
Thread-safe SHMEM Extensions

Monika ten Bruggencate1, Duncan Roweth1, Steve Oyanagi1

Cray Inc.

Abstract. This paper is intended to serve as a proposal for thread safety
extensions to the OpenSHMEM specification and at the same time de-
scribes planned support for thread-safety for Cray SHMEM on Cray XE
and XC systems.

1 Introduction

The original impetus for implementing thread-safe Cray SHMEM and proposing
thread safety extensions to OpenSHMEM were requests from SHMEM customers
for thread safety support. Subsequent discussions with some SHMEM customers
and review of the MPI specification [1] led to the proposal detailed in this pa-
per. The paper describes basic thread safety support for Cray SHMEM. The
thread safety support is basic in that it imposes policies on SHMEM applications
and contains minimal extensions to the Cray SHMEM and OpenSHMEM APIs.
However, it does enable processes to issue small Puts, small Gets, and AMOs at
higher aggregate rates than is possible in a single-threaded environment, which
can lead to better performance for certain multi-threaded applications. As much
as possible, this proposal was guided by the thread safety extensions to the MPI
standard and by customer input, in an effort to facilitate acceptance by the
OpenSHMEM community. Note that what is known in a single-threaded envi-
ronment as a processing element (PE) or rank corresponds to a process, not a
thread, in a multi-threaded environment. The remainder of the paper will discuss
the proposed thread safety extensions to OpenSHMEM, including assumptions
and new functions.

2 Assumptions

As mentioned above, reviewing the MPI specification and discussions with some
SHMEM customers led to this proposal, including several agreed-upon assump-
tions.

1. Initialization and finalization routines are restricted to being called by one
thread per process. A new initialization routine, shmem init thread(), en-
ables the user to specify that support for thread safety is desired.

2. Thread safety support is required for Put, Get and AMO operations so
that an application with multiple threads per process can make one-sided
SHMEM calls from multiple threads.



II Monika ten Bruggencate

3. Not necessarily all threads make SHMEM calls. It may be that only a subset
of the threads of a process make SHMEM calls.

4. The pool of threads that make SHMEM calls may be static or may be dy-
namic.

5. SHMEM collectives operate on sets of processes and the use of SHMEM
collective calls with multiple threads per process can be problematic. For
instance, in the OpenSHMEM specification 1.0 [2], in some cases collective
operations are defined not only in terms of PE synchronization, but also
memory consistency. The semantics of operations like shmem barrier() would
either need to be redefined for the proposed thread-safety extensions, or
new SHMEM collective functions would need to be defined which would
address these memory consistency issues. Either effort is beyond the scope
of this initial proposal and should be coordinated with future proposals for
modernizing the collective operations component of the SHMEM API. Thus,
for the purpose of this paper, SHMEM collective calls are subject to the
following restrictions:
(a) A collective operation can be called from only one thread per process at

a time and several threads per process cannot simultaneously participate
in different collective operations.

(b) Where an application makes SHMEM collective calls from multiple threads
per process, it is the responsibility of the application to ensure that calls
are made in the same order in each participating process.

6. The symmetric heap management functions shmalloc(), shfree(), and
shrealloc(), and shfree() are all defined to call shmem barrier all()

before they return and thus must be treated as collective operations.
7. The lock functions shmem clear lock(), shmem set lock(), and

shmem test lock() are restricted such that multiple threads on the same
process cannot access the same lock at the same time. Note that this restric-
tion does permit two different threads on the same process to access two
different locks at the same time.

8. Cray is proposing the thread safety extensions described in this paper to the
OpenSHMEM committee for inclusion in the OpenSHMEM standard.

3 Precautions

Programmers using thread-safe SHMEM should be mindful of the following
caveats.

1. It is the applications responsibility to ensure that collectives are called in the
right order, no matter whether the application is single-threaded or multi-
threaded. The SHMEM programming model does not recognize individual
threads. Any SHMEM operation initiated by a thread is considered an action
of the process as a whole. In particular, note that:
(a) shmem quiet() and shmem fence() affect the entire process, not just the

calling thread. While a thread is calling shmem quiet() or shmem fence(),
no other thread should be able to make calls who’s behavior is affected



Thread-safe SHMEM Extensions III

by shmem quiet()/shmem fence(). Further, a call to shmem quiet() by
one thread should affect all threads in that the call will wait for com-
pletion of all outstanding Puts and non-blocking Gets issued by the
process. Similarly, a call to shmem fence() by one thread should affect
all threads.

(b) The symmetric heap is a per process resource. A thread making a
shmalloc(), shrealloc(), or shfree() call affects the entire process.
The existing requirement that the same symmetric heap operations must
be executed by all processes in the same order also applies in a multi-
threaded environment.

2. When using multiple threads and SHMEM, be mindful of the order of ac-
cess and race conditions. For example, if one thread of a process is issuing
Puts and another thread of the same process is calling shmem quiet(), it
is the programmer’s responsibility to ensure the correct ordering of those
operations.

3. Thread safety should not be activated unless needed. Activating thread
safety causes additional overhead even if no additional threads are created
or used.

4 SHMEM Thread Safety Extensions

Where appropriate, SHMEM thread safety extensions have been modeled after
the existing MPI thread safety interface. The following naming convention ap-
plies: functions which relate to the level of thread safety activated are named
shmem <action> thread(). Functions which apply to a specific thread only
are named shmem thread <action>(). Return types of new functions are cho-
sen to follow the OpenSHMEM model of being void or returning a result. This
differs from the MPI model where functions return a success or failure code and
results are passed via output parameters.

4.1 shmem init thread()

A new function, shmem init thread(), allows a user to indicate that thread
safety support is desired. The function initializes SHMEM in the same way that
shmem init() or start pes() does. In addition, it performs thread safety spe-
cific initialization. This function is used in place of shmem init() either before
additional threads are created or by only one thread per process. The thread
which calls shmem init thread() is known as the main/primary thread. The
syntax of the function is as follows:

int shmem init thread(int required, int max num threads)

Following the MPI standard, there could be four levels of threading support.
Note that these levels are hierarchical. The higher levels should support any
lower levels.



IV Monika ten Bruggencate

1. SHMEM THREAD SINGLE – no threading/one thread per process. SHMEM im-
plementers can assume there is no threading.

2. SHMEM THREAD FUNNELED – processes may have multiple threads but only one
of the threads can make SHMEM calls. (All functions are funneled through
one thread.) It is the user’s responsibility to make certain all SHMEM calls
by a process are executed by the same thread.
Cray does not provide support for this level. It is unclear whether this level
should be included in the OpenSHMEM spec.

3. SHMEM THREAD SERIALIZED – processes may have multiple threads. Any thread
may issue SHMEM calls, but only one SHMEM call per process can be ac-
tive at any given time. Simultaneous calls from two threads belonging to the
same process are not allowed. It is the user’s responsibility to make certain
that SHMEM calls by a process are not concurrent.
Cray does not provide support for this level. It is unclear whether this level
should be included in the OpenSHMEM spec.

4. SHMEM THREAD MULTIPLE – processes may have multiple threads. Any thread
may issue a SHMEM call at any time, subject to the restrictions and policies
described earlier.

To specify which level of threading support is desired, use the
shmem init thread()’s required argument to pass in one of the above symbols,
specifying which level of threading support is desired. The return value of the
function is the level of threading support that the SHMEM library can provide.
If possible, the function returns the required value. If that is not possible, the
library returns the lowest threading support level that can be supported that is
greater than required. If that is not possible, the function returns the highest
threading support level SHMEM can provide. The user is responsible for check-
ing the return value to make certain that the available thread-safety level is
suitable for their program. All processes in a SHMEM application must request
the same level of threading support.
The input parameter max num threads allows a user to specify the maximum
number of threads per process that will make SHMEM calls. If the maximum
number is not known, a negative number (or appropriate macro) indicates that
no upper limit exists. Knowing the maximum number allows lower level software
to optimize use of hardware and minimize startup and teardown overhead.
Additional input parameters may be added to shmem init thread() as our im-
plementation progresses. Calls to the standard SHMEM initialization routines,
shmem init() and start pes(), are considered to request the threading support
level SHMEM THREAD SINGLE.

4.2 shmem query thread()

A new query function, shmem query thread(), enables SHMEM application de-
velopers to query the current level of thread safety support. When invoked, it re-
turns the same thread safety level that was returned when shmem init thread()

was called. The syntax is as follows:



Thread-safe SHMEM Extensions V

int shmem query thread(void)

4.3 shmem thread register()

After shmem init thread() has been called by the primary thread, any other
thread that wishes to make SHMEM calls must call shmem thread register()

before making any other SHMEM calls. The primary thread which called
shmem init thread() does not have to call shmem thread register(). Intro-
ducing a function which explicitly registers threads has several advantages.

– It allows optimized use of hardware, for instance by initializing thread safe
storage to allow dedicated use of hardware components by a thread.

– It minimizes overhead of pt2pt operations since such operations don’t have to
check a thread-private registration variable and, if necessary, perform thread
registration under the cover.

– It allows dynamic creation and destruction of threads throughout a program
run while not wasting hardware resources. For instance, if a thread is de-
stroyed in the middle of a program run and calls shmem thread unregister()

prior to that event, the hardware resources which were dedicated to that
thread can be reassigned to another thread which calls
shmem thread register() later in the program run.

An error may be returned if the maximum level of concurrency is exceeded, i.e. if
more threads are attempting to register than was specified via the max num threads

input parameter to shmem init thread(). The syntax is as follows:

int shmem thread register(void)

4.4 shmem thread unregister()

Any thread that previously called shmem thread register() must call
shmem thread unregister() before exiting. The thread that called
shmem init thread() does not have to call shmem thread unregister. The
syntax is as follows:

int shmem thread unregister(void)

The following pseudo code illustrates a sample call sequence of a multi-threaded
SHMEM program.

if (primary) {

shmem_init_thread()

pthread create loop

shmem calls

pthread join loop

shmem_finalize()

}

if (non-primary)

{

shmem_thread_register()

shmem calls

shmem_thread_unregister()

}



VI Monika ten Bruggencate

4.5 shmem thread quiet()

This is the thread specific version of the shmem quiet() function. It allows an
individual thread to wait for completion of Puts and non-blocking Gets which it
previously issued. There is no requirement on the implementation to only com-
plete operations issued by the calling thread. The syntax is as follows:

void shmem thread quiet(void)

4.6 shmem thread fence()

This is the thread specific version of the shmem fence() function. It allows an
individual thread to ensure ordering of Puts and non-blocking Gets which it
previously issued. There is no requirement on the implementation to only order
operations issued by the calling thread. The syntax is as follows:

void shmem thread fence(void)

4.7 shmem thread barrier()

This function performs an efficient local barrier among the threads that have
registered themselves by calling shmem thread register(). Decisions regarding
return type and input/output parameters remain to be made. The syntax is as
follows:

void shmem thread barrier(void)

4.8 shmem thread is registered()

This function determines whether a thread can make SHMEM calls. It will re-
turn TRUE if the thread has previously called shmem thread register() or is
the main thread. It will return FALSE otherwise. The syntax is as follows:

int shmem thread is registered(void)

4.9 Sample pseudo code

The following pseudo code illustrates a possible code flow and usage of the new
API functions. It is not related to any real world example.



Thread-safe SHMEM Extensions VII

#include <stdio.h>

#include <omp.h>

#include <mpp/shmem.h>

int

main (int argc, char *argv[])

{

int nthreads, /* number of threads */

tid, /* thread id */

rc; /* return value */

Initialization phase;

rc = shmem_init_thread(SHMEM_THREAD_MULTIPLE, 8);

#pragma omp parallel private(tid) /* fork threads whith each having a private tid */

{

if (tid != 0)

shmem_thread_register(); /* additional threads must register */

shmem_int_get_nb(...); /* all threads transfer data */

Computation phase by each thread;

if (tid == 1)

shmem_thread_quiet(); /* thread 1 waits for own transfer completion */

Computation phase by each thread;

if (tid == 0)

shmem_quiet(); /* wait for transfers of all threads to complete */

Computation phase by each thread;

shmem_thread_barrier(); /* synchronize all threads of the rank */

if (tid == 2)

shmem_barrier(...); /* one thread participates in a collective */

if (tid != 0)

shmem_thread_unregister(); /* additional threads unregister */

} /* all threads join master thread and terminate */

shmem_finalize();

}



VIII Monika ten Bruggencate

5 Performance Considerations

The original impetus for supporting thread-safe Cray SHMEM came from cus-
tomer requests, where requests focused on point-to-point operations and on per-
formance. Thus, one goal when implementing the described thread safety exten-
sions on Cray XE and XC systems is to increase the per process, aggregate issue
rate for Puts, Gets and AMOs. At the time of the publication of this paper, the
implementation of the thread safety extensions in Cray SHMEM has not been
completed and we are not able to present performance data at the SHMEM level.
In our software stack, Cray SHMEM is implemented on top of DMAPP, a net-
work library supporting one-sided program models. The majority of the work to
support thread safety in a well-performing manner needed to occur in DMAPP
and has been completed. DMAPP was modified to use NIC resources effectively
in the presence of threads. Specifically, registering a thread with DMAPP allows
the thread to use a dedicated NIC resource, thereby eliminating bottlenecks
when accessing hardware resources. This approach also allowed us to eliminate
the use of a global lock in DMAPP. We carried out preliminary performance
experiments at the DMAPP level, comparing the older implementation where
a thread did not use a dedicated NIC resource and which used a global lock,
with the new, better-performing implementation. Preliminary performance data
on XE shows an increase in per-process aggregate issue rate by a factor of 4
to 5 for non-blocking 8 byte Puts using 8 threads per process. More thorough
performance analysis will be done at the DMAPP level and, once the work has
been completed in Cray SHMEM, at the SHMEM level. We will then use the
performance analysis to guide further improvements in our software stack.

6 Future Work

The proposed thread safety extensions are modeled after the MPI standard for
thread safety, as it is hoped that by following a well-known and well-defined in-
terface, the proposed extensions will be more readily accepted. The thread-safe
SHMEM interface could be expanded beyond the minimum required should this
be desired by SHMEM users. Some of the policies imposed on SHMEM applica-
tions may be lifted over time. In particular, we plan to work with the community
to determine whether and how policies on the use of collective operations in a
multi-threaded environment should be loosened over time.

References

1. Message Passing Interface Forum: MPI: A Message-Passing Standard Version 3.0.
(2012)

2. OpenSHMEM: OpenSHMEM Specification v1.0. (2012)


	Thread-safe SHMEM Extensions
	Monika ten Bruggencate (Cray)

