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NVIDIA - INVENTOR OF THE GPU 

NVIDIA Invented the GPU in 1999, with over 1 Billion shipped to date. 

Initially a dedicated a graphics processor for PCs, the GPU’s computational 
power and energy efficiency led to it quickly being adopted for professional 
and scientific simulation and visualization. 

In 2007, NVIDIA launched the CUDA® programming platform, and opened up 
the general purpose parallel processing capabilities of the GPU.    
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NVIDIA PLATFORM 

GAMING 
HPC and  

DATA CENTER 

MOBILE and EMBEDDED 
DESIGN and 

 VISUALIZATION 
GRAPHICS CARDS GPUs and SOCs 

SYSTEMS IP 
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10X GROWTH IN GPU COMPUTING 

2015 2008 

3 Million  
CUDA Downloads 

150,000 
CUDA Downloads 

60,000  
Academic Papers 

4,000  
Academic 

Papers 

800 
Universities Teaching 

60  
Universities 

Teaching 

54,000 
Supercomputing 
Teraflops 

77 
Supercomputing 

Teraflops 

450,000  
Tesla GPUs 

6,000 
Tesla GPUs 

319 
CUDA Apps 

27 
CUDA Apps 
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USA - TWO FLAGSHIP SUPERCOMPUTERS 

 

IBM POWER9 CPU + NVIDIA Volta GPU 

NVLink High Speed Interconnect 

>40 TFLOPS per Node, >3,400 Nodes 

2017 

SUMMIT SIERRA 
150-300 PFLOPS 

Peak Performance 
> 100 PFLOPS 

Peak Performance 

Powered by the NVIDIA GPU 
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END OF TRADITIONAL FREQUENCY SCALING 

The Free Lunch is Over:  
A Fundamental Turn towards 

Concurrency in Software 
Herb Sutter 

The breakdown is in Dennard scaling 
…Moores law marches on. 
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GP-GPU Programming 
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CPU 
Optimized for  
Serial Tasks 

GPU Accelerator 
Optimized for  
Parallel Tasks 

HETEROGENEOUS COMPUTING 
10X PERFORMANCE         5X ENERGY EFFICIENCY 
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LOW LATENCY OR HIGH THROUGHPUT? 

CPU 
Optimized for low-latency access to 
cached data sets 
Control logic for out-of-order and 
speculative execution 

 

GPU 
Optimized for data-parallel, throughput 
computation 
Architecture tolerant of memory latency 
More transistors dedicated to computation 
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Application Code 

+ 

Accelerator CPU 
Compute-Intensive Functions 

Rest of Sequential 
CPU Code 

GPGPU ACCELERATION - THE BASIC IDEA 
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http://www.brainshark.com/nvidia/demo-video-luciadlightspeed 
 http://www.luciad.com/ 

Line-of-sight at 60 fps 

 100x faster than CPUs 

Instant analysis for mission 
preparation 

Task 

GPUs 

Result 

GPGPU IMPACT – REALTIME LINE-OF-SIGHT 

http://www.brainshark.com/nvidia/demo-video-luciadlightspeed
http://www.brainshark.com/nvidia/demo-video-luciadlightspeed
http://www.brainshark.com/nvidia/demo-video-luciadlightspeed
http://www.brainshark.com/nvidia/demo-video-luciadlightspeed
http://www.brainshark.com/nvidia/demo-video-luciadlightspeed
http://www.brainshark.com/nvidia/demo-video-luciadlightspeed


13  One hour of video searched in 5 seconds 
http://www.nervvetechnologies.com/ 
 

Automatic objects search in 
multiple video/image formats  

20x faster than CPUs delivering 
20,000 FPS 

Live and forensic search with 
ranking and alerts 

Task 

GPUs 

Result 

1
 

GPGPU IMPACT – FIND OBJECTS IN IMAGES 

http://www.nervvetechnologies.com/
http://www.nervvetechnologies.com/


14  

0 

1 
1 

2 

1 

1 

2 

2 
2 

2 

1 

3 

2 

3 

2 

2 3 

2 

• Comms & Social networks 
• Cyber pattern recognition 
• Shortest path finding 
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PageRank : 19x Speedup 

Intel Xeon E5-2690 v2

Lower 
is  

Better 

1 GPU vs 60 Nodes 
280x    vs optimized Spark 
1440x  vs Spark  
3420x  vs Hadoop  

GPGPU IMPACT – GRAPH ANALYTICS 



15  

GPGPU IMPACT– DEEP LEARNING 

1.2M training images • 1000 object categories 
 

Hosted by 

Image Recognition Challenge 

person 

car 

helmet 

motorcycle 

bird 

frog 

person 

dog 

chair 

person 

hammer 

flower pot 

power drill 
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HOW DO I USE GPUS? 
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CUDA PARALLEL DEVELOPMENT PLATFORM 

       Hardware  
     Capabilities 

GPUDirect SMX Dynamic Parallelism HyperQ 

    Programming  
     Approaches 

Libraries 

“Drop-in” Acceleration 

Programming 
Languages Directives 

Maximum Flexibility Easily Accelerate Apps 

    Development 
    Environment 

Nsight IDE 
Linux, Mac and Windows 

GPU Debugging and Profiling 

CUDA-GDB debugger 
NVIDIA Visual Profiler 

  Open Compiler 
     Tool Chain 

Enables compiling new languages to CUDA platform, and 
CUDA languages to other architectures 

developer.nvidia.com 
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3 WAYS TO ACCELERATE APPLICATIONS 

Applications 

Libraries 

“Drop-in” 
Acceleration 

Programming 
Languages 

Maximum 
Flexibility  

OpenACC 
Directives 

Easily Accelerate 
Applications 
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ACCELERATING YOUR APPLICATIONS 
Simple & Portable Parallel Software Development 

Applications 

Libraries 

“Drop-in” 
Acceleration 

Languages 

Modern language features 
(unified memory, 

for_each, lambda) 

Directives 

Annotate code with 
compiler hints 
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GPU Accelerated Libraries 

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP 

Vector Signal 
Image Processing 

GPU Accelerated 
Linear Algebra 

Matrix Algebra on 
GPU and Multicore NVIDIA cuFFT 

C++ STL Features 
for CUDA 

Sparse Linear 
Algebra IMSL Library 

Building-block 
Algorithms for CUDA 

ArrayFire Matrix 
Computations 

http://code.google.com/p/thrust/downloads/list
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“DROP-IN” LIBRARY EXAMPLE: NVBLAS 
 

Automatic Speedup for “R” application 
  > LD_PRELOAD=/usr/local/cuda/lib64/libnvblas.so R 

  > A <- matrix(rnorm(4096*4096), nrow=4096, ncol=4096)  
  > B <- matrix(rnorm(4096*4096), nrow=4096, ncol=4096) 
  > system.time(C <- A %*% B) 

    user  system elapsed 

    0.348  0.142   0.289 

 

Use in any app that uses standard BLAS3 

R, Octave, Scilab, etc. 

 

NO CODE CHANGE 
REQUIRED 
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5X–10X SPEEDUP USING NVIDIA LIBRARIES 
BLAS | LAPACK | SPARSE | FFT | Math | Deep Learning | Image Processing 
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WHAT IS A DROP-IN LIBRARY? 

1. Uses standard or near-standard interface 

 

2. No code change required 

• Recompile might not even be required 

 

3. Data lives in CPU memory at the beginning and end of library 
routines. 

• Completely invisible to the program 
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ACCELERATING YOUR APPLICATIONS 
Simple & Portable Parallel Software Development 

Applications 

Libraries 

“Drop-in” 
Acceleration 

Languages 

Modern language features 
(unified memory, 

for_each, lambda) 

Directives 

Annotate code with 
compiler hints 
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OPENACC DIRECTIVES 

Manage 

Data 

Movement 

Initiate 

Parallel 

Execution 

Optimize 

Loop 

Mappings 

 
#pragma acc data copyin(a,b) copyout(c) 
{ 
  ... 
  #pragma acc parallel  
  { 
  #pragma acc loop gang vector 
      for (i = 0; i < n; ++i) { 
          z[i] = x[i] + y[i]; 
          ... 
      } 
  } 
  ... 
} 

CPU, GPU, MIC 

Simple compiler hints 

Interoperable 

Single source 

Incremental 

Compiler parallelizes code 
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OpenACC 
Simple | Powerful | Portable 

 

Fueling the Next Wave of  

Scientific Discoveries in HPC 

University of Illinois 
PowerGrid- MRI Reconstruction 

70x Speed-Up 
2 Days of Effort 

http://www.cray.com/sites/default/files/resources/OpenACC_213462.12_OpenACC_Cosmo_CS_FNL.pdf 
http://www.hpcwire.com/off-the-wire/first-round-of-2015-hackathons-gets-underway 
http://on-demand.gputechconf.com/gtc/2015/presentation/S5297-Hisashi-Yashiro.pdf 

http://www.openacc.org/content/experiences-porting-molecular-dynamics-code-gpus-cray-xk7 

RIKEN Japan 
NICAM- Climate Modeling 

7-8x Speed-Up 
5% of Code Modified 

main()  
{ 
  <serial code> 
  #pragma acc kernels 
  //automatically runs on GPU 

  {   
    <parallel code> 
  } 
} 

8000+  
 

Developers  
 

using OpenACC 

http://www.cray.com/sites/default/files/resources/OpenACC_213462.12_OpenACC_Cosmo_CS_FNL.pdf
http://www.cray.com/sites/default/files/resources/OpenACC_213462.12_OpenACC_Cosmo_CS_FNL.pdf
http://www.cray.com/sites/default/files/resources/OpenACC_213462.12_OpenACC_Cosmo_CS_FNL.pdf
http://www.hpcwire.com/off-the-wire/first-round-of-2015-hackathons-gets-underway/
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Janus Juul Eriksen, PhD Fellow 
qLEAP Center for Theoretical Chemistry, Aarhus University 

“ 

OpenACC makes GPU computing approachable for 
domain scientists. Initial OpenACC implementation 
required only minor effort, and more importantly,  
no modifications of our existing CPU implementation. 

“ 

LS-DALTON 
LARGE-SCALE APPLICATION FOR CALCULATING 

HIGH-ACCURACY MOLECULAR ENERGIES 

Lines of Code 
Modified 

# of Weeks 
Required 

# of Codes to 
Maintain 

<100 Lines 1 Week 1 Source 

Big Performance 

0.0x

4.0x

8.0x

12.0x

Alanine-1
13 Atoms

Alanine-2
23 Atoms

Alanine-3
33 Atoms

Sp
ee

du
p 

vs
 C

PU
 

Minimal Effort 

LS-DALTON CCSD(T) Module 
Benchmarked on Titan Supercomputer (AMD CPU vs Tesla K20X) 
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INTRODUCING THE NEW OPENACC TOOLKIT 
Free Toolkit Offers Simple & Powerful Path to Accelerated Computing 

PGI Compiler 
Free OpenACC compiler for academia  

NVProf Profiler 
Easily find where to add compiler directives 

Code Samples 
Learn from examples of real-world algorithms 

Documentation 
Quick start guide, Best practices, Forums 

http://developer.nvidia.com/openacc 

GPU Wizard 
Identify which GPU libraries can jumpstart code 

http://developer.nvidia.com/openacc
http://developer.nvidia.com/openacc
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OPENACC DELIVERS PERFORMANCE PORTABILITY 

Single Code.  Runs Everywhere. 
Sp

ee
du

p 
vs

 1
x 

CP
U

 C
or

e ~ 

126x 
Intel OpenMP on 2x Haswell CPUs (32 Cores) – SPEC® Estimate* 

PGI OpenACC on 2x Haswell CPUs (32 Cores) 

PGI OpenACC on Tesla K80 

0x

5x

10x

15x

20x

25x

359.miniGhost (stencil) 353.clvrleaf (physics) 350.md (biosciences)

Supermicro SYS-2028GR-TRT, Intel Xeon E5-2698 v3, 32 cores, NVIDIA Tesla K80, 256GB of System Memory 
PGI 15.7 Beta OpenACC Multicore and K80 results from SPEC ACCEL™ measured June 2015. 

* Intel 15.0.90 OpenMP results use Cloverleaf reference application and SPEC OMP®2012 using workloads from SPEC ACCEL. 
SPEC® and the benchmark names SPEC ACCEL™ and SPEC OMP® are registered trademarks of the Standard Performance Evaluation Corporation.  

More info: SPEC ACCEL www.spec.org/accel,  OMP2012 www.spec.org/omp2012, CloverLeaf OpenMP uk-mac.github.io/CloverLeaf/, miniGhost ref 1.0.1 https://mantevo.org/download/ 

http://www.spec.org/accel
http://www.spec.org/omp2012
applewebdata://95133519-458B-451C-BD01-5F530AAFAF2B/mantevo.org/download/
applewebdata://95133519-458B-451C-BD01-5F530AAFAF2B/mantevo.org/download/
applewebdata://95133519-458B-451C-BD01-5F530AAFAF2B/mantevo.org/download/
applewebdata://95133519-458B-451C-BD01-5F530AAFAF2B/mantevo.org/download/
https://mantevo.org/download/
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ACCELERATING YOUR APPLICATIONS 
Simple & Portable Parallel Software Development 

Applications 

Libraries 

“Drop-in” 
Acceleration 

Languages 

Modern language features 
(unified memory, 

for_each, lambda) 

Directives 

Annotate code with 
compiler hints 
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VISION: MAINSTREAM PARALLEL PROGRAMMING 

Enable more programmers to write parallel software 

Give programmers the choice of language to use 

Embrace and evolve standards in key languages 

 

 

C 
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COMPILE PYTHON FOR PARALLEL 
ARCHITECTURES 

Anaconda Accelerate from Continuum Analytics 

NumbaPro array-oriented compiler for Python & NumPy 

Compile for CPUs or GPUs (uses LLVM + NVIDIA Compiler SDK) 

 

Fast Development + Fast Execution: Ideal Combination 

 

http://continuum.io 

Free Academic  
License 
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Nsight Editor 
Automated CPU to GPU code refactoring 

Semantic highlighting 

Integrated code samples & documentation 

Cross-compilation for Linux ARM and POWER targets 

Nsight Debugger 
Simultaneously debug CPU and GPU code 

Inspect variables across CUDA threads 

Use breakpoints & single-step debugging 

Integrated CUDA memory checker  

Nsight Profiler 
Quickly identifies performance issues 

Guided expert analysis 

Source line correlation 

PLANNED: Unified CPU and GPU profiling 

NVIDIA® NSIGHT™ 
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C++ PARALLEL ALGORITHMS LIBRARY 

• Complete set of parallel primitives: 
for_each, sort, reduce, scan, etc. 

 
• ISO C++ committee voted unanimously to  

accept as official tech. specification working draft 
 N3960 Technical Specification Working Draft: 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf 
Prototype: 
https://github.com/n3554/n3554 

std::vector<int> vec = ... 
 
// previous standard sequential loop 
std::for_each(vec.begin(), vec.end(), f); 
 
// explicitly sequential loop 
std::for_each(std::seq, vec.begin(), vec.end(), f); 
 
// permitting parallel execution 
std::for_each(std::par, vec.begin(), vec.end(), f); 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
https://github.com/n3554/n3554
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void saxpy_serial(int n,  

                  float a,  

                  float *x,  

                  float *y) 

{ 

  for (int i = 0; i < n; ++i) 

    y[i] = a*x[i] + y[i]; 

} 

 

// Perform SAXPY on 1M elements 

saxpy_serial(4096*256, 2.0, x, y); 

__global__  

void saxpy_parallel(int n,  

                    float a,  

                    float *x,  

                    float *y) 

{ 

  int i = blockIdx.x*blockDim.x+threadIdx.x; 

  if (i < n) y[i] = a*x[i] + y[i]; 

} 

 

// Perform SAXPY on 1M elements 

saxpy_parallel<<<4096,256>>>(n,2.0,x,y); 

CUDA C/C++ 

Standard C Code Parallel C Code 

developer.nvidia.com/cuda-toolkit 
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UPDATING LEGACY CODE 

Libraries 
Directives 

CUDA C 1. 
2. 

3. 



37  

Accelerating Code with  
CUDA 
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Heterogeneous Computing  

Blocks 

Threads 

Indexing 

Shared memory 

__syncthreads() 

Asynchronous operation 

Handling errors 

Managing devices 

CONCEPTS 
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HELLO WORLD! 

Heterogeneous Computing  

Blocks 

Threads 

Indexing 

Shared memory 

__syncthreads() 

Asynchronous operation 

Handling errors 

Managing devices 

CONCEPTS 
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HETEROGENEOUS COMPUTING 

Terminology: 

Host The CPU and its memory (host memory) 

Device The GPU and its memory (device memory) 

Host Device 
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HETEROGENEOUS COMPUTING 
#include <iostream> 
#include <algorithm> 
 
using namespace std; 
 
#define N          1024 
#define RADIUS     3 
#define BLOCK_SIZE 16 
 
__global__ void stencil_1d(int *in, int *out) { 
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 
 int gindex = threadIdx.x + blockIdx.x * blockDim.x; 
 int lindex = threadIdx.x + RADIUS; 
 
 // Read input elements into shared memory 
 temp[lindex] = in[gindex]; 
 if (threadIdx.x < RADIUS) { 
  temp[lindex - RADIUS] = in[gindex - RADIUS]; 
  temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 
 } 
 
 // Synchronize (ensure all the data is available) 
 __syncthreads(); 
 
 // Apply the stencil 
 int result = 0; 
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 
  result += temp[lindex + offset]; 
 
 // Store the result 
 out[gindex] = result; 
} 
 
void fill_ints(int *x, int n) { 
 fill_n(x, n, 1); 
} 
 
int main(void) { 
 int *in, *out;              // host copies of a, b, c 
 int *d_in, *d_out;          // device copies of a, b, c 
 int size = (N + 2*RADIUS) * sizeof(int); 
 
 // Alloc space for host copies and setup values 
 in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS); 
 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS); 
  
 // Alloc space for device copies 
 cudaMalloc((void **)&d_in,  size); 
 cudaMalloc((void **)&d_out, size); 
 
 // Copy to device 
 cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice); 
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice); 
 
 // Launch stencil_1d() kernel on GPU 
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS); 
 
 // Copy result back to host 
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost); 
 
 // Cleanup 
 free(in); free(out); 
 cudaFree(d_in); cudaFree(d_out); 
 return 0; 
} 
 

serial code 

device function call 
serial code 

parallel function 

serial function 

device code 

host code 
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SIMPLE PROCESSING FLOW 

1. Copy input data from CPU memory to GPU 
memory 

PCI Bus 
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SIMPLE PROCESSING FLOW 

1. Copy input data from CPU memory to GPU 
memory 

2. Load GPU code and execute it 

PCI Bus 
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SIMPLE PROCESSING FLOW 

1. Copy input data from CPU memory to GPU 
memory 

2. Load GPU code and execute it 
3. Copy results from GPU memory to CPU 

memory 

PCI Bus 
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HELLO WORLD! 
 int main(void) { 

  printf("Hello World!\n"); 

  return 0; 

 } 

 

Standard C that runs on the host 

 

NVIDIA compiler (nvcc) can be used to compile programs 
with no device code 

 

nvcc separates source code into host and device components 

 

 

 

 

 

 

 

Output: 

 

$ nvcc 
hello_world.cu 

$ a.out 

Hello World! 
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HELLO WORLD! WITH DEVICE CODE 

 __global__ void mykernel(void) { 

 } 

 

 int main(void) { 

  mykernel<<<1,1>>>(); 

  printf("Hello World!\n"); 

  return 0; 

 } 

Two new syntactic elements… 
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HELLO WORLD! WITH DEVICE CODE 

 __global__ void mykernel(void) { 

 } 

 

CUDA C/C++ keyword __global__ indicates a function that: 

Runs on the device 

Is called from host code 

 

nvcc separates source code into host and device components 

Device functions (e.g. mykernel()) processed by NVIDIA compiler 

Host functions (e.g. main()) processed by standard host compiler 
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HELLO WORLD! WITH DEVICE CODE 

 mykernel<<<1,1>>>(); 

 

Triple angle brackets mark a call from host code to device code 

Also called a “kernel launch” 

We’ll return to the parameters (1,1) in a moment 

 

That’s all that is required to execute a function on the GPU! 
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HELLO WORLD! WITH DEVICE CODE 

 __global__ void mykernel(void) { 

 } 

 

 int main(void) { 

  mykernel<<<1,1>>>(); 

  printf("Hello World!\n"); 

  return 0; 

 } 

 

mykernel() does nothing, somewhat 
anticlimactic! 

 

 

 

 

Output: 

 

$ nvcc hello.cu 

$ a.out 

Hello World! 
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PARALLEL PROGRAMMING IN CUDA C/C++ 

But wait… GPU computing is about massive 
parallelism! 

 

We need a more interesting example… 

 

We’ll start by adding two integers and build up 
to vector addition 

a b c 
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ADDITION ON THE DEVICE 
A simple kernel to add two integers 

 

 __global__ void add(int *a, int *b, int *c) { 

  *c = *a + *b; 

 } 

 

 

As before __global__ is a CUDA C/C++ keyword meaning 

add() will execute on the device 

add() will be called from the host 
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ADDITION ON THE DEVICE 

Note that we use pointers for the variables 

 

 __global__ void add(int *a, int *b, int *c) { 

  *c = *a + *b; 

 } 

 

add() runs on the device, so a, b and c must point to device memory 

 

We need to allocate memory on the GPU 
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MEMORY MANAGEMENT 
Host and device memory are separate entities 

Device pointers point to GPU memory 

May be passed to/from host code 

May not be dereferenced in host code 

Host pointers point to CPU memory 

May be passed to/from device code 

May not be dereferenced in device code 

 

Simple CUDA API for handling device memory 

cudaMalloc(), cudaFree(), cudaMemcpy() 

Similar to the C equivalents malloc(), free(), memcpy() 
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ADDITION ON THE DEVICE: ADD() 

Returning to our add() kernel 

 

 __global__ void add(int *a, int *b, int *c) { 

  *c = *a + *b; 

 } 

 

 

Let’s take a look at main()… 
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ADDITION ON THE DEVICE: MAIN() 

 int main(void) { 

  int a, b, c;   // host copies of a, b, c 

  int *d_a, *d_b, *d_c;  // device copies of a, b, c 

  int size = sizeof(int); 

 

  // Allocate space for device copies of a, b, c 

  cudaMalloc((void **)&d_a, size); 

  cudaMalloc((void **)&d_b, size); 

  cudaMalloc((void **)&d_c, size); 

 

  // Setup input values 

  a = 2; 

  b = 7; 
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ADDITION ON THE DEVICE: MAIN() 
  // Copy inputs to device 

  cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice); 

  cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice); 

 

  // Launch add() kernel on GPU 

  add<<<1,1>>>(d_a, d_b, d_c); 

  // Copy result back to host 

  cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost); 

  // Cleanup 

  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 

  return 0; 

 } 
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REVIEW 

Difference between host and device 

Host CPU 

Device GPU 

 

Using __global__ to declare a function as device code 

Executes on the device 

Called from the host 

 

Passing parameters from host code to a device function 
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RUNNING IN PARALLEL 

Heterogeneous Computing  

Blocks 

Threads 

Indexing 

Shared memory 

__syncthreads() 

Asynchronous operation 

Handling errors 

Managing devices 

CONCEPTS 
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MOVING TO PARALLEL 

GPU computing is about massive parallelism 

So how do we run code in parallel on the device? 

 

  add<<< 1, 1 >>>(); 

 

  add<<< N, 1 >>>(); 

 

Instead of executing add() once, execute N times in parallel 

This first index, is called the BlockIdx…you will see why soon. 
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VECTOR ADDITION ON THE DEVICE 
With add() running in parallel we can do vector addition 

 

Terminology: each parallel invocation of add() is referred to as a block 

The set of blocks is referred to as a grid 

Each invocation can refer to its block index using blockIdx.x 

 __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

By using blockIdx.x to index into the array, each block handles a 
different element of the array 
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VECTOR ADDITION ON THE DEVICE 
 __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

 

On the device, each block can execute in parallel: 

 

c[0]  = a[0] + b[0]; c[1]  = a[1] + b[1]; 

c[2]  = a[2] + b[2]; c[3]  = a[3] + b[3]; 

Block 0 Block 1 

Block 2 Block 3 
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VECTOR ADDITION ON THE DEVICE: ADD() 

Returning to our parallelized add() kernel 

 

 __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

 

 

Let’s take a look at main()… 
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VECTOR ADDITION ON THE DEVICE: MAIN() 



64  

VECTOR ADDITION ON THE DEVICE: MAIN() 
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REVIEW 

Basic device memory management 

cudaMalloc() 

cudaMemcpy() 

cudaFree() 

 

Launching parallel kernels 

Launch N copies of add() with add<<<N,1>>>(…); 

Use blockIdx.x to access block index 



66  

INTRODUCING THREADS 

Heterogeneous Computing  

Blocks 

Threads 

Indexing 

Shared memory 

__syncthreads() 

Asynchronous operation 

Handling errors 

Managing devices 

CONCEPTS 
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__global__ void add(int *a, int *b, int *c) { 

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

} 

CUDA THREADS 
Terminology: a block can be split into parallel threads 

 

Let’s change add() to use parallel threads instead of parallel blocks 

__global__ void add(int *a, int *b, int *c) { 

 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; 

}  

 

We use threadIdx.x instead of blockIdx.x 

 

Need to make one change in main()… 
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VECTOR ADDITION USING THREADS: MAIN() 
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VECTOR ADDITION USING THREADS: MAIN() 
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COMBINING THREADS 
AND BLOCKS 

Heterogeneous Computing  

Blocks 

Threads 

Indexing 

Shared memory 

__syncthreads() 

Asynchronous operation 

Handling errors 

Managing devices 

CONCEPTS 
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COMBINING BLOCKS AND THREADS 
We’ve seen parallel vector addition using: 

Several blocks with one thread each 

One block with several threads 

 

Let’s adapt vector addition to use both blocks and threads 

 

Why? We’ll come to that… 

 

First let’s discuss data indexing… 
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INDEXING ARRAYS WITH BLOCKS AND 
THREADS 

No longer as simple as using blockIdx.x and threadIdx.x 

Consider indexing an array with one element per thread (8 threads/block) 

With M threads per block, a unique index for each thread is given by: 

 int index = blockIdx.x * M + threadIdx.x; 

 

0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 

threadIdx.x threadIdx.x threadIdx.x threadIdx.x 

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3 
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INDEXING ARRAYS: EXAMPLE 

Which thread will operate on the red element? 

 int index = blockIdx.x * M + threadIdx.x; 

           =    2       * 8 +      5; 

           = 21; 

 

0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 

threadIdx.x = 5 

blockIdx.x = 2 

0 1 31 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

M = 8 
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VECTOR ADDITION WITH BLOCKS AND THREADS 

Use the built-in variable blockDim.x for threads per block 

 int index = blockIdx.x * blockDim.x + threadIdx.x; 

 

Combined version of add() to use parallel threads and parallel 
blocks 

__global__ void add(int *a, int *b, int *c) { 

 int index = blockIdx.x * blockDim.x + threadIdx.x; 

 c[index] = a[index] + b[index]; 

} 

 

 

 

What changes need to be made in main()? 
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ADDITION WITH BLOCKS AND THREADS: 
MAIN() 
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ADDITION WITH BLOCKS AND THREADS: 
MAIN() 
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HANDLING ARBITRARY VECTOR SIZES 

Typical problems are not even multiples of blockDim.x 

 

Avoid accessing beyond the end of the arrays: 
__global__ void add(int *a, int *b, int *c, int n) { 

 int index = threadIdx.x + blockIdx.x * blockDim.x; 

 if (index < n) 

     c[index] = a[index] + b[index]; 

} 
 

Update the kernel launch: 

 add<<<(N/M + 1),M>>>(d_a, d_b, d_c, N); 
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WHY BOTHER WITH THREADS? 

Threads seem unnecessary 

They add a level of complexity 

What do we gain? 

 

Unlike parallel blocks, threads have mechanisms to efficiently: 

Communicate 

Synchronize 

 

To look closer, we need a new example… 
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COOPERATING THREADS 

Heterogeneous Computing  

Blocks 

Threads 

Indexing 

Shared memory 

__syncthreads() 

Asynchronous operation 

Handling errors 

Managing devices 

CONCEPTS 
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in 

out 

1D STENCIL 
Consider applying a 1D stencil to a 1D array of elements 

Each output element is the sum of input elements within a radius 

 

If radius is 3, then each output element is the sum of 7 input 
elements: 
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0 1 2 3 4 5 6 7 

IMPLEMENTING WITHIN A BLOCK 
Each thread processes one output element 

blockDim.x elements per block 

 

Input elements are read several times 

With radius 3, each input element is read seven times 

in 

out 

radius radius 

Thread 
0 

Thread 
1 

Thread 
2 

Thread 
3 

Thread 
4 

Thread 
5 

Thread 
6 

Thread 
7 

Thread 
8 
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SHARING DATA BETWEEN THREADS 
Terminology: within a block, threads share data via shared memory 

 

Extremely fast on-chip memory 

By opposition to device memory, referred to as global memory 

Like a user-managed cache 

 

Declare using __shared__, allocated per block 

 

Data is not visible to threads in other blocks 
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IMPLEMENTING WITH SHARED MEMORY 
Cache data in shared memory 

Read (blockDim.x + 2 * radius) input elements from global memory to 
shared memory 

Compute blockDim.x output elements 

Write blockDim.x output elements to global memory 

 

Each block needs a halo of radius elements at each boundary 

blockDim.x output elements 

halo on left halo on right 

in 

out 
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__global__ void stencil_1d(int *in, int *out) { 

    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 

    int gindex = threadIdx.x + blockIdx.x * blockDim.x; 

    int lindex = threadIdx.x + RADIUS; 

 

    // Read input elements into shared memory 

    temp[lindex] = in[gindex]; 

    if (threadIdx.x < RADIUS) { 

        temp[lindex - RADIUS] = in[gindex - RADIUS]; 

        temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 

    } 

STENCIL KERNEL (1 OF 2) 
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STENCIL KERNEL (2 OF 2) 

    // Apply the stencil 

    int result = 0; 

    for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 

        result += temp[lindex + offset]; 

 

    // Store the result 

    out[gindex] = result; 

} 



86  

DATA RACE! 
The stencil example will not work… 

 

Suppose thread 15 reads the halo before thread 0 has fetched it… 
 temp[lindex] = in[gindex]; 

 if (threadIdx.x < RADIUS) { 

    temp[lindex – RADIUS] = in[gindex – RADIUS]; 

    temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 

 } 

 int result = 0; 

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 

    result += temp[lindex + offset];  

 

 

 

Store at temp[18] 

Load from temp[19] 

Skipped since threadId.x > RADIUS 
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__SYNCTHREADS() 

void __syncthreads(); 

 

Synchronizes all threads within a block 

Used to prevent RAW / WAR / WAW hazards 

 

All threads must reach the barrier 

In conditional code, the condition must be uniform across the block 
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__global__ void stencil_1d(int *in, int *out) { 
 
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 
    int gindex = threadIdx.x + blockIdx.x * blockDim.x; 
    int lindex = threadIdx.x + radius; 
 
    // Read input elements into shared memory 
    temp[lindex] = in[gindex]; 
    if (threadIdx.x < RADIUS) { 
        temp[lindex – RADIUS] = in[gindex – RADIUS]; 
        temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 
    } 
 
    // Synchronize (ensure all the data is available) 
    __syncthreads(); 

STENCIL KERNEL 
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STENCIL KERNEL 

    // Apply the stencil 
    int result = 0; 
    for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 
        result += temp[lindex + offset]; 
 
    // Store the result 
    out[gindex] = result; 
} 
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REVIEW (1 OF 2) 

Launching parallel threads 

Launch N blocks with M threads per block with kernel<<<N,M>>>(…); 

Use blockIdx.x to access block index within grid 

Use threadIdx.x to access thread index within block 

 

Assign elements to threads: 

 

 int index = blockIdx.x * blockDim.x + threadIdx.x; 
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REVIEW (2 OF 2) 

Use __shared__ to declare a variable/array in shared memory 

Data is shared between threads in a block 

Not visible to threads in other blocks 

 

Use __syncthreads() as a barrier 

Use to prevent data hazards 
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Optimizing CUDA Kernels 
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OPTIMIZATION TOOLS 

1. NVIDIA’s Visual Profiler (NVVP) 

2. NVPROF 

3. Nsight Eclipse Edition 

 



94  

NVIDIA’S VISUAL PROFILER 
Timeline 

Guided 
System 

Analysis 
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NVPROF 

Command line profiler 

Collect profiles for NVVP 

%> nvprof  --analysis-metrics -o profile.out ./HACCmk 

Collect for MPI processes 

%> mpirun –np 2 nvprof --analysis-metrics -o profile.%p.out ./HACCmk 

Collect profiles for complex process hierarchies 

 --profile-child-processes, --profile-all-processes 

Collect key events and metrics 

%> nvprof --metrics flops_sp ./HACCmk 

--query-metrics --query-events 
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NVIDIA® NSIGHT™ ECLIPSE EDITION 

Editor Debugger Profiler 

Available for Linux and Mac OS  

, 

 
Automated CPU to GPU code refactoring 
Semantic highlighting of CUDA code 
Code completion & inline help 
Integrated CUDA samples 

 
Simultaneously debug of CPU and GPU 
Inspect variables across CUDA threads 
Use breakpoints & single-step debugging  

 
Quickly identifies performance issues 
Automated analysis 
Source line correlation 
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Always use NVVP to determine if the kernel is the limiter 

Kernels may not always be the limiter 

Memory Allocation 

Data Transfer 

Synchronization 

Host 

 

 

 

BEFORE OPTIMIZING YOUR KERNELS 

No Active 
Kernel! 
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Expressing Concurrency 

Instruction Level Parallelism 

Coalesced Memory Access 

Texture Memory 

Shared memory 

Reducing Divergence 

Latency 

Bandwidth 

Compute 

KEY KERNEL OPTIMIZATIONS 
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void transpose(float in[][], float out[][], int N) 
{ 
  for(int j=0; j < N; j++) 
    for(int i=0; i < N; i++) 
      out[j][i] = in[i][j]; 
} 

CASE STUDY: MATRIX TRANSPOSE 

i 

j 
� Commonly used in applications 

� BLAS and FFT 

� Stresses memory systems  
� Strided reads or writes 
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2D TO 1D INDEXING 
 

 

 

 

 

 

 

 

 

void transpose(float in[], float out[], int N) 
{ 
  for(int j=0; j < N; j++) 
    for(int i=0; i < N; i++) 
      out[j*N+i] = in[i*N+j]; 
} 
 

i 

j 
 

 
� This indexing is often used in 

numerical codes 
� We will use this indexing during this 

presentation 
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PARALLELIZATION FOR CPU 
void transpose(float in[], float out[], int N) 
{ 
  #pragma omp parallel for 
  for(int j=0; j < N; j++) 
    #pragma omp parallel for 
    for(int i=0; i < N; i++) 
      out[j*N+i] = in[i*N+j]; 
} 

Kernel Throughput 

CPU+OMP 4.9 GB/s 

2X Intel Xeon E5-2650 (16 threads) 
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INITIAL CUDA IMPLEMENTATION 

i 

j 

Parallelize outer loop 
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CPU KERNEL 

void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  for ( i=0; i<rows; i++)  

    for ( j=0; j<cols; j++) 

      out [ j * rows + i ] = in [ i * cols + j ]; 

} 
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__global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  for ( j=0; j<cols; j++) 

    out [ j * rows + i ] = in [ i * cols + j ]; 

} 

INITIAL GPU KERNEL 
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Initial implementation slightly slower than dual sockets 
Peak 288 GB/s   
Low percent of peak 

Why? 

 

RESULTS 

Kernel Throughput Speedup 

CPU+OMP 13.8 GB/s -- 

CUDA-1D 9.6 GB/s 0.7x 

GPU: K40 
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INITIAL PROFILE  

Always look at occupancy first! 
Each block is scheduled on an SM 

There are 15 SMs on K40 
Only 4 blocks!   

Bottleneck 
Grid size 
Most of the GPU is idle 

Solution 
Express more parallelism 
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Expressing Concurrency 

Instruction Level Parallelism 

Coalesced Memory Access 

Texture Memory 

Shared memory 

Reducing Divergence 

Latency 

Bandwidth 

Compute 

KEY KERNEL OPTIMIZATIONS 
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OPTIMIZATION: EXPRESS MORE 
PARALLELISM 

 
 

 

 

 

 

 

 

 

 

i 

j 

The CPU version parallelizes over 
rows and columns 
Lets do the same on the GPU 

Replace columns loop with an index 
calculation 
Change launch configuration to 2D 

blockSize = 32x32 
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1D SOLUTION  

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  for ( j=0; j<cols; j++) 

    out [ j * rows + i ] = in [ i * cols + j ]; 

} 
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_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  j = blockIdx.y * blockDim.y + threadIdx.y; 

  out [ j * rows + i ] = in [ i * cols + j ]; 

} 

2D SOLUTION 
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RESULTS 

Kernel Throughput Speedup 

CPU+OMP 13.9 GB/s -- 

GPU-1D 9.7 GB/s 0.7x 

GPU-2D 41.6 GB/s 3.0x 

We are now at a 3x speedup over 2 sockets 
But how are we doing overall? 

Peak for K40 is 288 GB/s 
~14% of peak 

Why is bandwidth utilization low? 
Back to NVVP 
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2D PROFILE 

Occupancy is now much better 
All SMs have work 
Global load efficiency is low 
Bottleneck 

Uncoalesced loads 
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Expressing Concurrency 

Instruction Level Parallelism 

Coalesced Memory Access 

Texture Memory 

Shared memory 

Reducing Divergence 

Latency 

Bandwidth 

Compute 

KEY KERNEL OPTIMIZATIONS 
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USE NVVP TO FIND COALESCING 
PROBLEMS 

Compile with -lineinfo 
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WHAT IS AN UNCOALESCED GLOBAL LOAD? 
Global memory access happens in 
transactions of 32 or 128 bytes 

Coalesced access: 

A group of 32 contiguous threads 
(“warp”) accessing adjacent words 

Few transactions and high utilization 

Uncoalesced access: 

A warp of 32 threads accessing 
scattered words 

Many transactions and low utilization 

0 1 31 

0 1 31 
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Expressing Concurrency 

Instruction Level Parallelism 

Coalesced Memory Access 

Texture Memory 

Shared memory 

Reducing Divergence 

Latency 

Bandwidth 

Compute 

KEY KERNEL OPTIMIZATIONS 
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TRANSPOSE MEMORY COALESCING 
 

 

 

 

 

 

 

 

 

j 

i 

Either the read or the write will be 
uncoleased 
Two options 

1. Use texture for loads 
2. Modify indexing to eliminate uncoleased 

accesses 

– Fastest changing dimension should be 
threadIdx.x 

– Need to stage through shared memory 
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TEXTURE CACHE 

Texture has an on-chip cache (Think L1) 

Two ways to use it (SM_35 or greater) 

Implicit   

Add const  __restrict__ 

– Compiler knows the value is constant and not 
aliased 

Explict 

Use the __ldg(ptr) intrinsic 
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TEXTURE CACHE SOLUTION 

_global__ void  

gpuTranspose_kernel(int rows, int cols,  

                    float const * __restrict__ in, float *out) 

{ 

  int i, j; 

  i = blockIdx.x * blockDim.x + threadIdx.x; 

  j = blockIdx.y * blockDim.y + threadIdx.y; 

  out [ j * rows + i ] = in [ i * cols + j ]; 

} 
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Now at 48% of peak with very little effort 
About a 10x speedup over 2 sockets 

 

RESULTS 

Kernel Throughput Speedup 

CPU+OMP 13.9 GB/s -- 

GPU-1D 9.7 GB/s 0.7x 

GPU-2D 41.6 GB/s 3.0x 

GPU-Tex 137.4 GB/s 9.9x 
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CAN WE DO BETTER? 

Not compute bound 

Not memory bound 

Assume latency bound 

 

 

What if we did the shared memory approach? 
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Expressing Concurrency 

Instruction Level Parallelism 

Coalesced Memory Access 

Texture Memory 

Shared memory 

Reducing Divergence 

Latency 

Bandwidth 

Compute 

KEY KERNEL OPTIMIZATIONS 
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SHARED MEMORY 

Accessible by all threads in a block 

 

Fast compared to global memory 

Low access latency  

High bandwidth  

 

Common uses: 

Software managed cache 

Data layout conversion 

Global Memory (DRAM) 

Registers 
SM-0 

Registers 

SM-N 

SMEM SMEM 
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TRANSPOSING WITH SHARED MEMORY 

Read block coalesced 
into shared memory 

 

i 

j 

Global 
Memory 

Shared 
Memory 
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TRANSPOSING WITH SHARED MEMORY 

Read block coalesced 
into shared memory 

Transpose shared 
memory indices 

 

i 

j 

Global 
Memory 

Shared 
Memory 
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TRANSPOSING WITH SHARED MEMORY 

Read block_ij coalesced 
into shared memory 

Transpose shared 
memory indices 

Write transposed block 
to global memory  

 

i 

j 

Global 
Memory 

Shared 
Memory 



127  

ALLOCATE SHARED MEMORY 
#define TILE_DIM 32 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 

  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 

  ... 

} 
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READ & WRITE COALESCED 
#define TILE_DIM 32 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 
  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 
 
  ... 
  ... = in [ j * cols + i ]; 
  ... 
 
  out[ j * rows + i ] = ... 

} 
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STAGE THROUGH SHARED MEMORY 
#define TILE_DIM 32 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 
  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 
  ... 
  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ]; 
  ... 
 
  out[ j * rows + i ] = tile[ threadIdx.y ] [ threadIdx.x ];  

} 
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TRANSPOSE SHARED MEMORY 
#define TILE_DIM 32 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 
  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 
 
  ... 
  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ]; 
  ... 
 
  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];  

} 
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TRANSPOSE BLOCK INDICES 
#define TILE_DIM 32 

_global__ void  

gpuTranspose_kernel(int rows, int cols, float *in, float *out) 

{ 

  int i, j; 
  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 
  
  i = blockIdx.x * blockDim.x + threadIdx.x; 
  j = blockIdx.y * blockDim.y + threadIdx.y; 
  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ]; 
 
  i = blockIdx.y * blockDim.y + threadIdx.x; 
  j = blockIdx.x * blockDim.x + threadIdx.y; 
  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];  

} 
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SYNCHRONIZE 
#define TILE_DIM 32 
 
_global__ void  
gpuTranspose_kernel(int rows, int cols, float *in, float *out) 
{ 
  int i, j; 
  __shared__ float tile [ TILE_DIM ] [ TILE_DIM ]; 
 
  i = blockIdx.x * blockDim.x + threadIdx.x; 
  j = blockIdx.y * blockDim.y + threadIdx.y; 
 
  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ]; 
  __syncthreads(); 
 
  i = blockIdx.y * blockDim.y + threadIdx.x; 
  j = blockIdx.x * blockDim.x + threadIdx.y; 
  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];  
} 
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Performance is worse 
Shared memory should be 
faster than texture 

What went wrong? 

RESULTS 

Kernel Throughput Speedup 

CPU+OMP 13.9 GB/s -- 

GPU-1D 9.7 GB/s 0.7x 

GPU-2D 41.6 GB/s 3.0x 

GPU-Tex 137.4 GB/s 9.9x 

GPU-Shared 116.0 GB/s 8.3x 
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SHARED MEMORY PROFILE 

Shared Memory is achieving good bandwidth 

However, replay overhead is high 

 

Bottleneck:  Bank Conflicts 
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SHARED MEMORY ORGANIZATION 

Organized in 32 independent banks 

 

Optimal access: all words from different 
banks 

Separate banks per thread 

Banks can multicast 

 

Multiple words from same bank serialize 
 

C 

Bank 

Any 1:1 or multicast pattern 

C C C 

Bank Bank Bank 

C 

Bank 

C C C 

Bank Bank Bank 
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SHARED MEMORY: AVOIDING BANK 
CONFLICTS 

Example: 32x32 SMEM array 

Warp accesses a column: 

32-way bank conflicts (threads in a warp access the same bank) 

 

31 

2 1 0 

31 2 1 0 

31 2 1 0 

warps: 
0         1         2              31 

Bank 0 
Bank 1 
  … 
Bank 31 

2 0 1 

31 

Accesses along row 
produces 0 bank 
conflicts 

Accesses along 
column produces 32 
bank conflicts 
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SHARED MEMORY: AVOIDING BANK 
CONFLICTS 

Add a column for padding: 

32x33 SMEM array 

Warp accesses a column: 

32 different banks, no bank conflicts 

 31 2 1 0 

31 2 1 0 

31 2 1 0 

warps: 
0         1         2             31       padding 

Bank 0 
Bank 1 
  … 
Bank 31 

31 2 0 1 

Accesses along row 
produces 0 bank 
conflicts 

Accesses along 
column produces 0 
bank conflicts 
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SOLUTION – WITHOUT BANK CONFLICTS 
#define TILE_DIM 32 
 
_global__ void  
gpuTranspose_kernel(int rows, int cols, float *in, float *out) 
{ 
  int i, j; 
  __shared__ float tile [ TILE_DIM ] [ TILE_DIM + 1 ]; 
 
  i = blockIdx.x * blockDim.x + threadIdx.x; 
  j = blockIdx.y * blockDim.y + threadIdx.y; 
 
  tile[ threadIdx.y ] [ threadIdx.x ] = in [ j * cols + i ]; 
  __syncthreads(); 
 
  i = blockIdx.y * blockDim.y + threadIdx.x; 
  j = blockIdx.x * blockDim.x + threadIdx.y; 
  out[ j * rows + i ] = tile[ threadIdx.x ] [ threadIdx.y ];  
} 
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Performance is better 
Bottleneck: 

Kepler requires 100+ lines in flight 
per SM to saturate DRAM 
1 line-in-flight per warp @ 100% 
occupancy = 64 lines in flight 

Solution: 
Process multiple elements 

Instruction-level parallelism 
More lines-in-flight  
Less __syncthreads overhead 
Amortize cost of indexing and thread 
launch 

 

RESULTS 

Kernel Throughput Speedup 

CPU+OMP 13.9 GB/s -- 

GPU-1D 9.7 GB/s 0.7x 

GPU-2D 41.6 GB/s 3.0x 

GPU-Tex 137.4 GB/s 9.9x 

GPU-Shared 116.0 GB/s 8.3x 

GPU-Padded 150.6 GB/s 10.8x 
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Expressing Concurrency 

Instruction Level Parallelism 

Coalesced Memory Access 

Texture Memory 

Shared memory 

Reducing Divergence 

Latency 

Bandwidth 

Compute 

KEY KERNEL OPTIMIZATIONS 
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PROCESS MULTIPLE ELEMENTS PER THREAD 

Increases ILP 

Reduces Exposed Latency 

Allows compiler to schedule instructions more efficiently 
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FINAL PROFILE 

82% of peak bandwidth 
Approaching memcpy speeds 

 

 
Kernel Throughput Speedup 

CPU+OMP 13.9 GB/s -- 

GPU-1D 9.7 GB/s 0.7x 

GPU-2D 41.6 GB/s 3.0x 

GPU-Tex 137.4 GB/s 9.9x 

GPU-Shared 116.0 GB/s 8.3x 

GPU-Padded 150.6 GB/s 10.8x 

GPU-Multi 238.4 GB/s 17.2x 
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Use NVVP to identify bottlenecks 

Use optimization techniques to  
eliminate bottlenecks 

Refer to GTC archives for  
complete optimization  
techniques 

 

www.gputechconf.com/gtcnew/on-demand-gtc.php 

Search “GPU Performance Analysis and Optimization” 

 

 

 

 

 

FINAL RESULTS 
Kernel Throughput Speedup 

CPU+OMP 13.9 GB/s -- 

GPU-1D 9.7 GB/s 0.7x 

GPU-2D 41.6 GB/s 3.0x 

GPU-Tex 137.4 GB/s 9.9x 

GPU-Shared 116.0 GB/s 8.3x 

GPU-Padded 150.6 GB/s 10.8x 

GPU-Multi 238.4 GB/s 17.2x 

http://www.gputechconf.com/gtcnew/on-demand-gtc.php
http://www.gputechconf.com/gtcnew/on-demand-gtc.php
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Expressing Concurrency 

Instruction Level Parallelism 

Coalesced Memory Access 

Texture Memory 

Shared memory 

Reducing Divergence 

Latency 

Bandwidth 

Compute 

KEY KERNEL OPTIMIZATIONS 
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CONTROL FLOW 

Single-Instruction Multiple-Threads (SIMT) model 

A single instruction is issued for a warp (thread-vector) at a time 

 

SIMT compared to SIMD: 

SIMD requires vector code in each thread 

SIMT allows you to write scalar code per thread  

Vectorization is handled by hardware 

Note: 

All contemporary processors (CPUs and GPUs) are built by aggregating vector 
processing units 

Vectorization is needed to get performance on CPUs and GPUs 

1
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CONTROL FLOW 

if ( ... ) 
{ 
     // then-clause 

} 
else 
{ 
    // else-clause 

} 
 

 

in
st

ru
ct

io
ns
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EXECUTION WITHIN WARPS IS COHERENT 

in
st

ru
ct

io
ns

 / 
tim

e 

Warp  
(“vector” of threads) 

35 34 33 63 62 32 3 2 1 31 30 0 

Warp  
(“vector” of threads) 
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EXECUTION DIVERGES WITHIN A WARP 

in
st

ru
ct

io
ns

 / 
tim

e 

3 2 1 31 30 0 35 34 33 63 62 32 
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CONTROL FLOW 

if ( ... ) 
{ 
     // then-clause 

} 
else 
{ 
    // else-clause 

} 
 

 

in
st

ru
ct

io
ns

  

Don’t freak out about this. 
 
Some if – then is OK. 

Example – 
 
 Checking edge cases when you 
 have tiled input… 
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MATH OPTIMIZATION TIPS 

Use “intrinsics” for math operations if you can. 
 
A couple bits lower precision, but much faster. 
 
__sin()   __cos()  __exp() 

Use double-precision when you mean to. 
 
float a = b + 2.5f 
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GRAND OPTIMIZATION SUMMARY 
APOD = Assess   Parallelize   Optimize   Deploy 

Use profiler 
Deploy early 
Optimizing is increasing effort.  Complicates code. 

 
Measure & Improve Memory BW 

Express sufficient parallelism 
Coalesce global memory accesses 
Reduce threads in block when using synchthreads 

 
Minimize Thread Divergence 

Avoid branchy code 
Don’t freak out over this 

  
Consider Fast Math 

Intrinsics 
 

Stream & Asynchronous Copies 
Overlap memory transfers and computation 
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Getting Started 
on Your Own 
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LINKS TO GET STARTED 

developer.nvidia.com 

Self-paced labs: nvidia.qwiklab.com 
90-minute labs, simply need a supported web browser 
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UDACITY PARALLEL PROGRAMMING COURSE 

10,000+ Students Already Taking 
the course! 

 

IT’S FREE! 

 

Udacity.com 



 
 
Thank you! 
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