
ORNL is managed by UT-Battelle
for the US Department of Energy

MRF HPC
RESEARCH
PROGRAM

OpenSHMEM 1.3

OpenSHMEM Workshop 2015
August 6th , 2015

OpenSHMEM
Specification Face-to-
face community
discussion

2 OpenSHMEM 1.3 f2f Aug 6th, 2015

Welcome

Steve Poole

OpenSHMEM Workshop 2015 – Face-to-face Specification
discussion

3 OpenSHMEM 1.3 f2f Aug 6th, 2015

Progress update for 1.3 Specification

•  Tentative Schedule
–  Features freeze - August
–  Specification draft - September
–  Final draft – October
–  Ratification – November
–  Release 1.3 – SC 2015

4 OpenSHMEM 1.3 f2f Aug 6th, 2015

#160 – Deprecated cache management

•  Formally deprecate all cache management routines
–  Not used on current architectures
–  If they become necessary in the future, we would rather

redesign from scratch than patch up the old ones

•  July telecon: unanimous vote to proceed

•  Working draft is present in the spec (posted to Redmine)

5 OpenSHMEM 1.3 f2f Aug 6th, 2015

#161 – C/C++ library constants

•  Deprecate leading underscore for C/C++ SHMEM constants
•  Also specify that these are compile-time constants

–  Avoids possible namespace issues

•  July telecon: unanimous vote to proceed

•  Working draft is present in the spec (posted to Redmine)

6 OpenSHMEM 1.3 f2f Aug 6th, 2015

#166 – Symmetric heap text

•  Remove text that specifies symmetric objects have the
“same offset” from an arbitrary global address on each PE

•  July telecon: unanimous vote to proceed

•  Working draft is present in the spec (posted to Redmine)

7 OpenSHMEM 1.3 f2f Aug 6th, 2015

#167 – Non-character types

•  Remove text from data type descriptions that specifies “non-
character” types and explicitly require proper alignment

•  Other issues (e.g. aliasing) and further improvements can be
made by adding const, restrict, volatile throughout the spec
–  Separated into new ticket #181

•  July telecon: unanimous vote to proceed

•  Working draft is present in the spec (posted to Redmine)

8 OpenSHMEM 1.3 f2f Aug 6th, 2015

#171 – PEs as threads

•  Remove text specifying that PEs may be implemented as OS
threads, and leave unspecified to allow for future flexibility

•  July telecon: unanimous vote to proceed

•  Working draft is present in the spec (posted to Redmine)

9 OpenSHMEM 1.3 f2f Aug 6th, 2015

#124 – Fence/quiet with PE argument

•  Proposal to have a fence/quiet that take a PE argument,
rather than affecting all PEs
–  Need motivating cases
–  Unknown performance implications

•  July telecon: 2-yes, 2-yes (fence only), 1-no, 3-abstain

•  Intel is leading this ticket and further investigations

10 OpenSHMEM 1.3 f2f Aug 6th, 2015

#165 – Atomicity vs. datatype

•  Insert underlined text into "These routines guarantee that
accesses by OpenSHMEM’s atomic operations with the same
datatype will be exclusive”.

•  Mixing atomics on signed integers is dangerous
•  OpenSHMEM currently only has atomics on signed types

•  If we want this capability, should define atomics for unsigned types
and define compatibility classes

•  July telecon: 4-yes, 2-no, 2-abstain

•  Intel is leading this ticket

11 OpenSHMEM 1.3 f2f Aug 6th, 2015

#181 – const/restrict/volatile

•  Proposal to add “const,” “restrict,” and “volatile” keywords to
C API everywhere that is appropriate

•  July telecon: Not discussed in detail

12 OpenSHMEM 1.3 f2f Aug 6th, 2015

#182/183 – alltoall() / alltoallv()

•  Current proposal follows the MPI / Cray SHMEM interface
•  There may be some SHMEM-specific issues due to memory

model, etc.

•  July telecon: not discussed in detail

13 OpenSHMEM 1.3 f2f Aug 6th, 2015

#113: Non-blocking RMA Operations

14 OpenSHMEM 1.3 f2f Aug 6th, 2015

#113: Non-blocking RMA Operations

•  Non-blocking Put (Get) operation starts the Put (Get)
operation, and is completed by another operation.

•  Explicit Non-blocking Operation: Every operation has a
handle to identify the operation

•  Implicit Non-blocking Operation: The operation is not
identified by a handle by the user.

15 OpenSHMEM 1.3 f2f Aug 6th, 2015

Proposal : Non-blocking RMA Operations

•  Only supports implicit non-blocking operations

•  Example API:

•  void shmem_TYPE_put_nbi(int *dest, const int *source,
size_t nelems, int pe);

•  void shmem_TYPE_get_nbi(int *dest, const int *source,
size_t nelems, int pe);

16 OpenSHMEM 1.3 f2f Aug 6th, 2015

Non-blocking Operations : Ordering and
Completion

•  Completion:
•  shmem_quiet completes all non-blocking implicit operations

•  shmem_barrier/all completes all non-blocking RMA
operations

•  shmem_finalize completes all non-blocking RMA operations

•  Ordering:

•  shmem_fence does not order the non-blocking
shmem_put_nbi operations

17 OpenSHMEM 1.3 f2f Aug 6th, 2015

8. OPENSHMEM LIBRARY API 33

The following example uses shmem_logical_iget in a Fortran program.
PROGRAM STRIDELOGICAL
INCLUDE "shmem.fh"

LOGICAL SOURCE(10), DEST(5)
SAVE SOURCE ! SAVE MAKES IT REMOTELY ACCESSIBLE
DATA SOURCE /.T.,.F.,.T.,.F.,.T.,.F.,.T.,.F.,.T.,.F./
DATA DEST / 5*.F. /
CALL SHMEM_INIT()
IF (SHMEM_MY_PE() .EQ. 0) THEN

CALL SHMEM_LOGICAL_IGET(DEST, SOURCE, 1, 2, 5, 1)
PRINT*,’DEST AFTER SHMEM_LOGICAL_IGET:’,DEST

ENDIF
CALL SHMEM_BARRIER_ALL

8.4 Nonblocking Remote Memory Access Routines

8.4.1 SHMEM_PUT_NBI

The nonblocking put routines provide a method for copying data from a contiguous local data object to a data object
on a specified PE.

SYNOPSIS

C/C++:
void shmem_double_put_nbi(double *dest, const double *source, size_t nelems, int pe);

void shmem_float_put_nbi(float *dest, const float *source, size_t nelems, int pe);

void shmem_int_put_nbi(int *dest, const int *source, size_t nelems, int pe);

void shmem_long_put_nbi(long *dest, const long *source, size_t nelems, int pe);

void shmem_longdouble_put_nbi(long double *dest, const long double *source, size_t nelems,

int pe);

void shmem_longlong_put_nbi(long long *dest, const long long *source, size_t nelems, int pe);

void shmem_put32_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_put64_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_put128_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_putmem_nbi(void *dest, const void *source, size_t nelems, int pe);

void shmem_short_put_nbi(short*dest, const short*source, size_t nelems, int pe);

FORTRAN:
CALL SHMEM_CHARACTER_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_COMPLEX_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_DOUBLE_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_INTEGER_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_LOGICAL_PUT_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT4_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT8_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT32_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT64_NBI(dest, source, nelems, pe)

CALL SHMEM_PUT128_NBI(dest, source, nelems, pe)

CALL SHMEM_PUTMEM_NBI(dest, source, nelems, pe)

CALL SHMEM_REAL_PUT_NBI(dest, source, nelems, pe)

DESCRIPTION

Arguments
IN dest Data object to be updated on the remote PE. This data object must be

remotely accessible.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 OpenSHMEM 1.3 f2f Aug 6th, 2015

Teams #179

•  Proposed API
 •  SHMEMX_WORLD_TEAM, SHMEMX_NULL_TEAM	

•  shmemx_create_strided_team(long	
 PE_start,	
 long	
 PE_stride,	
 long	
 PE_size,	

shmemx_team	
 parent,	
 shmemx_team	
 *subteam);	

•  shmemx_team_2d_split(long	
 xrange,	
 long	
 yrange,	
 shmemx_team	
 parent,	

shmemx_team	
 *xaxis,	
 shmemx_team	
 *yaxis);	

•  shmemx_team_3d_split(long	
 xrange,	
 long	
 yrange,	
 long	
 zrange,	
 shmemx_team	

parent,	
 shmemx_team	
 *xaxis,	
 shmemx_team	
 *yaxis,	
 shmemx_team	
 *zaxis);	

•  shmemx_team_axial_split(long	
 dimensions,	
 long	
 *range,	
 shmemx_team	
 parent,	

shmemx_team	
 **axes);	

•  shmemx_team_translate_index(int	
 PE,	
 shmemx_team	
 src,	
 shmemx_team	
 dst);	

•  shmemx_team_size(shmemx_team	
 team);	

•  shmemx_destroy_team(shmemx_team	
 team);	

19 OpenSHMEM 1.3 f2f Aug 6th, 2015

Teams – axial split

Create a
strided
team.

shmemx create strided team(long
PE start, long PE stride, long PE size,
shmemx team parent, shmemx team
*subteam);

Create a
2-D split.

shmemx team 2d split(long xrange,
long yrange, shmemx team parent,
shmemx team *xaxis, shmemx team
*yaxis);

Create a
3-D split.

shmemx team 3d split(long xrange, long
yrange, long zrange, shmemx team parent,
shmemx team *xaxis, shmemx team *yaxis,
shmemx team *zaxis);

Create a
n-D split.

shmemx team axial split(long dimen-
sions, long *range, shmemx team parent,
shmemx team **axes);

Table 1: Team Creation API

one corresponding to the row it is on (teams t1-t4), and one
corresponding to its column (teams t5-t8).

1 shmemx team blue team , yel low team ;
2 shmemx team 2d split (4 , 4 ,

SHMEMXWORLDTEAM, &blue team ,
&yel low team) ;

Listing 2: 2-D Axial Split

Figure 3: Visual Representation of 2-D Axial Split in List-
ing 2.

Query functions are provided for use with teams. These new
API calls are listed in Table 2. The most important of these
is shmemx team translate index(), which translates the index
of a PE in a source team to a destination team. If there is
no valid translation, it returns a negative value (error). This
can be used to get a PE’s own id within a team as well as
determine membership in a team, both of which can be seen
demonstrated in Listing 3. Additionally, shmemx team size()
returns the size of a team. When finished with a team, it can
be destroyed via the shmemx destroy team() call. This call
is also not collective, but is required for all PEs that created
it. In addition to these new functions, all point to point and
collective calls can be used with teams, and be made to make
use of the indexing provided by them.

4.1.2 Prototype Implementation

The SHMEMX WORLD TEAM has a lifetime of the entire
OpenSHMEM application, hence a new team may be created
from the world team at any point. Since PE ids within this
team are globally consistent across all processes, a new team
simply needs to have a mechanism for reindexing PE ids
with respect to itself to ids in this world view. These ids can

Find the index in
dst for PE in src.

shmemx team translate index(int
PE, shmemx team src,
shmemx team dst);

Get the size of a
team.

shmemx team size(shmemx team
team);

Destroy a team. shmemx destroy team(shmemx team
team);

Table 2: Team Query and Destruction API

be calculated in a deterministic fashion with a translation
function, obviating the need to store more information than
a few input values to this function, and recalculating these
translations when necessary. Thus, storage requirements for
a team are constant for a particular type, incurring only
minimal memory overhead.

For strided teams, this is especially easy - for a start id of
a and a stride of s, a PE in the team with an index of x
has a world index value of y = sx + a. Handling of the
axial splits does not require a new translation function, as
the results of an n-dimensional split can be produced by
simply finding the appropriate deltas between adjacent PEs
along a given dimension and using those to create n strided
teams. This otherwise internal translation function is exposed
through the shmemx team translate index() function, with
the added requirement that the destination team may need
to be searched when not equivalent to the world team. The
code in Listing 3 illustrates the use of the proposed features:

1 i n t main (i n t argc , char ⇤⇤ argv) {
2 i n t me , team index ;
3 shmemx team st r ided , ⇤ ax i s ;
4 . . .
5 me = shmem my pe () ;
6 /⇤ c r e a t e s a team conta in ing ⇤/
7 /⇤ PEs 1 , 4 , 7 , . . . , 82 ⇤/
8 shmemx create str ided team (1 , 3 , 27 ,
9 SHMEMXWORLDTEAM,

10 &s t r i d ed) ;
11 team index =

shmemx team translate index (me,
SHMEMXWORLDTEAM, s t r i d ed) ;

12

13 i f (team index > 0) {
14 long range [3] = {3 , 3 , 3}
15 shmemx team barrier (s t r ided , pSync) ;
16

17 i f (team index == 0)
18 p r i n t f (” s t r i d ed team completed

b a r r i e r !\n”) ;
19

20 shmemx team axia l sp l i t (3 ,
21 range , s t r i ded , &ax i s) ;
22 f o r (i = 0 ; i < 3 ; i++) {
23 team index =

shmemx team translate index (me,
SHMEMXWORLDTEAM, ax i s [i]) ;

24 f o r (j = 0 ; j <

shmemx team size (ax i s [i]) ;
j++)

25 /⇤add 1 to symm var on a l l ⇤/
26 /⇤PEs along ax i s i ⇤/
27 shmem int add (symm var , 1 ,
28 shmemx team translate index

20 OpenSHMEM 1.3 f2f Aug 6th, 2015

Open Questions

•  Passing teams to RMA/AMO operations:
–  shmemx_team_translate_index()
–  API extension with C11 generics

•  Passing teams to Collectives
–  API extension with C11 generics
–  Team can be associated with a negative integer value (ID) and then the ID

can be passed as an argument instead of “int PE_start”

•  Do we need more “complex” teams ?

•  Removing pSync ?
–  It means that shmemx_create_strided_team	
 has to be collective

operation that coordinates the team creation across PEs
•  Today team’s creation is a local operation (a.k.a very fast)
•  But, Psync allocation is a collective operation (shmalloc) unless it is global

21 OpenSHMEM 1.3 f2f Aug 6th, 2015

Proposal for the path forward

•  Coordination of the efforts between ORNL, Cray, and Intel proposals

•  Split the team feature to a phases:
–  Phase-1: Adding support for Team management operations and re-

indexing
•  Support only for one-sided operations

–  Phase-2: Adding support for collective operations
•  Using C11 to extend the list of parameters
•  Removing pwork/psync

–  Phase-3: Teams extension
•  Intel’s federation
•  Memory “spaces” ?

•  Coordination with other proposals
–  Thread context ?

22 OpenSHMEM 1.3 f2f Aug 6th, 2015

Lock + Teams

•  The question was raised in #115
•  Do we care ?

23 OpenSHMEM 1.3 f2f Aug 6th, 2015

Atomics (AMO) Extension (#172)

•  Bitwise AMOs (borrowed from OpenSHMEM RF+IBM Zurih)
–  void shmem_int_xor (int *target, int value, int pe);
–  void shmem_long_xor (long *target, long value, int pe);
–  void shmem_longlong_xor (long long *target, long long value, int pe);

•  Masked AMOs (borrowed from Quadrics SHMEM)
–  int shmem_int_mswap(int *target, int mask, int value, int pe);
–  long shmem_long_mswap(long *target, long mask, long value, int pe);
–  long shmem_longlong_mswap(long *target, longlong mask, long value, int

pe);

•  Main Question – do we have these capabilities in hardware

24 OpenSHMEM 1.3 f2f Aug 6th, 2015

Simplifying the OpenSHMEM API via C11
Generic Selection

25 OpenSHMEM 1.3 f2f Aug 6th, 2015

Background

•  The OpenSHMEM (and historical SHMEM) RMA and AMO
interfaces are verbose and type-specific due to C’s lack of
function overloading.

•  C11 adds generic selection, which enables type-generic
interfaces (much like C99’s type- generic math functions)

26 OpenSHMEM 1.3 f2f Aug 6th, 2015

Proposal

•  // RMA Interface
•  void shmem_put(TYPE *dst, const TYPE *src, size_t len, int

pe);

•  void shmem_get(TYPE *dst, const TYPE *src, size_t len, int
pe);

•  void shmem_iput(TYPE *dst, const TYPE *src, ptrdiff_t dst,
ptrdiff_t sst size_t nelems, int pe);

•  void shmem_iget(TYPE *dst, const TYPE *src, ptrdiff_t dst,
ptrdiff_t sst size_t nelems, int pe);

•  void shmem_p(TYPE *dst, TYPE val, int pe); TYPE

•  shmem_g(TYPE *dst, int pe);

27 OpenSHMEM 1.3 f2f Aug 6th, 2015

Proposal

// AMO Interface
•  void shmem_add(TYPE *dst, TYPE val, int pe); TYPE

•  shmem_fadd(TYPE *dst, TYPE val, int pe);

•  void shmem_inc(TYPE *dst, int pe);

•  TYPE shmem_finc(TYPE *dst, int pe);

•  TYPE shmem_swap(TYPE *dst, TYPE val, int pe);

•  TYPE shmem_cswap(TYPE *dst, TYPE cond, TYPE val, int
pe);

28 OpenSHMEM 1.3 f2f Aug 6th, 2015

Notes

•  Generic selection in C11 is sufficiently robust as to support
the typed RMA interfaces. (All AMO interfaces are typed.)

•  The non-typed shmem_(put|get)(32|64) interfaces are used
to support block-based put and get operations on uint32_t
and uint64_t data types. N.B., int32_t and int64_t are not
required as they are equivalent types in C to int and long
long.

•  As implemented, generic selection does not support RMA
operations on user-defined data types; e.g., my_struct_t.
Developers would need to call the appropriate
shmem_put(32|64|128|mem) operation.

•  No proposed Fortran changes.

29 OpenSHMEM 1.3 f2f Aug 6th, 2015

Limitations

•  Requires compiler support for C11 generics
–  Available in GCC 4.9+, Clang 3.0+, PGI C/C++ 2015
–  Not currently supported by Intel C/C++ compiler

•  However, the non-generic interface is still available to those
without modern compilers

30 OpenSHMEM 1.3 f2f Aug 6th, 2015

Generics and API Philosophy

•  As proposed here, C11 Generics are a convenient, yet
relatively modest change to the API.

•  However, their use can be expanded to maintain a clean,
simple OpenSHMEM API in the face of many extension
proposals.

•  C11 Generics can be used to overload:
–  shmem_broadcast(32|64) for both the existing API and (an API

similar to) the Teams proposal
–  shmem_put(...) for this proposed generic API and the

communication contexts proposal

31 OpenSHMEM 1.3 f2f Aug 6th, 2015

Generics and API Philosophy

•  Extensive use of C11 generics can help maintain a simple,
user-facing API that provides, but designing future APIs
should consider the impact on generic selection.

•  Specifically:
–  Generic selection favors (or requires) generic selection on left-

most function arguments for differentiating functions with
signatures of different argument lengths.

–  For example, this favors the shmem_team_t and shmem_ctx_t
arguments as the first argument to the function.

32 OpenSHMEM 1.3 f2f Aug 6th, 2015

References

•  OpenSHMEMRedmine
–  Issue #178 (Generic RMA and AMO):
http://bongo.cs.uh.edu/redmine/issues/178
–  Issue #177 (Communication Contexts):
http://bongo.cs.uh.edu/redmine/issues/177#note-3
–  Issue #179 (Teams API):
http://bongo.cs.uh.edu/redmine/issues/179#note-2

•  (Incomplete) prototype implementation as shmemx_*
extensions:

 https://github.com/nspark/shmemx/blob/master/include/shmemx.h

33 OpenSHMEM 1.3 f2f Aug 6th, 2015

Future Extensions: Fault Tolerance

•  Aurelien from UTK

34 OpenSHMEM 1.3 f2f Aug 6th, 2015

Future Extensions

•  Signaling Put (Cray)
•  Thread Model (Cray)

•  Locality (Cray)

•  Teams (ORNL/Cray)

•  Communication Contexts (Intel)

•  PE locks within subgroups (ORNL ?)

•  Nonblocking Quiet/Fence

•  shmem_iputmem/shmem_igetmem (UH)

•  Bitwise atomic operations (ORNL)

35 OpenSHMEM 1.3 f2f Aug 6th, 2015

Acknowledgements

This work was supported by the United States Department
of Defense & used resources at Oak Ridge National
Laboratory.

36 OpenSHMEM 1.3 f2f Aug 6th, 2015

Questions?

MRF HPC
RESEARCH
PROGRAM

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Issue: Fence/Quiet affect all peers

Summary: This ticket proposes that we consider adding fence and
quiet functions that take a PE argument. These functions would
guarantee ordering and remote completion with respect to the PE
argument.

§  void shmem_fence_pe(int pe);

§  void shmem_quiet_pe(int pe);

Pro: Improves the model (code readability), could improve
performance (affect some, but not all traffic)

Con: Need motivating cases of where this would improve
performance before integrating the change

#124: Fence/Quiet With PE Argument

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Issue: Atomicity requirements are too loose and may impact performance
Summary: Presently, all SHMEM atomic operations are atomic with respect to all
other atomic operations, regardless of operation performed and datatype. This
requires that all atomics be implemented through the same mechanism (i.e. HW
offload or active message).
Proposed Change: Consider restricting this to provide more flexibility to implementors
(and consequently, better performance to users).

§  Sec 4.2: Insert underlined text into "These routines guarantee that accesses by
OpenSHMEM’s atomic operations with the same datatype will be exclusive".

History: This proposal has already had some discussion on #164

§  Summary: mixing atomics on *signed* integers of different lengths is dangerous,
but does anyone do this?
§  If we want this functionality, we need to do it right (with unsigned types) rather

than as a hack with ugly semantics.
§  In this case, we would add “with compatible datatypes” instead of “same” and

define compatibility classes

#165: Atomicity Versus Op and Datatype

Fault Tolerance API for
OpenSHMEM

Aurelien Bouteiller
OpenSHMEM Workshop,

Annapolis, MD, 2015 August 6

Situation Today

• a

2

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Even for today’s platforms (courtesy F. Cappello)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 8/ 207Slide courtesy of F. Cappello

Checkpoint Restart

3

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Even for today’s platforms (courtesy F. Cappello)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 9/ 207
Slide courtesy of F. Cappello

The FT methods landscape

4

Checkpointing
& Restart (C/R)

Diskless
Checkpointing

Algorithm Based
Fault Tolerance

(ABFT)

Overhead
Small

Application Specificity
Small

Backward recovery: C/R

•  Coordinated checkpoint is the workhorse of FT today
•  I/O intensive, significant failure free overhead !
•  Full rollback (1 fails, all rollback) !
•  Can be deployed w/o MPI support "

•  We need to enable: deployment of in-memory, Buddy-
checkpoints, Diskless checkpoint
•  Checkpoints stored on other compute nodes
•  No I/O activity (or greatly reduced), full network bandwidth
•  Potential for a large reduction in failure free overhead, better restart speed

5

Coordinated checkpoint (possibly with incremental checkpoints)

Uncoordinated C/R

•  Checkpoints taken independently
•  Based on variants of Message Logging
•  1 fails, 1 rollback
•  Can be implemented w/o a standardized user API
•  Benefit from FT support in spec: implementation

becomes portable across multiple Oshmem libraries

6

Forward Recovery
•  Forward Recovery: Any technique that

permit the application to continue without
rollback
•  Master-Worker with simple resubmission
•  Iterative methods, Naturally fault tolerant algorithms
•  Algorithm Based Fault Tolerance
•  Replication (the only system level Forward Recovery)

•  No checkpoint I/O overhead
•  No rollback, no loss of completed work
•  May require (sometime expensive, like

replicates) protection/recovery
operations, but still generally more
scalable than checkpoint "

•  Often requires in-depths algorithm
rewrite (in contrast to automatic
system based C/R) !

7

a
b

c

d

b

e

Master

Worker0
Worker1
Worker2

epcc|cresta
Visual Identity Designs

CREST

Applications

4/11/2013 Fault Tolerance in MPI | EASC 2013 | sachs@cray.com
17

HemeLB HemeLB

Lattice Boltzmann Flow Solver
 University College London

Processor fails
¾ Re-initialize substitute processor

with average mass flow, velocity
from neighbors
passable error in domain size and
magnitude if real solution sufficiently smooth

With ULFM FT-MPI:
PDE, domain decomposition

 0

 7

 14

 21

 28

 35

6x6; 20k
12x12; 40k

24x24; 80k
48x48; 160k

96x96; 320k
192x192; 640k 0

 10

 20

 30

 40

 50

R
el

at
iv

e
O

ve
rh

ea
d

(%
)

P
er

fo
rm

an
ce

 (T
Fl

op
/s

)

#Processors (PxQ grid); Matrix size (N)

ScaLAPACK PDGETRF
FT-PDGETRF (no error)

FT-PDGETRF (w/1 recovery)
Overhead: FT-PDGETRF (no error)

Overhead: FT-PDGETRF (w/1 recovery)

Application specific forward recovery

• Algorithm specific FT
methods
•  Not General, but…
•  Very scalable, low overhead "
•  Can’t be deployed w/o FT-

communication library

8
P

rotection blocks

Factorized in
previous iterations

trailing matrix
& protection

update by
applying the

same
operations

Factorized in
previous iterations

Factorize

ABFT

With ULFM FT-MPI

An API for diverse FT approaches

9

What we need is a set of flexible API that enable all these
recovery strategies, w/o paying the cost of the most demanding

OpenSHMEM API
for failure reporting,
propagation and
correction

FT MPI vs FT Oshmem

• You’ve been there, done that in MPI, so…
problem solved?
•  MPI already has a defined error reporting framework (error handlers)
•  MPI has well defined scopes (communicators, etc)
•  MPI has no progress guarantee
•  MPI has a lot of 2-sided operations
•  MPI 2-sided FT spec is complete, 1-sided spec is still cooking
•  MPI 1-sided synchronizations are different from oshmem

synchronizations, uniformity with 2-sided also a factor, “MPIness” of
proposed concepts important

• We believe the FT spec for Oshmem should
look significantly different than for MPI

10

Error Reporting

• New concept: “crash_handler”
• shmem_register_crash_handler(shme
m_crash_handler_fn_t hdlr)
•  Register a crash handler to be invoked asynchronously when shmem

detects that a process (any process) has crashed.

• shmem_crash_handler_fn_t(int
npes, int* pes)
•  Invoked only once with a particular process in the array “pes”
•  Async invocation, at any time (like a signal)
•  Invocation is not ordered with synchronizations across Pes: PE0:

crash_handler before barrier_all(), PE1: crash_handler after barrier_all,
this is legal

11

Regaining control
• Worst situation is deadlock/livelock from waiting

for dead processes to “do something”
• Default crash handlers can return control:
•  shmem_crash_handler_abort(int errcode): aborts the execution

at all PEs
•  shmem_crash_handler_break(int errcode): interrupts all blocking

shmem calls. Writes "errcode" into the global variable shmem_error. When an
operation is interrupted, the target buffers are undefined, and flushing/
quieting semantics are not garanteed.

•  shmem_crash_handler_report(int errcode): write into the global
variable shmem_error, does not interrupt any operations (application may
deadlock if the user code posts blocking shmem operations, so users are
responsible for changing locally the target values for variables appearing in
shmem_wait_int and similar).

•  User provided handlers: users can provide their own failure handler, the
failure handler must be reentrant. The failure handler can call one of the
default failure handlers, as the last instruction of the handler.

12

Livelock problem

• while(shared_var != somevalue){…}
• Two approaches are possible:

1.  this is incorrect code. shmem_wait_int(shared_var,
somevalue) is correct.

2.  a failure handler may be called at any moment, and
while(shared_var != somevalue) {if(shmem_error)
break } is then correct.

13

Knowing who is still alive

•  Local semantic (may return true at PE1 and false
at PE2)
• bool shmem_pe_accessible(pe): added

semantic: returns false after the crash_handler
has been invoked for 'pe'. The crash handler may
be invoked from inside shmem_pe_accessible.
• Or bool shmem_pe_crashed(pe): same as

above, does not overload accessibility (it was
accessible, it remains accessible but crashed).

14

Validating progress/reconciliation

• shmem_ft_barrier_all(): Same semantic
as barrier_all. In addition
•  all processes are guaranteed to have invoked the same set of crash handlers.
•  Crash handlers cannot interrupt shmem_ft_barrier_all, which continues to

have flushing semantics.

•  FT Barrier
•  so one can change algorithmic phase knowing previous phase succeeded or

not)

• Reconciliate disparate view of failures across Pes
•  All Pes know the same failure set, can undergo some collective decision

about what to do next.

15

Repairing: tentative ideas
•  shmem_ftshrink()
•  collective, compacts the pe "world" by excluding all dead pes (the list of dead pes is

agreed upon during the operation).
•  The value returned by shmem_my_pe and num_pes change.
•  Requires users to rebalance the work/recompute communication structure etc. !

•  shmem_ftblank()
•  collective, agrees on a list of dead pes. Operations targeting these pes are NOPs.
•  may have a severe performance impact on collective operations (even w/o failures).

•  shmem_ftreplace()
•  collective, agrees on a list of dead pes. Replacement PEs are spawned to replace the

dead.
•  All surviving Pes keep their former rank.
•  New spawnees PEs receive control from shmem_init().
•  Additional interface shmem_pe_my_incarnation() returns a count of how many time

that PE has been spawed (so 1 means no failures).
•  Issue: how are symetric memory segments recreated/accessed from restarted Pes?

Stringent issue is when some segment has been free of realloc since its creation.

16

Concluding remarks

• Nothing carved in stone, at this point
•  Would like to receive input and participations from other interested

parties!
•  In particular C/R framework designers

• How do we interoperate with ongoing efforts
(teams, thread safety, for example)?

• Looking for community input!

17

