
Intel and PGAS: Our Multifaceted PGAS
Activities and Community Engagements
Ulf Hanebutte and James Dinan

OpenSHMEM Workshop
August 5, 2015

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

2

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

We’ve been busy:

 Looking at PGAS and engaging with this community

 Internalizing PGAS usage models and requirements

 Participating in the development of OpenSHMEM

We aim to:

1. Ensure PGAS models can access to full capabilities of Intel HPC offerings

2. Advocate for needs of PGAS users within Intel

3. Participate in community effort to improve parallel programming models

In this talk:

 Skip the typical boring product spiel

 Give an overview of some recent PGAS work at Intel

3

Intel and PGAS

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Extensions to OpenSHMEM and issues they address:

1. Contexts: comm./computation overlap and multithreading

2. Counting puts: point-to-point synchronization

3. One-sided append: receiver buffer management

4. Federations: topology-aware mapping

Open Fabrics Interface:

 New industry standard low-level communication API

 Aligned with PGAS features and performance targets

 Intel is a key partner in industry consortium

4

Talk Outline

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Enables programmer to express multiple independent streams of communication

Key programming model challenges addressed:

 Improve support for communication/computation overlap

 Improve efficiency of communication from multithreaded PEs

Simple, thread-safety solutions are inefficient

 SHMEM has a single communication stream for each PE, as a result

 Communication overlap across threads is not possible; fence/quiet affects all threads

 Threads share resources within the runtime system, resulting in synchronization
overheads

More information:

 Formal proposal and API: https://github.com/jdinan/openshmem-contexts

 Redmine #177: http://bongo.cs.uh.edu/redmine/issues/177

Communication Contexts

5

https://github.com/jdinan/openshmem-contexts
http://bongo.cs.uh.edu/redmine/issues/177

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Not possible to choose which operations are impacted by the quiet

Not possible for subset of operations to overlap with the quiet

Communication in OpenSHMEM 1.x

SHMEM PE

PutPutPut PutPutPutQuiet
PutPutPut

6

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Contexts can be used to isolate streams of communication ops from a PE

Enable communication/computation overlap and pipelining

Communication Contexts and PEs

SHMEM PE

PutPutPut

PutPutPut

PutPutPutQuiet

7

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Quiet from one thread interacts with other thread’s
communication

Simple, Thread-Safe Communication

SHMEM PE

PutPutPut PutPutPutQuiet
PutPutPut

8

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Contexts can be used to isolate streams of communication ops from threads

Threads can further isolate streams by using multiple contexts

Communication Contexts and Threads

SHMEM PE

PutPutPut

PutPutPut

PutPutPutQuiet

9

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

1. OpenSHMEM resource domain: shmem_domain_t

 User creates a local resource domain to represent each thread

 Single-threaded codes can use existing SHMEM_DOMAIN_DEFAULT

 Allows implementation to assign resources to thread

 Used to eliminate resource sharing and synchronization

2. OpenSHMEM communication context: shmem_ctx_t

 Threads create contexts on their resource domain

 Each context is a separate unit of overlap

3. Context object passed to one-sided communication operations

 Context object rather than thread-local storage (TLS)

 Eliminates lookup overhead and avoids threading package dependence

Multithreaded Prog. with Contexts

10

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Parallel bucket sort on a set of small integers
 Single-threaded benchmark, show impact of contexts on overlap control

 Contexts allow blocking gets to overtake nonblocking puts

Key exchange is the main contributor to communication

NAS Integer Sort (IS) Benchmark

shmem_barrier_all();

for (i = 0; i < num_pes; i++) {
int k1 = send_offset[i];
int k2; // target offset

shmemx_ctx_int_get(ctx[0], &k2,
&recv_offset[me], 1, i);

shmemx_ctx_int_put_nb(ctx[1],
key_buff2+k2, key_buff1+k1,
send_count[i], i);

}

shmem_barrier_all();

Key Exchange Code

Picture Credit: Wikipedia

11

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Significant speedup from added overlap control via contexts

Speedup decreases when number of PE/Node increases

 All-to-all communication volume in the fabric increases as square of num. PEs

 Loss of speedup caused by sharing the underlying Portals/InfiniBand network

NAS IS Strong Scaling

Multiple PEs/Node

35%

Speedup

12

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

OpenSHMEM 1.x Pt-to-Pt Synchronization

Strong ordering semantic

 Remote completion of all operations

Globally synchronizes PEs

 Ensure next phase can reuse buffers

 Expensive

Point-to-point synchronization

 O(P) messages for pt-to-pt

 O(log P) for barrier

Sync. not visible to runtime
system

 Limits ability to optimize

13

for (pe = 0; pe < NPES; pe++)
shmem_putmem(data, PE);

shmem_barrier_all();

for (pe = 0; pe < NPES; pe++)
shmem_putmem(data, PE);

shmem_fence();

for (pe = 0; pe < NPES; pe++)
shmem_int_add(flag, -1, PE);

shmem_int_wait_until(flag, EQ, 0);

Consistent Barrier Point-to-Point Flags

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Bundling Communication and Sync.

14

Bundle comm. and synchronization together in a single operation

 Counter is incremented at the target after the operation has completed

 The receiver can do the increment in ct_get/wait, using completion events

Bundling enables implementation optimizations

 Leverage hardware capabilities (ordering, bundling, events, …)

Enables a receiver-managed implementation

 Can eliminate flag update communication

shmem_ct_create(&ct);

for (pe = 0; pe < NPES; pe++)
shmem_put_ct(ct, data, …, PE);

shmem_ct_wait(ct, NPES);

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Measure bandwidth achieved in all-to-all

 15 Node QDR InfiniBand cluster

 Bandwidth shown is aggregated per-node / physical network endpoint

Bandwidth improvement of >2x for small messages

 Fence + flags approach sends O(P) additional messages

 Barrier synchronizes all PEs, only as fast as the slowest PE

15

All-to-All Bandwidth (180 PEs)

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Push: One-sided operation appends sender’s data to receiver’s buffer

Introduces “offset counter”, which is atomically updated during push

Can be used in conjunction with other proposed extensions:

 Contexts, counting puts, nonblocking communication, …

16

One-Sided Append

/* SHMEM Offset Counter (OCT) object management (collective) */
void shmem_oct_create(shmem_oct_t *oct, void *buffer, size_t len);
void shmem_oct_destroy(shmem_oct_t *oct);

/* Appending put, a.k.a. “push”, one-sided communication */
void shmem_push(shmem_oct_t oct, const void *src, size_t len, int pe);

/* Offset counter update/query routines (local) */
void shmem_oct_reset(shmem_oct_t oct);
size_t shmem_oct_get(shmem_oct_t oct);

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Key-exchange portion of integer bucket sort algorithm

Receiver’s buffer management is done by the sender

 Requires additional fetch-add message from the sender

 Alternative is to pre-arrange buffer space

Sidebar: Iterations can be overlapped with nonblocking ops

17

NAS Integer Sort (IS) Key Exchange

int dst_buf[DST_BUF_SIZE]; /* Symmetric buffer for RX of keys */
int counter = 0; /* Symmetric integer offset counter */
...
for (i = 0; i < num_pes; i++) {
int dst_off;

dst_off = shmem_int_fadd(&counter, cnt[i], i);
shmem_int_put(dst_buf+dst_off, src_buf+src_off[i], cnt[i], i);

}

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

PE N

18

One-Sided Append in Key Exchange

PE 0 PE 1

Counter

dst_buf

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Key-exchange portion of integer bucket sort algorithm

Destination buffer addressed using the offset counter (OCT)

 Allows receiver-managed implementation

 Receiver can calculate effective target address

Sidebar: Iterations can be overlapped with nonblocking ops

19

NAS IS Key Exchange (Push)

int dst_buf[DST_BUF_SIZE]; /* Symmetric buffer for RX of keys */
shmem_oct_create(&keys_oct, dst_buf, DST_BUF_SIZE);
...
for (i = 0; i < num_pes; i++) {
shmem_int_push(keys_oct, src_buf+src_off[i], cnt[i], i);

}
...
shmem_oct_free(&keys_oct);

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

InfiniBand® Cluster: 16 nodes, 16 PEs; OpenSHMEM over Portals 4 over IB

Drop-off at Portals max_volatile_size (buffering converts blocking to NB)

20

Early Perf. Evaluation of Key Exchange

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Proposal of a teams interface that can be used to expose detailed system
topology information to the application.

 Supports conventional communication groups

 Exposes evolving network topology and heterogeneous node architecture

Integration with system management and runtime

 E.g. integration with PMIx, hwloc, netloc; (see open-mpi.org)

Facilitates Topology-aware parallel decomposition

Enables definition of communication patterns aligned with topologies

21

Federations – a System-Centric View

Fat tree

Dragonfly

Picture Credit: web search see notes

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

22

Federations

SHMEM_TEAM_WORLD

Federation of Neighborhoods
Examples:
 Leaf switch nodes (fat tree)
 All2all connected nodes (dragonfly)

Federation of Nodes

Federations created by split operations performed on SHMEM_TEAM_WORLD

A federation contains set of all teams created during split

System topology derived federations via split keys, similarly to those used in
the MPI_Comm_split_type operation

Introducing a new shmem_federation_t type

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Cray proposed SHMEM Teams extension* to manage PE subsets

Takes a PE-centric view, supporting intra-team communication

Created with collective shmem_team_split, grouping PEs into
new teams based on the value supplied in color argument

Limitations:

 Can’t provide global view

 No support for topology based colors

 Application's responsibility to set color value and to track it

 Limited query functions only about the teams a given PE is member of

 Two baseline teams: SHMEM_TEAM_WORLD and SHMEM_TEAM_NODE

Federations proposal builds upon the Cray proposal

23

PE-Centric Viewpoint

* ten Bruggencate, M.: Cray SHMEM update. Presented to OpenSHMEM Workshop (March 2014)

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 Discover teams (system and application initiated teams)

 Query team membership (for my_PE and for any other PE)

 Select code path based on team membership (e.g. support 2 cyclic
red/black iterations)

 Operate on, map and translate teams and team members

 Intra team communications: particularly collectives

 Inter team communications (similar to MPI neighborhood
collectives)

Provide a common framework through UL-Federation
library and relieve application from explicit team
management

24

User Level Federation library and APIs

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Propose a two-stage approach to extending OpenSHMEM

 Foundational team APIs defined for the OpenSHMEM standard

 Reference user-level library to demonstrate a proposed, rich set of
APIs exposing greater degree of information via federations interface

Provide rich set of Federations/Teams APIs to application, while
keeping OpenSHMEM standard nimble

Create evolutionary path for teams in OpenSHMEM standard

Separate system specifics from OpenSHMEM standard

New capability for application to see a complete picture of how
the given job maps to the system topology

 Ability to adjust data, computation, and communication patterns to
optimize for the given system

Federations: Conclusions

25

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Enabling High-Performance Networking

Defined a set of SHMEM requirements

Influences various vendors fabric interface

Created OFIWG

 Developed OFI “Open Fabric Interface”

Goal:

Redefining Fabric Mapping:

Top Down Approach

Open Fabrics Alliance

Hardware

Application

Influence

26

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

OFI: a high performance open source network
interface

 Open Fabrics Alliance networking standard

 Goals: scalability, implementation independence,
decreased software overhead

Papers

 PGAS 2014, HOTI 2015

OFI WG is open participation

 Contact the ofiwg mail list ofiwg@lists.openfabrics.org

 Source code available through github.com/ofiwg

27

Open Fabric Interface

mailto:ofiwg@lists.openfabrics.org

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

28

OFI Framework

PGAS Programming Languages
(OpenSHMEM,CAF,..)

Fabric Hardware

Provider Implementations

OFI Framework
Communication OperationsInterface Control

Domains Endpoints

Memory
Regions

Address
Vectors

Event Queues Counters

Tagged
Messaging

Message
Queues

RMA
Atomic

Operations

Triggered
Operations

…

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Endpoint

 Full address space, single
universal key

 Remote completion enabled

Counters

 Write: outgoing put/atomics

 Read: outgoing reads/atomics

 Remote: incoming messages

MR: Incoming messaging

EQ: enable “non-blocking”
writes

SHMEM-OFI: Components

EP

Remote
MR

Write
Counter

Read
Counter

Remote
Counter

Write
Queue
(EQ)

AV
Table

29

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

SHMEM-OFI and IB Verbs Comparison
Methodology

 Semantic match measured in
instructions

 Mapping overhead: instructions
in fabric communication
middleware

 Single Operation: put/sync/fence

 2 nodes

 Lower instruction count=less
software overhead

Enter call
shmem_int_p

Enter call
shmem_int_p

OFI Providers Verbs Providers

Communication
Runtime

OFI Verbs

Communication
Runtime

30

The evaluation is done on two dual socket nodes containing
Intel® Xeon® X5570 Quad-core Nehalem CPUs, running at
2.93GHz with 12GB of host memory. The nodes are connected
by a Mellanox QDR/10GigE ConnectX InfiniBand HCA
(MT26428). The nodes are running Red Hat Linux 6.5, with
kernel version 2.6.32-431.el6.x86 64. The Intel® C++
Composer XE 2013 SP1 (Intel® C++ compiler 14.0) is used with
“-O3 -ipo” flags. GASNet 1.22.4 and MVAPICH2-X 2.0 are
utilized for the evaluation. We use a variation of the Intel® Pin
for generating instruction traces for accurate measurement.

M
e

a
su

re
d

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

SHMEM-OFI

 95%~ software
Overhead reduction

 Improved Memory
registration/usage

 Put: Inject feature

 Quiet: counters

SHMEM-GASNet

 segmented address
space lookup

MVAPICH2-X

 Registration key
lookup

SHMEM-OFI

31

Results SHMEM-OFI and IB Verbs

Lower is
Better

Right abstraction can yield more efficient mapping from
programming model to device

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Comparison of OFI to IB Verbs (from HotI 2015 paper)

Addressing: 77% memory footprint reduction

 36 bytes metadata libibverbs vs. 8 bytes OFI

 OFI AV: address data best handled by fabric
– OFI encodes subnet path in unused addressing bits

Transmit code Path: 52% memory footprint reduction

 Arg size for a write: 84 bytes libibverbs vs. 40 OFI

 OFI transmit interface definition is simpler
– Endpoint customization -> fewer branches

– Multi-entry points for different messaging types (RMA vs. MSG vs.
Tagged)

32

Scalability Improvements Examples

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 Scalable endpoint enumeration: 0(1) memory usage and
no lookups, can enumerate PE’s with integers

 Scalable memory usage/registration: enables upfront
full VA registration, remote VA

 Remote completion for RMA/atomics no extra sync
communication: lightweight fence/quiet

 Exposes counters: lightweight completion mechanism

 Rich atomic set: full SHMEM coverage, enables
optimizations and synchronization algorithms

 Instruction count minimization: lightweight path with
direct provider usage

33

OFI for PGAS – Functionality Highlights

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Shared Transmit Command
Queue (STx)

34

OpenSHMEM Contexts Extension
Mapping in OFI

Cntr_E
P[1]

Write
Counter

Cntr_E
P[0]

Read
Counter

shmemx_ctx_int_get(ctx[0],…)

shmemx_impl_ctx_int_get()

shmemx_ctx_int_put_nb(ctx[1],…)

shmemx_impl_ctx_int_put_nb()

Transmit
Maps to command queues

Scalable Fabric Endpoints

Write
Counter

Read
Counter

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

GASNet-OFI conduit

 Enables UPC-GASNet-OFI

 OFI enables: lightweight polling overhead and
memory management

 Submitted to Lawrence Berkeley Lab. for review

SHMEM-OFI

 OFI enables: lightweight memory registration and
counter completion, full atomic breadth

 Internal prototyping and testing extensions: context

35

PGAS – OFI implementations

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

1. Reducing Synchronization Overhead Through Bundled Communication. James
Dinan, Clement Cole, Gabriele Jost, Stan Smith, Keith Underwood, Robert W.
Wisniewski. First OpenSHMEM Workshop: Experiences, Implementations, and
Tools. 2013.

2. Contexts: A Mechanism for High Throughput Communication in OpenSHMEM.
James Dinan and Mario Flajslik. Proc. Eighth Conf. on Partitioned Global
Address Space Programming Models (PGAS). Eugene, OR. Oct 2014.

3. One-Sided Append: A New Communication Paradigm For PGAS Models. James
Dinan and Mario Flajslik. OpenSHMEM User Group Meeting. Eugene, OR.
October 7, 2014.

4. Early Evaluation of Scalable Fabric Interface for PGAS Programming Models.
Miao Luo, Kayla Seager, Karthik S. Murth, Charles J. Archer, Sayantan Sur, and
Sean Hefty. Proc. Eighth Conf. on Partitioned Global Address Space
Programming Models (PGAS). Eugene, OR. Oct 2014.

5. A Brief Introduction to the OpenFabrics Interfaces - A New Network API for
Maximizing High Performance Application Efficiency. P. Grun, S. Hefty, S. Sur, D.
Goodell, R. Russell, H. Pritchard and J. Squyres. 23rd Symp. on High-
Performance Interconnects (HotI). August, 2015.

36

References

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Participants in the PGAS community:

 Ensure PGAS models can access to full capabilities of Intel HPC offerings

 Advocate for needs of PGAS users within Intel

 Participate in efforts to improve and define parallel programming models

Areas of engagement:

 Tackling key programming model challenges to OpenSHMEM

– Multithreading and communication/computation overlap

– Point-to-point synchronization and data dependence

– Coordination and buffer management

 Open Fabrics Interface

– Community effort to define new low-level communication API

– General purpose, optimizable, and aligned with parallel programming models

37

Intel and PGAS Wrap Up

