (int argc, char **argv) 
{ 
  int *v; 
  shmem_init(); 
  v=(int *)shmem_malloc(sizeof(int)); 
  … 
  … 
  shmem_free(v); 
  return 0; 
} 

25 



OpenSHMEM Accessibility 

•  int shmem_pe_accessible(int pe)  
•  Can this PE talk to the given PE? 

•  int shmem_addr_accessible(void *addr, int pe)  
•  Can this PE address the named memory location on the given PE? 

•  In SGI SHMEM used for mixed-mode MPI/SHMEM programs 
•  In “pure” OpenSHMEM, could just return “1” 

•  Could in future be adapted for fault-tolerance 
26 



OpenSHMEM Data Transfer 
•  Put 

•  Single variable 
•  void shmem_TYPE_p(TYPE *target, TYPE value, int pe) 

•  TYPE = double, float, int, long, short 
•  Contiguous object 

•  void shmem_TYPE_put(TYPE *target, const TYPE *source, 
      size_t nelems, int pe)  

•  For C: TYPE = double, float, int, long, longdouble, longlong, short 
•  For Fortran: TYPE = complex, integer, real, character, logical 

•  void shmem_putN(void *target, const void *source,  
     size_t nelems, int pe)  

•  Storage Size (N bits) = 32, 64, 128, mem (any size) 
 

Target must be symmetric 
27 



OpenSHMEM Data Transfer 
•  Example: Cyclic communication via puts 

/*Initializations*/ 
int src; 
int *dest; 

….. 
shmem_init(); 
…. 
src  = me; 
dest = (int *) shmem_malloc (sizeof (*dest)); 
nextpe = (me + 1) % npes; /*wrap around */ 

 
shmem_int_put (dest, &src, 1, nextpe); 
… 
shmem_barrier_all(); 
x = dest * 0.995 + 45 * y; 
… 

28 

Points To Remember 

•  ‘Destination’ has to be 
symmetric 

 
•  Consecutive puts are not 

guaranteed to finish in 
order 

 
•  Put returns after the data 

has been copied out of the 
source 

•  Completion guaranteed 
only after synchronization 

   



OpenSHMEM Data Transfer 
•  Get 

•  Single variable 
•  TYPE shmem_TYPE_g(TYPE *target, TYPE value, int pe) 

•  For C: TYPE = double, float, int, long, longdouble, longlong, short 
•  For Fortran: TYPE=complex, integer, real, character, logical 

•  Contiguous object 
•  void shmem_TYPE_get(TYPE *target, const TYPE *source, 

      size_t nelems, int pe)  
•  For C: TYPE = double, float, int, long, longdouble, longlong, short 
•  For Fortran: TYPE=complex, integer, real, character, logical 

•  void shmem_getN(void *target, const void *source,  
size_t nelems, int pe)  

•  Storage Size (N bits) = 32, 64,128, mem (any size) 

•  Source must be symmetric data object 
29 



OpenSHMEM Data Transfer 
•  Example: Summation at PE 0 

/*Initializations*/ 
int *src, dest, sum; 
... 

shmem_init(); 
... 
src  = (int *) shmem_malloc (sizeof (*src)); 
src = me; sum = me; 
if(me == 0){ 

for(int i = 1; i < num_pes(); i++){  

  shmem_int_get(&dest, src, 1, i)  
  sum = sum + dest;  
} 

} 
... 

30 

Points To Remember 

•  ‘Source’ has to be 
remotely accessible 

 
•  Consecutive gets 

finish in order  
 
•  The routines return 

after the data has been 
delivered to the ‘dest’ 
on the local PE 



OpenSHMEM Data Transfer 

•  Strided put/get 

•  void shmem_TYPE_iput(TYPE *target, const TYPE *source,  
       ptrdiff_t tst, ptrdiff_t sst, 
       size_t nelems, int pe) 

•  For C: TYPE = double, float, int, long, longdouble, longlong, short 
•  For Fortran: TYPE=complex, integer, real, character, logical 
•  tst and sst indicate stride between accesses of target and source 

resp. 

31 



OpenSHMEM Data Transfer 
int main() 
{ 
  static short source[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; 
  short target[10]; 
  int i,me; 
  for (i = 0; i < 10; i += 1) { 
      target[i] = 666; 
  } 
  shmem_init(); 
  me = _my_pe (); 
  if (me == 1){ 
   /* source[0,1,2,3] -> target[0,2,4,6] */ 
      shmem_short_iget (target, source, 2, 1, 4, 0);  
  } 
  shmem_barrier_all ();    /* sync sender and receiver */ 
  if (me == 1){ 
      for (i = 0; i < 10; i += 1){ 
          printf ("PE %d: target[%d] = %hd, source[%d] = %hd\n", 
                   me, i, target[i], i, source[i]); 
      } 
  } 
  shmem_barrier_all ();    /* sync before exiting */ 
  return 0; 
} 

32 

Output:	
  
PE	
  1:	
  target[0]	
  =	
  1,	
  source[0]	
  =	
  1 
PE	
  1:	
  target[1]	
  =	
  666,	
  source[1]	
  =	
  2 
PE	
  1:	
  target[2]	
  =	
  2,	
  source[2]	
  =	
  3 
PE	
  1:	
  target[3]	
  =	
  666,	
  source[3]	
  =	
  4 
PE	
  1:	
  target[4]	
  =	
  3,	
  source[4]	
  =	
  5 
PE	
  1:	
  target[5]	
  =	
  666,	
  source[5]	
  =	
  6 
PE	
  1:	
  target[6]	
  =	
  4,	
  source[6]	
  =	
  7 
PE	
  1:	
  target[7]	
  =	
  666,	
  source[7]	
  =	
  8 
PE	
  1:	
  target[8]	
  =	
  666,	
  source[8]	
  =	
  9 
PE	
  1:	
  target[9]	
  =	
  666,	
  source[9]	
  =	
  10 



OpenSHMEM Data Transfer 
•  Put vs. Get 

•  Put call completes when data is “being sent” 
•  Get call completes when data is “stored locally” 

•  Cannot assume put has written until later synchronization 
•  Data still in transit 
•  Partially written at target 
•  Put order changed by e.g. network 

•  Puts allow overlap 
•  Communicate 
•  Compute 
•  Synchronize 

33 



OpenSHMEM Synchronization 
•  Active Sets 

•  Way to specify a subset of PEs 
•  A triplet: 

•  Start PE 
•  Stride (log2) 
•  Size of set 

•  Limitations 
•  Stride must be powers of 2 
•  Only define ‘regular’ PE sub-groups 

34 



OpenSHMEM Synchronization 
•  Barrier (Group synchronization) 

•  void shmem_barrier_all()  
•  Suspend PE execution until all PEs call this function 

•  void shmem_barrier(int PE_start, int PE_stride, 
       int PE_size, long *pSync)  

•  Barrier operation on subset of PEs 

•  pSync is a symmetric work array that allows different barriers to 
operate simultaneously 

35 



OpenSHMEM Synchronization 
•  Conditional wait (P2P synchronization) 

•  Suspend until local symmetric variable NOT equal to the value specified 
•  void shmem_wait(long *var, long value)  
•  void shmem_TYPE_wait(TYPE *var, TYPE value)  

•  For C: TYPE = int, long, longdouble, longlong, short 
•  For Fortran: TYPE = complex, integer, real, character, logical 

•  Specific conditional wait 
•  Similar to the generic wait except the comparison can now be 

•  >=, >, =, !=, <, <= 

•  void shmem_wait_until(long *var, int cond, long value)  
•  void shmem_TYPE_wait_until(TYPE *var, int cond, TYPE value) 

•  TYPE = int, long, longlong, short 

36 



OpenSHMEM Synchronization 
#define GREEN 1 
#define RED 0 
 
int light=RED; 
int main(int argc, char **argv) 
{ 
    int me; 
    shmem_init(); 
    me = shmem_my_pe(); 
    if(me==0){ 
        printf("me:%d. Stop on Red Light\n", me); 
        shmem_int_wait(&light, RED); /* Is the light still red? */          
        printf("me:%d. Now I may proceed\n", me); 
    } 
    if(me==1){ 
        sleep(1); 
        light=GREEN; 
        printf("me:%d. I've turn light to green.\n", me); 
        shmem_int_put(&light, &light, 1, 0);  
    } 
    return 0; 
} 37 

Output:	
  
me:0.	
  Stop	
  on	
  Red	
  Light	
  
me:1.	
  I've	
  turned	
  light	
  to	
  green	
  
me:0.	
  Now	
  I	
  may	
  proceed 



OpenSHMEM Synchronization 

•  void shmem_fence() 
•  Ensures ordering of outgoing write operations on a per-

PE basis. 

•  void shmem_quiet() 
•  Waits for completion of all outstanding remote writes 

and stores to symmetric data objects initiated from the 
calling PE. 

38 



OpenSHMEM Synchronization 
Example Fence 

... 

if (shmem_my_pe() == 0) { 

shmem_long_put(target, source, 3, 1); /*put1*/ 

shmem_long_put(target, source, 3, 2); /*put2*/ 

  shmem_fence(); 

shmem_int_put(&targ, &src, 1, 1);     /*put3*/   

shmem_int_put(&targ, &src, 1, 2);     /*put4*/ 

} 

... 


put1 will be ordered to be delivered before put3 
put2 will be ordered to be delivered before put4 
 

Example Quiet 
...   

shmem_long_put(target, source, 3, 1); /*put1*/ 

shmem_int_put(&targ, &src, 1, 2);     /*put2*/ 

  shmem_quiet(); 

shmem_long_get(target, source, 3, 1); 

shmem_int_get(&targ, &src, 1, 2);       

printf("target:{%d,%d,%d}\n", 

        target[0],target[1],target[2]);  

printf("targ: %d\n", targ); /*targ: 90*/ 

shmem_int_put(&targ, &src, 1, 1);     /*put3*/ 

shmem_int_put(&targ, &src, 1, 2);     /*put4*/       

...  


put1 & put2 will be delivered when quiet returns 
 

 39 



OpenSHMEM Collective Communication 

•  Broadcast 
•  One-to-all symmetric communication 
•  No update on root 

•  void shmem_broadcastN(void *target, void *source, 
        size_t nelems, int PE_root,  
        int PE_start, int PE_stride, 
        int PE_size, long *pSync) 

40 

Storage Size (N bits) = 32, 64




OpenSHMEM Collective Communication 
 

41 

... 
int *target, *source; 
target = (int *) shmalloc( sizeof(int) ); 
source = (int *) shmalloc( sizeof(int) ); 
*target = 0; 
if (me == 0) { 
    *source = 222; 
} 
else 
    *source = 101; 
shmem_barrier_all(); 
shmem_broadcast32(target, source, 1, 0, 0, 0, 4, pSync); 
  
printf("target on PE %d is %d\n”, shmem_my_pe(), *target); 
... 

Code snippet showing working of shmem_broadcast 

Output: 
target on PE 0 is 0 
target on PE 1 is 222 
target on PE 2 is 222 
target on PE 3 is 222 



OpenSHMEM Collective Communication 
•  Collection 

•  Concatenates blocks of symmetric data from multiple PEs to an array in every 
PE 

•  Each PE can contribute different amounts 
•  void shmem_collectN(void *target, void *source,  

      size_t nelems, int PE_start,  
      int PE_stride, int PE_size,  
      long *pSync) 

•  Concatenation written on all participating PEs 

•  shmem_fcollect variant 
•  When all PEs contribute exactly same amount of data 
•  PEs know exactly where to write data, so no offset lookup overhead 

42 

Storage Size (N bits) = 32, 64




OpenSHMEM Collective Communication 
int sum; 
int me,npe; 
int main(int argc, char **argv) 
{ 
    int i; 
    long *pSync; 
    int *pWrk, pWrk_size; 
    shmem_inti(); 
    me = shmem_my_pe(); 
    npe = shmem_n_pes(); 
    pWrk = (int *) shmalloc (npe); 
    pSync = (long *) shmalloc (SHMEM_REDUCE_SYNC_SIZE); 
    for (i = 0; i < SHMEM_REDUCE_SYNC_SIZE; i += 1){ 
        pSync[i] = _SHMEM_SYNC_VALUE; 
    } 
    shmem_barrier_all(); 
    shmem_int_sum_to_all(&sum, &me, 1, 0, 0, npe, pWrk, pSync); 
    shmem_barrier_all(); 
    printf("me:%d. Total sum of 'me' is %d\n", me, sum); 
    return 0; 
} 

43 

Output:	
  
me:1.	
  Total	
  sum	
  of	
  'me'	
  is	
  45	
  
me:2.	
  Total	
  sum	
  of	
  'me'	
  is	
  45	
  
me:3.	
  Total	
  sum	
  of	
  'me'	
  is	
  45	
  
me:4.	
  Total	
  sum	
  of	
  'me'	
  is	
  45	
  
me:5.	
  Total	
  sum	
  of	
  'me'	
  is	
  45	
  
me:6.	
  Total	
  sum	
  of	
  'me'	
  is	
  45	
  
me:7.	
  Total	
  sum	
  of	
  'me'	
  is	
  45	
  
me:8.	
  Total	
  sum	
  of	
  'me'	
  is	
  45	
  
me:9.	
  Total	
  sum	
  of	
  'me'	
  is	
  45	
  
me:0.	
  Total	
  sum	
  of	
  'me'	
  is	
  45 



OpenSHMEM Collective Communication 
•  Reductions 

•  Perform commutative operation across symmetric data set 
•  void shmem_TYPE_OP_to_all(TYPE *target, TYPE *source, 

         int nreduce, int PE_start,  
         int PE_stride, int PE_size, 
         TYPE *pWrk, long *pSync) 

•  Logical OP = and, or, xor 
•  Extrema OP = max, min 
•  Arithmetic OP = prod(uct), sum 
•  TYPE = int, long, longlong, longdouble, short, complex 

•  Reduction performed and stored on all participating PEs 
•  pWrk and pSync allow interleaving 

•  E.g. compute arithmetic mean across set of PEs 
•  sum_to_all / PE_size 

44 



OpenSHMEM Atomic Operations 
•  What does “atomic” mean anyway? 

•  Indivisible operation on symmetric variable 
•  No other operation can interpose during update 

•  But “no other operation” actually means…? 
•  No other atomic operation 
•  Can’t do anything about other mechanisms interfering 

•  E.g. thread outside of OpenSHMEM program 
•  Non-atomic OpenSHMEM operation 

•  Why this restriction? 
•  Implementation in hardware 

45 



OpenSHMEM Atomic Operations 
•  Atomic Swap 

•  Unconditional 
•  long shmem_swap(long *target, long value, int pe)  
•  TYPE shmem_TYPE_swap(TYPE *target, TYPE value, int pe) 

•  TYPE = double, float, int, long, longlong 
•  Return old value from symmetric target 

•  Conditional 
•  TYPE shmem_TYPE_cswap(TYPE *target, TYPE cond,  

        TYPE value, int pe)  

•  TYPE = int, long, longlong 
•  Only if “cond” matches value on target 

46 



OpenSHMEM Atomic Operations 
•  Arithmetic 

•  increment (= add 1) & add value 
•  void shmem_TYPE_inc(TYPE *target, int pe)  
•  void shmem_TYPE_add(TYPE *target, TYPE value, int pe)  

•  TYPE = int, long, longlong 
 
•  Fetch-and-increment & fetch-and-add value 
•  TYPE shmem_TYPE_finc(TYPE *target, int pe)  
•  TYPE shmem_TYPE_fadd(TYPE *target, TYPE value, int pe)  

•  TYPE = int, long, longlong 
•  Return previous value at target on PE 

47 



OpenSHMEM Atomic Operations 

48 

... 
long *dest; 
dest = (long *) shmalloc( sizeof(*dest) ); 
 *dest = me; 
 shmem_barrier_all(); 
... 
new_val = me; 
 if (me == 1) { 
    swapped_val = shmem_long_swap(target, new_val, 0); 
    printf("%d: target = %d, swapped = %d\n",  

   me, *target, swapped_val); 
 } 
shmem_barrier_all(); 
... 



OpenSHMEM Atomic Operations 
•  Locks 

•  Symmetric variables 
•  Acquired and released to define mutual-exclusion execution regions 

•  Only 1 PE can enter at a time 
•  void shmem_set_lock(long *lock)  
•  void shmem_clear_lock(long *lock)  
•  int shmem_test_lock(long *lock) 

•  Acquire lock if possible, return whether or not acquired 
•  But don’t block… 

•  Initialize lock to 0.  After that managed by above API 
•  Can be used for updating distributed data structures 

49 



Solving SAT with 
OpenSHMEM 

Pavel Shamis 
ORNL 



Background 
The examples are based on http://ubcsat.dtompkins.com  
•  Code https://github.com/dtompkins/ubcsat 
•  OpenSHMEM based code 

https://github.com/shamisp/ubcsat/tree/shmem 
 
Parallel solver algorithm is based on: “Massively Parallel Local 
Search for SAT”, Alejandro Arbelaez, Philippe Codognet 
•  Full paper: 

http://ieeexplore.ieee.org/xpl/login.jsp?
tp=&arnumber=6495029&url=http%3A%2F%2Fieeexplore.ieee.org
%2Fiel7%2F6493540%2F6495011%2F06495029.pdf%3Farnumber
%3D6495029 

51 



What is the SAT problem ? 

•  Finding an assignment for all the variables such 
that all clauses are satisfied and  F is true 

•  NP-Complete  
 
 

F=(V11∨V12 ∨V13)∧(V21∨V22 
∨V23)	
 ∧…∧	
 (Vn1∨Vn2 ∨Vn3) 

 

 

Clause (3-SAT) 

52 



How do we solve it  

Local search ! 
Sparrow local search solver 
•  Winner of 2011 SAT competition 
•  Part of UBCAST framework 
•  https://github.com/dtompkins/ubcsat/tree/satcomp2011-sparrow 

53 



Local Search for SAT 

 
0: for try = 1 to MaxTries { 
1:  A = variable-initialization(F) 
2:  for Iteration = 1 to MaxFlips { 
3:   if A satisfies F then 
4:    return A 
5:   x = select-variable(A) 
6:   A = A with x flipped 
7:  } 
8: } 
9: return “No solution” 

  
 

54 



Local Search for SAT 

 
0: for try = 1 to MaxTries { 
1:  A = variable-initialization(F) 
2:  for Iteration = 1 to MaxFlips { 
3:   if A satisfies F then 
4:    return A 
5:   x = select-variable(A) 
6:   A = A with x flipped 
7:  } 
8: } 
9: return “No solution” 

  
 

The “secret 
sauce” 

Starting point for 
the search 

55 



Parallel Local Search 

56 



Portfolio-based Parallel Local Search  
 
0: Init-Seed(Process_ID) 
0: for try = 1 to MaxTries { 
1:  A = variable-initialization(F) 
2:  for Iteration = 1 to MaxFlips { 
3:   if A satisfies F then 
4:    eureka-return(A) 
5:   x = select-variable(A) 
6:   A = A with x flipped 
7:  } 
8: } 
9: return “No solution” 

  
 

 
0: Init-Seed(Process_ID) 
0: for try = 1 to MaxTries { 
1:  A = variable-initialization(F) 
2:  for Iteration = 1 to MaxFlips { 
3:   if A satisfies F then 
4:    eureka-return(A) 
5:   x = select-variable(A) 
6:   A = A with x flipped 
7:  } 
8: } 
9: return “No solution” 

  
 

 
0: Init-Seed(Process_ID) 
0: for try = 1 to MaxTries { 
1:  A = variable-initialization(F) 
2:  for Iteration = 1 to MaxFlips { 
3:   if A satisfies F then 
4:    eureka-return(A) 
5:   x = select-variable(A) 
6:   A = A with x flipped 
7:  } 
8: } 
9: return “No solution” 

  
 

 
0: Init-Seed(Process_ID) 
0: for try = 1 to MaxTries { 
1:  A = variable-initialization(F) 
2:  for Iteration = 1 to MaxFlips { 
3:   if A satisfies F then 
4:    eureka-return(A) 
5:   x = select-variable(A) 
6:   A = A with x flipped 
7:  } 
8: } 
9: return “No solution” 

  
 

Each process 
uses unique 

SEED 

57 



Code Snippet  

 
0: Init-Seed(Process_ID) 
0: for try = 1 to MaxTries { 
1:  A = variable-initialization(F) 
2:  for Iteration = 1 to MaxFlips { 
3:   if A satisfies F then 
4:    eureka-return(A) 
5:   x = select-variable(A) 
6:   A = A with x flipped 
7:  } 
8: } 
9: return “No solution” 

  
 

start_pe(0); 
seed = atoi(argv[2]) * (1+shmem_my_pe()); 
 

/* OpenSHMEM 1.2 */ 
shmem_global_exit(0); 
     
 

/* OpenSHMEM 1.2 */ 
shmem_finalize(); 
     
 

58 



Portfolio-based Parallel Local Search Information 
Sharing 

K11 

K12 

K13 

…. 
K1n 

C1 

K11 

K12 

K13 

…. 
K1n 

C1 

K21 

K22 

K23 

…. 
K2n 

C2 

… 

… 

… 

…. 
… 

C 

Kp1 

Kp2 

Kp3 

…. 
Kpn 

Cp 

Bcast Probability 

ProbNormilizedW(i=True) where 
i∈ [1,n] 
n-number of variables 
c-number unsatisfied clauses  

!"#$%#"&'(')*+, ! = !"#$ = !!" ∗ !"#$!!!∈ !,!
!"#$!!!∈ !,!

!

!"#$!! =
! − !!
! !

! − !!"!, ! − !"#$"%&'! 59 



Information Sharing 
 
0: Init-Seed(Process_ID) 
0: for try = 1 to MaxTries { 
1:  A = variable-initialization-based-on-shared-information(F) 
2:  for Iteration = 1 to Flips-Threshold { 
3:   if A satisfies F then 
4:    eureka-return(A) 
5:   x = select-variable(A) 
6:   A = A with x flipped 
7:  } 

 broadcast-information-to-all(F) 
8: } 
9: return “No solution” 

  
 

start_pe(0); 
seed = atoi(argv[2]) * (1+shmem_my_pe()); 
/* Vertor of values */ 
rem_aVarValue = shmalloc(iNumVars * sizeof(BOOL) * 
shmem_n_pes()); 
if (rem_aVarValue == NULL) { 
       fprintf(stderr, "Failed to allocate memory for rem_aVarValue\n");  
       shmem_global_exit(1); 
} 
memset(rem_aVarValue, 0, sizeof(BOOL) * shmem_n_pes()); 
/* Cost of the current solution */ 
rem_iNumFalse = shmalloc(sizeof(UINT32) * shmem_n_pes()); 
if (rem_iNumFalse == NULL) { 
       fprintf(stderr, "Failed to allocate memory for rem_iNumFalse\n"); 
       shmem_global_exit(1); 
} 
memset(rem_iNumFalse, 0, sizeof(UINT32) * shmem_n_pes()); 
/* Signal that data is there */ 
rem_counter = shmalloc(sizeof(long long) * shmem_n_pes()); 
if (rem_counter == NULL) { 
      fprintf(stderr, "Failed to allocate memory for rem_counter\n"); 
      shmem_global_exit(0); 
} 
memset(rem_counter, 0, sizeof(long long) * shmem_n_pes()); 
shmem_barrier_all();  

!"#$%#"&'(')*+, ! = !"#$ = !!" ∗ !"#$!!!∈ !,!
!"#$!!!∈ !,!

!

!"#$!! =
! − !!
! !

! − !!"!, ! − !"#$"%&'!

 int i; 
for (i = 0; i < shmem_n_pes(); i++) { 
       shmem_putmem(get_rem_avar(shmem_my_pe(), 0),   

 aVarValue, iNumVars*sizeof(BOOL), i); 
       shmem_putmem(get_rem_inum(shmem_my_pe()),   

 &iNumFalse,sizeof(UINT32), i); 
          /* Announce update */ 
       shmem_fence(); 
       shmem_longlong_inc(&rem_counter[shmem_my_pe()],i); 
} 

60 



What Algorithm Performed the Best ? 

61 



Test-bed   

•  SGI Altix 
•  12 nodes each one with 24 cores (288 cores in total) 
•  Processing Element (PE) per core 
•  InfiniBand interconnect 
•  50 instances from SAT2011 (random) 
•   3-SAT (x20), 5-SAT(x20), 7-SAT(x10) 
•   3 iterations for each instance / median reported 

62 



Performance – No Information Sharing 

63 



Performance – Information Sharing 

64 



Sharing VS No-sharing 

65 



Sharing VS No-sharing 

66 



Sharing VS No-sharing 

67 



Thanks ! 

Questions ? 

68 



OpenSHMEM Serial to Parallel 
Code Conversion 

Distributed Hash Table (DHT) 

Dounia Khaldi 
University of Houston 

69 



The Orbit Calculation Problem 

•  Application benchmark: 
•  Group theory 
•  Calculation of the orbits of a group G acting on a set  M 
•  Graph traversal problem, where each graph vertex is a 

group element 
•  For each graph vertex, compute some of its properties  
•  Which other graph vertices is a vertex connected to? 

C. Maynard, “Comparing One-Sided Communication With MPI, UPC and SHMEM”, Cray Users Group 
(CUG), Tech. Rep., 2012. 70 



Notion of Orbit 
Input: m0 ∈ M, Group G = {gi, 1 ≤ i ≤ r}"
Output: A list L containing the elements of m0G (G-orbit of m0)"
"

71 

90o 

0o 180o 

270o 

G = {R(0o), R(90o), R(180o), R(270o) } 

Example: 
•  M is a set of vectors 
•  G is a group of four 90o rotations  

•  Composition of rotations corresponds to 
matrix multiplication 

•  Orbit: mG  



The Orbit Basic Algorithm 

F. Lübeck and M. Neunhöffer, “Enumerating large orbits and direct condensation”, Experiment. Math., 
vol. 10, no. 2, pp. 197–205, 2001. 

Input: m0 ∈ M, Group G = {gi, 1 ≤ i ≤ r}"
Output: A list L containing the elements of m0G (G-orbit of m0)"
"
L := [m0]"
for i from 1 to r do !
   x := m0gi     // element of orbit of m0 
   if x is not in L then!
      append x to L"
   end if!
end for!
return L"

72 

    DHT 

G = {R(0o), R(90o), R(180o), R(270o) } 

90o 

0o 180o 

270o 



Orbit Calculation: Serial Hash Table 

•  Linear lookup of points in lists (sequential 
comparison) expensive for large orbits  

•  Hash table to keep track of whether a vertex has 
been visited 

•  Lookups using hash tables almost independent of 
the orbit length 

•  Limited to certain size of groups by the amount of 
memory available in serial implementation 

•  Parallel (distributed) implementation to allow larger 
orbits  

73 



 DHT: Open Addressing Strategy 
h(x) Implementation 

•  insert () puts new entry in the hash table if 
not present 

•  lookup () searches for a key  
•  delete () frees entry to remove from the 

hash table  

Advantages 
•  Lookup is fast 
•  Insertion is fast 
•  Unlike chaining, it cannot have more 

elements than table slots 

Disadvantage 

•  Deletion should take into account collisions  

X 

Y 

Z 

X 

Y 
Z 
W 

000 
001 
002 

200 
201 
202 
203 
204 

… 
… 
r-1 

W 

…
 

…
 

…
 

…
 

Buckets 

Keys 

74 



DHT: Sequential Code 
Compute one element o of the 

orbit of m 

Compute h(o) 

Lookup in the hash table 

Insertion Repetition Collision 
75 

   hashinsert(o) 



DHT: Data Structures 
•  hashtab: the memory where to store the 

orbit 
•  hashcount: number of repetitions 
•  hashlen: max size of the orbit (r) 
•  collisions: number of collisions 
•  dest_pos: the index of an element of the 

orbit in hashtab"
•  local_val: the value of an element of 

hashtab"
76 



DHT: Sequential Code (hashinsert(o)) 

    dest_pos = h(o); "
    while (1) {"
        local_val = hashtab[dest_pos];"
        if (local_val == 0) {"

"   hashtab[dest_pos] = o;"
"   hashcount[dest_pos] = 1;"
"   return;"

        } else if (local_val == o) {"
            hashcount[dest_pos]++;"
            return;"
        } else {"
            collisions++;"
            dest_pos++;"
            if (dest_pos == hashlen) "
                dest_pos = 0;"
        }"
    }"
  "

•  Size of G (r: number of vertices): hashlen = r; 

   !
     insert in the empty entry !

!  

     check to see if !
     it is not a collision !

     it is a repetition!

     it is a collision !  

77 



DHT: Sequential Code (hashinsert(o)) 

    dest_pos = h(o); "
    while (1) {"
        local_val = hashtab[dest_pos];"
        if (local_val == 0) {"

"   hashtab[dest_pos] = o;"
"   hashcount[dest_pos] = 1;"
"   return;"

        } else if (local_val == o) {"
            hashcount[dest_pos]++;"
            return;"
        } else {"
            collisions++;"
            dest_pos++;"
            if (dest_pos == hashlen) "
                dest_pos = 0;"
        }"
    }"
  "

78 

RMA (get) 

RMA (put) 

Exclusive accesses to 
hashtab and hashcount 



Distributed Hash Table (DHT) 

•  The sender would know the identity of the 
receiver via hash, but not vice versa 

•  Larger hash tables created in parallel than 
can be done serially à     
   much larger orbits 

•  Suitable for OpenSHMEM à  
   requires RMA  

79 



Z W 

Y X 

DHT: OpenSHMEM Code Initialization 

void inithash()!
{!
   npes = shmem_n_pes();"
   mype = shmem_my_pe();"
   hashlen = r;"
   localhashlen = hashlen/npes;"
   hashtab   = shmem_malloc( localhashlen * sizeof *hashtab );"
   hashcount = shmem_malloc( localhashlen * sizeof *hashcount ); "
   pe_lock   = shmem_malloc( npes * sizeof *pe_lock );"
   memset( pe_lock, 0, npes * sizeof *pe_lock);"
}"

PE 0  PE 1  

PE 2  PE 3  

  Symmetric 
  Memory 

hashlen = r!

80 



DHT: OpenSHMEM Code 
#include <shmem.h>"
//declaration of hashtab, hashcount,…"
void orbit(m0,G)"
{"
   shmem_init();"
   inithash();!
   shmem_barrier_all();"
   for (i = mype; i < hashlen; i+=npes) {"
      hashinsert(apply(m0, g[i]));!
   }"
   shmem_barrier_all();"
   finhash();!
   shmem_finalize();"
   return;"
}"
!

    Allocate symmetric variables!

    Free symmetric variables!

81 



DHT: OpenSHMEM Hash Finish 

void finhash()"
{"
  shfree(hashtab);"
  shfree(hashcount);"
  shfree(pe_lock);"
}"

82 



DHT: OpenSHMEM Code Using Locks 
hashinsert(o) 

hash = h(o);"
while (1) {"
   dest_pe = ceil(hash / localhashlen);"
   dest_pos = hash - (dest_pe)*localhashlen;"
   /* lock the data */!
   shmem_set_lock(&pe_lock[dest_pe]);"
   shmem_int_get(&local_val, &hashtab[dest_pos], 1, dest_pe);"
   "

    "

83 



DHT: OpenSHMEM Code Using Locks 
    /* check to see if o already exists */"
    if (local_val == 0) {"
      /* insert the entry */!
      int one = 1;"
      shmem_int_put(&hashtab[dest_pos], &o, 1, dest_pe);"
      shmem_int_put(&hashcount[dest_pos], &one, 1, dest_pe);"
      /* unlock before return */!
      shmem_clear_lock(&pe_lock[dest_pe]);"
      return;"
   }"
   else... // repetition or collision!

    "

84 



DHT: OpenSHMEM Code Using Locks 
   /* check to see if it is not a collision */!
   else if (local_val == o) {"
         /* it is a repetition */!
         shmem_int_inc(&hashcount[dest_pos], dest_pe);"
         shmem_clear_lock(&pe_lock[dest_pe]);"

"  return;"
   } else { /* it is a collision */!
         collisions++;"
         hash++;"
         if (hash == hashlen) {"
            hash = 0;"
         }"
         shmem_clear_lock(&pe_lock[dest_pe]);"
   }"
}"

85 



DHT: OpenSHMEM Code Using Locks 
hash = h(o);"
while (1) {"
   dest_pe = ceil(hash / localhashlen);"
   dest_pos = hash - (dest_pe)*localhashlen;"
   shmem_set_lock( &pe_lock[dest_pe] );"
   shmem_int_get(&local_val, &hashtab[dest_pos], 1, dest_pe);"
   if (local_val == 0) {"
      int one = 1;"
      shmem_int_put(&hashtab[dest_pos], &o, 1, dest_pe);"
      shmem_int_put(&hashcount[dest_pos], &one, 1, dest_pe);"
      /* unlock before return */!
      shmem_clear_lock( &pe_lock[dest_pe] );"
      return;"
   }"
   else...    //repetition or collision;!
    "

shmem_int_cswap?"

86 



 /* check to see if it is a collision */!
 else if (local_val == o) {"
        /* its a repetition */!
        shmem_int_inc(&hashcount[dest_pos], dest_pe);"
        shmem_clear_lock( &pe_lock[dest_pe] );"

" return;"
 } else { /* its a collision */!
         collisions++;"
         hash++;"
         if (hash == hashlen) {"
            hash = 0;"
         }"
         shmem_clear_lock( &pe_lock[dest_pe] );"
  }"
}"

DHT: OpenSHMEM Code Using Locks 

87 



DHT: OpenSHMEM Code Using AMO 

hash = h(o);"
while (1) {"
   dest_pe = ceil(hash / localhashlen);"
   dest_pos = hash - (dest_pe)*localhashlen;"
   local_val = shmem_int_cswap(&hashtab[dest_pos],0,o,dest_pe);"
   if (local_val == 0 || local_val == o) {"
      /* update successful, so increment count and return */!
      shmem_int_inc(&hashcount[dest_pos], dest_pe);"
      return;"
   }"
   else"
    /* it’s a collision */!

    "

88 



   else { /* its a collision */!
         collisions++;"
         hash++;"
         if (hash == hashlen) {"
            hash = 0;"
         }"
   }!
}"

DHT: OpenSHMEM Code Using AMO 

89 



DHT: Performance on Stampede 
using MVAPICH2-X 

Interconnect:   
InfiniBand Mellanox Switches/HCAs 
Cores/Node: 16 
•  We used 16 PEs/nodes 
Version: mvapich2-x/2.0b 
ICC 13.1.0 
CFLAGS= -O2  

90 



•  DHT: look up and store large orbits   
•  DHT: illustrative example of using OpenSHMEM 

(RMA, locks, atomics) 
•  Easy transition from sequential to parallel 
•  Use atomics if implementation is adapted 

DHT: Conclusion 

91 



OpenSHMEM Implementation 
Components and Characteristics 

Manjunath Gorentla Venkata  
ORNL 



OpenSHMEM Components and Characteristics 

Goal: 
Overview of components and its characteristics in a typical 
OpenSHMEM implementation 
 
Expert level:  
Introductory 
 
 



 
Components in a Typical  
OpenSHMEM Implementation 

Runtime

Language Bindings

Interface Layer

Protocol Layer

Network Layer

Driver

HAL

M
es

sa
gi

ng
 L

ay
er

Collectives



Runtime Layer 
Resides on the head node from which processes are launched, 
and typically a daemon resides in each node of the job 
Functions 
•  Launches the job, leveraging job launchers such as rsh, ssh, 

slurm, pbs 
•  Provides out-of-band communication 
•  Fault detection and recovery  
•  Provides flexible process binding functionality 
 



Examples 
Launchers 
•  ALPS, SSH, Hydra 

Runtime Implementations 
•  STCI  - Runtime that supports fault-tolerance 
•  ORTE – Runtime for Open MPI 
•  PMI – Runtime for MPICH based implementations 
•  SLURM PMI, BG/L PMI, Simple PMI 

Interfaces for abstracting various runtime layers 
•  Librte – Library interface for runtimes 
•  Process Manager Interface (PMI) 

 
 
 
 
 
 



Case Study: STCI 

the creation of execution contexts (typically processes) across
compute nodes is particularly important. For instance, if the
execution contexts are created in a linear manner, the startup
time will become prohibitive on very large scale systems, e.g.,
with 100,000 compute nodes.

The second main challenge for the implementation of a
scalable process management infrastructure is fault tolerance:
because of the scale of the target systems, many distributed
hardware components are involved in the execution of a job
and the probability of a failure increases with the size of the
job. In the context of this study, we do not aim at providing
fault tolerant mechanisms for the job itself, but we intend to
detect failures, report them, maintain communication channels
between the different execution contexts of the job, and give
the opportunity to users and/or applications to decide the
best policy to apply (from clean termination of remaining
job’s processes to automatic recovery). To achieve this, the
STCI architecture is based on the notion of topologies that
abstract the management of communication channels inside
the deployed infrastructure, as well as, mechanisms for fault
detection, process restart and fine-grain management of com-
munication channels.

Furthermore, since HPC platforms can be very different in
nature (both in terms of hardware and software configuration),
it is important to be able to customize and optimize the soft-
ware environment to a given target HPC platform. To provide
this feature, STCI is based on a modular architecture in which
“frameworks” implement certain software capabilities and are
composed of “plug-ins”. As a result, by selecting different
plug-ins, it is possible to adapt both the system mechanisms
and policies that are internally used in STCI. Section III-A
gives more details about the design and implementation of the
modular architecture.

A. Agents

In order to separate the system aspects (such as resource
allocation) from the job management, the STCI architecture
is based on the concept of agents. Three different types of
agents have been defined: root agents (typically system agents),
session agents (specific to a job), and tool agents (specific to a
“tool”, a tool being a self-contained part of a job, e.g., one of
the binaries of a job when the parallel application is composed
of different sub-applications). For simplification, we refer to
agent instantiations as processes but STCI has been designed to
support different instantiation methods, for instance via threads
(see Section III-C).

Root agents are in charge of resource allocation and release.
Thus, these agents are privileged agents. Only one root agent is
on each compute node and is used to deploy other agents (both
session and tool agents). Root agents may be shared between
jobs.

Session agents are in charge of instantiating a job on a
given compute node. This is not a privileged agent and it acts
on behalf of the user. A single session agent is deployed on
compute nodes of a given job allocation. In some configura-
tions, the session agent may be used to deploy tool agents.

Tool agents are instantiating the job itself, multiple tool
agents can be deployed on compute nodes of a job allocation,

and all tool agents act on behalf of the users. These are
generally the end-user’s executable, e.g., a MPI application
binary.

In addition to these agents, a Controller agent is running on
the HPC system. The Controller is in charge of creating an in-
ternal representation of a job. The Controller is also responsible
for coordinating the deployment of the different agents and the
creation of communication channels between the agents. The
communication channels are organized based on topologies
(e.g., trees and meshes). These topologies describe how all
the different agents, i.e., the Controller, the Root Agents, the
Session Agents, and the Tool Agents can communicate with
each other. Figure 1 presents an example tree-based topology.
Topologies are also used to set routing tables (which are then
used to send messages from one agent to another).

Controller Agent 

Root Agent 

Session Agent 

Tool Agent 

Fig. 1. Example STCI Topology that connects agents in a tree-based fashion.

Finally, a Front-end agent runs on the user’s machine or on
the HPC system login node, and interacts with the Controller.
This separation enables the implementation of advanced mech-
anisms, so that the Front-end can connect/disconnect to/from
the HPC platform without compromising the execution of the
user’s job.

B. Topologies

The concept of topology is key in the STCI architecture: it
describes how the different agents are connected to each other
and how messages should be routed during communications
between agents.

STCI implements a few key topologies: trees, meshes, and
binomial graphs (BMGs) [4]. For instance a k-ary tree is
used to deploy agents across the compute nodes, providing
a scalable startup. For fault detection, a mesh topology is
used for the detection of root agent failures. Finally, a BMG
topology is instantiated for the deployment of a fault tolerant
communication infrastructure by providing redundant commu-
nication channels between agents. All the topologies are using
the communication substrate to instantiate the links between
the agents (see Section II-E).

Finally, STCI provides a boot topology which describes
how the agents of a given job are connected to each other.
This allows us to have sparse connectivity, and therefore ease

Components 
•  Agents 

•  Controller, Root, Session, Tool 
•  Topology 

•  Connects various agent 
components 

•  Currently supports tree, meshes, 
BMGs 

Vallee et. al.: A Runtime Environment for Supporting Research in Resilient HPC System Software & Tools 



Case Study: STCI 

the creation of execution contexts (typically processes) across
compute nodes is particularly important. For instance, if the
execution contexts are created in a linear manner, the startup
time will become prohibitive on very large scale systems, e.g.,
with 100,000 compute nodes.

The second main challenge for the implementation of a
scalable process management infrastructure is fault tolerance:
because of the scale of the target systems, many distributed
hardware components are involved in the execution of a job
and the probability of a failure increases with the size of the
job. In the context of this study, we do not aim at providing
fault tolerant mechanisms for the job itself, but we intend to
detect failures, report them, maintain communication channels
between the different execution contexts of the job, and give
the opportunity to users and/or applications to decide the
best policy to apply (from clean termination of remaining
job’s processes to automatic recovery). To achieve this, the
STCI architecture is based on the notion of topologies that
abstract the management of communication channels inside
the deployed infrastructure, as well as, mechanisms for fault
detection, process restart and fine-grain management of com-
munication channels.

Furthermore, since HPC platforms can be very different in
nature (both in terms of hardware and software configuration),
it is important to be able to customize and optimize the soft-
ware environment to a given target HPC platform. To provide
this feature, STCI is based on a modular architecture in which
“frameworks” implement certain software capabilities and are
composed of “plug-ins”. As a result, by selecting different
plug-ins, it is possible to adapt both the system mechanisms
and policies that are internally used in STCI. Section III-A
gives more details about the design and implementation of the
modular architecture.

A. Agents

In order to separate the system aspects (such as resource
allocation) from the job management, the STCI architecture
is based on the concept of agents. Three different types of
agents have been defined: root agents (typically system agents),
session agents (specific to a job), and tool agents (specific to a
“tool”, a tool being a self-contained part of a job, e.g., one of
the binaries of a job when the parallel application is composed
of different sub-applications). For simplification, we refer to
agent instantiations as processes but STCI has been designed to
support different instantiation methods, for instance via threads
(see Section III-C).

Root agents are in charge of resource allocation and release.
Thus, these agents are privileged agents. Only one root agent is
on each compute node and is used to deploy other agents (both
session and tool agents). Root agents may be shared between
jobs.

Session agents are in charge of instantiating a job on a
given compute node. This is not a privileged agent and it acts
on behalf of the user. A single session agent is deployed on
compute nodes of a given job allocation. In some configura-
tions, the session agent may be used to deploy tool agents.

Tool agents are instantiating the job itself, multiple tool
agents can be deployed on compute nodes of a job allocation,

and all tool agents act on behalf of the users. These are
generally the end-user’s executable, e.g., a MPI application
binary.

In addition to these agents, a Controller agent is running on
the HPC system. The Controller is in charge of creating an in-
ternal representation of a job. The Controller is also responsible
for coordinating the deployment of the different agents and the
creation of communication channels between the agents. The
communication channels are organized based on topologies
(e.g., trees and meshes). These topologies describe how all
the different agents, i.e., the Controller, the Root Agents, the
Session Agents, and the Tool Agents can communicate with
each other. Figure 1 presents an example tree-based topology.
Topologies are also used to set routing tables (which are then
used to send messages from one agent to another).

Controller Agent 

Root Agent 

Session Agent 

Tool Agent 

Fig. 1. Example STCI Topology that connects agents in a tree-based fashion.

Finally, a Front-end agent runs on the user’s machine or on
the HPC system login node, and interacts with the Controller.
This separation enables the implementation of advanced mech-
anisms, so that the Front-end can connect/disconnect to/from
the HPC platform without compromising the execution of the
user’s job.

B. Topologies

The concept of topology is key in the STCI architecture: it
describes how the different agents are connected to each other
and how messages should be routed during communications
between agents.

STCI implements a few key topologies: trees, meshes, and
binomial graphs (BMGs) [4]. For instance a k-ary tree is
used to deploy agents across the compute nodes, providing
a scalable startup. For fault detection, a mesh topology is
used for the detection of root agent failures. Finally, a BMG
topology is instantiated for the deployment of a fault tolerant
communication infrastructure by providing redundant commu-
nication channels between agents. All the topologies are using
the communication substrate to instantiate the links between
the agents (see Section II-E).

Finally, STCI provides a boot topology which describes
how the agents of a given job are connected to each other.
This allows us to have sparse connectivity, and therefore ease

•  Communication Substrate 
•  Bootstrap communication substrate :  

•  Self-bootstrapping 
•  Reliable and ordered 

•  Active message communication substrate: 
•  Provides communication between agents 

after bootstrapping  
•  Fault tolerance : Enables communication even 

in the event of failed agents 
•  Fault detection 
•  Fault tolerant communication 

Vallee et. al.: A Runtime Environment for Supporting Research in Resilient HPC System Software & Tools 



Messaging Layer 
Protocol Layer 
•  Implements semantics of the programming model 
•  Provides protocols to support the programming model semantics and 

achieve performance 
•  Provides message fragmentation and coalescing abilities 
•  RDMA Protocols, Active Messages, Atomics  

Network layer 
•  Transfers data between processing elements  
•  Typically hardware and network dependent, and this component 

requires to re-implementing for porting the message layer 
 

Runtime

Language Bindings

Interface Layer

Protocol Layer

Network Layer

Driver

HAL

M
es

sa
gi

ng
 L

ay
er

Collectives



Example 

Programming model specific 
•  Mellanox SHMEM  
•  Open MPI /MPICH 
•  OpenSHMEM reference implementation 

Independent of Programming model  
•  UCCS/UCX 
•  PAMI 
•  MXM 
•  Libfabrics 
•  GASNet 

 
 



Case Study: UCX  

Yossi will provide a detailed talk on UCX  



What Collective Operations ? 

•  Collective operations are global communication and 
synchronization operations in a parallel job 

 
•  Important component of a parallel system software stack 
•  Simulations are sensitive to collectives performance 

characteristics 
•  Simulations spend significant amount of time in collectives 
 



Examples  
Part of messaging layer 
•  OpenMPI – Tuned, Cheetah 
•  PAMI  
•  OpenSHMEM (reference implementation) 
 
Standalone Libraries 
•  LibNBC 
•  HCOL (derived from Cheetah) 
•  FCA  
 
 



Objectives 

•  Develop a high-performing and highly scalable collective 
operations library for multicore systems 

•  Develop collective offload mechanism for InfiniBand HCA 
•  Designed to support blocking and nonblocking semantics, 

and achieve high scalability and performance on modern 
multicore systems 

http://www.csm.ornl.gov/cheetah 

Case Study : Cheetah 

     



Our Approach: Hierarchical Collectives 
•  A collective operation is a combination of multiple (layered) 

collective primitives. 

•  Group processes into multiple hierarchies to leverage 
architecture capabilities 

•  Build a collective by combining these basic collective primitives 
•  Progress independent collective primitives concurrently 
   

Intra-socket Optimized Collective

Intra-node Optimized Collective

Intra-switch Optimized Collective

Inter-switch Optimized Collective

Cheetah Collective 

Regular Collective 



Definitions: Reduction Operations 

•  Allreduce Operation: Combines the data from all 
participants with an operation, and distributes the 
results of the operation to all participants 

•  Reduce Operation: Combines the data from all 
participants with an operation, and the result is 
available only at the root 

 
 



Hierarchical Allreduce Collective Operation 
•  A hierarchical allreduce is implemented as a 

combination of the reduce, allreduce, and broadcast 
primitives 

•  n level Allreduce is a combination of three primitives 
•  Reduce ( first n-1 levels), Allreduce(nth level), Broadcast ( first n-1 levels) 
 
•  Example: Interaction of the collective primitives in a 8-process allreduce 

collective operation 
Processes participating 

in Hierarchy 1 and 2

Processes participating 
in Hierarchy 1

Allreduce
Reduce
Broadcast 



Recursive K’ing Algorithm for Implementing 
Allreduce Primitive 

10 2 43 5 76 8

10 2 43 5 76 8

Communication 
Pattern
Step 1

X0

X 012

X1 X2 X3 X4 X5 X6 X7 X8

X 012 X 012 X 345 X 345 X 345 X 678 X 678 X 678

X 012345678

Data 
after Step 1

Communication 
Pattern
Step 2

Data 
after Step 2



Cheetah : A Framework for implementing 
hierarchical collectives 

Other

IBOFFLOAD
IBOFFLOAD

BCOL

BTL

PML

OMPI

Coll

MPI

IBOFFLOAD

SBGP

ML

Ethernet
Ethernet
Ethernet
Ethernet
Basic

IBOFFLOAD
IBOFFLOAD

Basesmuma

MPOOL

IBOFFLOAD
IBOFFLOAD

RDMA

Other

OPAL ORTE

OPAL and ORTE
Components

MCA - Modular Component Architecture

uGNI

Vader

uGNI

Open 
Fabrics

Shared 
Memory

Ethernet
Ethernet
Ethernet
Ethernet
Ethernet

Cheetah Framework



Driver 
Provides low level messaging functionality  
•  For RDMA networks it provides – RDMA Read, Write, Atomic interfaces 
•  Provide thin layer of active messages on RDMA network 

The functionality is accessible through well-defined 
interface 
•  The interfaces are well-defined, but might change more rapidly 
 
The lowest interface to the network interface 
•  It is not typically portable across the same hardware or different 

hardware 
 
 
 



Examples  

Verbs 
•  Driver for InfiniBand 
uGNI 
•  Driver for Cray’s Gemini and Aries NICs 
•  Primarily used for implementing MPI  
DMAPP 
•  Driver for Cray’s Gemini and Aries NICs 
•  Primarily used for implementing PGAS models 



Case Study : Verbs 
What is Verbs ? 
•  A low level abstraction of the network device, and is close to bare 

metal for many HCAs 
•  Provides RDMA functionality for the upper-layer protocols 
 
Why use Verbs ? 
•  Low-level interface - for portability, performance and scalability  
•  Provides kernel bypass 
 
 
 
 



Case Study: Verbs (Continued) 
 
Constructs 
•  Objects : QPs, SQ, RQ, CQ, Memory Region 
•  Functions:  
Control Functions : Create, Destroy, Modify, Query, Work with events 
Data Functions : Post Send, Recv, Poll CQ, Request for completion event 



Example of Message Transfer using Verbs on 
InfiniBand 

Registered 
Memory

Send Q Recv Q Completion Q

QP

P0

Registered 
Memory

Send Q Recv Q Completion Q

P1

QP

1

2

4

5

3

6

1

2

7



References 

•  https://zcopy.wordpress.com/2010/10/08/quick-concepts-
part-1-–-introduction-to-rdma/ 

•  http://www.digitalvampire.org/rdma-tutorial-2007/slides.pdf 
•  http://www.csm.ornl.gov/workshops/openshmem2013/

documents/presentations_and_tutorials/Tutorials/Verbs
%20programming%20tutorial-final.pdf 

 



Stack Trace: shmem_put call (First Packet) 
#0  0x00007f2694bcc160 in ibv_create_qp ()  
#1  0x00007f2694e0040c in qp_create_one () 
#2  0x00007f2694e001dd in qp_create_all ()  
#3  0x00007f2694dff7af in oob_module_start_connect ()  
#4  0x00007f2694df43fa in check_endpoint_state ()  
#5  0x00007f2694df41ef in mca_tl_openib_put_short_nb () 
#6  0x0000000000403352 in uccs_put_contiguous_short_nb ()  
#7  0x0000000000403169 in uccs_put ()  
#8  0x0000000000403049 in __shmem_comms_put ()  
#9  0x00000000004034a2 in shmem_int_put ()  
#10 0x0000000000403f7c in shmem_int_p ()  
#11 0x0000000000402054 in main ()  

Runtime

Language Bindings

Interface Layer

Protocol Layer

Network Layer

Driver

HAL

M
es

sa
gi

ng
 L

ay
er

Collectives



Stack Trace: shmem_put call (Subsequent 
Packets) 
#0  ibv_post_send ()  
#1  0x00007fe21fe3d32e in mca_tl_openib_put_short_nb ()  
#2  0x0000000000403366 in uccs_put_contiguous_short_nb ()  
#3  0x000000000040317d in uccs_put ()  
#4  0x000000000040305d in __shmem_comms_put ()  
#5  0x00000000004034b6 in shmem_int_put ()  
#6  0x0000000000403f90 in shmem_int_p ()  
#7  0x0000000000402068 in main ()  

Runtime

Language Bindings

Interface Layer

Protocol Layer

Network Layer

Driver

HAL

M
es

sa
gi

ng
 L

ay
er

Collectives



Acknowledgments 

This work was supported by the United States 
Department of Defense & used resources of the 
Extreme Scale Systems Center at Oak Ridge 
National Laboratory. 



Latest in OpenSHMEM: 
Specification, API, and 

Programming 
Presenters: 

Graham Lopez, Dounia Khaldi, Pavel Shamis, 
Manjunath Gorentla Venkata 


