
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Implementing Split-Mode Barriers in OpenSHMEM

Michael A. Raymond

Silicon Graphics International

mraymond@sgi.com

Abstract. Barriers synchronize the state of many processing elements working

in parallel. No worker may leave a barrier before all the others have arrived.

High performance applications hide latency by keeping a large number of oper-

ations in progress asynchronously. Since barriers synchronize all these opera-

tions, maximum performance requires that barriers have as little overhead as

possible. When some workers arrive at a barrier much later than others, the ear-

ly arrivers must sit idle waiting for them. Split-mode barriers provide barrier

semantics while also allowing the early arrivers to make progress on other

tasks. In this paper we describe the process and several challenges in develop-

ing split-mode barriers in the OpenSHMEM programming environment.

Keywords: OpenSHMEM, barrier, split-mode

1 Introduction

 Barriers are a common construct in parallel programming environments.

They allow multiple processing elements (PEs) to synchronize their progress. When a

PE arrives at a barrier it waits for all the other PEs to arrive before they can all leave.

Barriers let PEs know that all the others have arrived at a known point in their execu-

tion. Barriers are an important part of the OpenSHMEM [1], MPI [2], and UPC [3]

environments.

 Like other collective operations, the performance of barriers may be critical

to application performance. Barriers may involve many PEs operating on different

nodes, and so they must be scalable. PEs waiting at a barrier for other PEs to arrive

cannot make progress on any other tasks, and thus any time spent in a barrier can be

considered overhead.

While several designs for barriers have been proposed in the past to increase

scalability while minimizing time and space consumption [4], split-mode barriers

address the issue of PEs arriving at different times. When a PE arrives at a synchroni-

zation point it signals to the barrier that it has arrived. This sends out a notification to

the other PEs. The PE is then free to perform other work. From time to time it checks

the status of the barrier to see if every other PE has arrived. When every PE has sig-

naled arrival, the barrier can be considered complete and all PEs may move past the

synchronization point. Split-mode barriers were added to MPI as part of version 3.0

[5].

 The OpenSHMEM programming environment models symmetric memory

across parallel PEs that perform memory puts, gets, and atomic memory operations

(AMOs) to it. OpenSHMEM also includes collective operations such as reductions,

gather operations, and synchronous barriers. The OpenSHMEM 1.0 standard does not

include split-mode barriers.

 This paper describes the process of an experimental addition of split-mode

barriers to the SGI implementation of OpenSHMEM. SGI SHMEM ships as part of

the SGI MPI product [6] and both make use of the SGI MPT high performance com-

munications middleware. We modified an existing synchronous barrier implementa-

tion in SGI SHMEM to operate as a split-mode barrier and then made numerous op-

timizations to improve performance.

2 Experimental Environment

2.1 Target Benchmark

 The experimental environment was largely motivated by a paper by Hoefler,

Siebert, and Lumsdaine on the dynamic sparse data exchange problem [7]. They de-

scribe a common communication pattern where PEs must periodically exchange data

with a sparse and dynamic set of neighbors. Challenges include how to notify a

changing set of neighbors that PEs have data for them, and how to efficiently verify

that all the data has been exchanged. Hoefler et al. described a variety of implementa-

tion possibilities and a microbenchmark for studying just the communication phase of

similar applications.

 We propose a microbenchmark similar to that done by Hoefler et al. As in

theirs, it performs 1000 loops where each PE randomly identifies a sparse set of

neighbors, then randomly sends 1 to 1024 bytes of data to them. In its communication

routine (see figure 1), the benchmark does a 20-byte shmem_putmem() to the iden-

tified neighbors to notify them that it has data for them, then starts a split-mode barri-

er. The PE then loops checking for notification of available incoming data, doing a

shmem_getmem() to receive the data, and checking for completion of the split-

mode barrier. The split-mode barrier lets each PE know that it has received all the

incoming notices of data. When the split-mode barrier is complete, a synchronous

barrier is performed to let each PE know that all the data has been read from its out-

going buffers and it is now safe to reuse them. We do not claim that this routine is

optimal, only that it may represent one possible pattern used by real applications.

 This research makes a number of assumptions about how the split-mode

barrier interacts with other parts of the program. Since the microbenchmark involves

all PEs in the application, the split-mode barrier is also assumed to be application-

wide. An alternative approach would allow only designated subsets of the PEs to

participate. This implementation also assumes that the split-mode barrier should force

all preceding RMAs to complete when barrier_start() is called. An alternative

approach might delay RMA completion until barrier_check() returned success.

Intuitively, this alternative better fits the semantics of the barrier and allows more

overlapping of work, but we feel that it would also add cost and complexity. We feel

that most implementers would put the RMA flush in the barrier_start() any-

way.

communicate(int num, msg_t * msgs)

{

 int done = 0;

 send_notices(num, msgs);

 barrier_start();

 do {

 msg_t msg;

 done = barrier_check();

 while (msg_probe(&msg)) {msg_receive(&msg);}

 } while (!done);

 shmem_barrier_all();

}

Fig. 1. Distributed Sparse Data Exchange using OpenSHMEM

2.2 Experimental Setup

All performance experiments were run on an SGI ICE-X cluster. Each cluster

node had two 2.70 Ghz Intel IvyBridge sockets with 12 cores each. Each node had 96

GB of memory and a Mellanox ConnectX-3 InfiniBand HCA using a single Infini-

Band plane operating at FDR speed. All runs were done with 764 SHMEM PEs split

across 32 cluster nodes. Each PE sent data to log(#PEs) = 64 other PEs each iteration

of the benchmark.

3 Split-Mode Barrier Design

 One of the synchronous barrier implementations used in SGI SHMEM is

based on dissemination barriers [4]. Over a series of steps, each PE signals and waits

for a signal from a PE twice as far away from itself as in the previous step. There are

log(# of PEs) steps. Additional similar code exists to support situations with a non-

power-of-2 number of PEs. The SGI implementation uses AMOs on 32-bit integers.

The primary benefit is that it only needs a tiny amount of space, log(# of PEs), and

can safely handle the arrival of a PE back at the barrier while another PE is still in the

process of leaving it.

We initially implemented the benchmark using the MPI 3.0

MPI_Ibarrier() split-mode barrier interface. This provided a control to compare

OpenSHMEM implementations against. SGI MPT allows applications to use both

MPI and OpenSHMEM safely at the safe time. Excluding application launch and shut

down, the benchmark ran in 0.551 seconds.

 We copied the SGI SHMEM dissemination barrier and turned it into a split-

mode barrier. During the starting call the PE does its first signal operation and then

immediately returns. Every later call to check on the barrier's status has the PE check

the current step’s local variable to see if it has been altered. If not, the PE returns indi-

cating that the barrier is not complete. If it was altered, the PE advances to the next

step of the barrier and signals the step's partner PE. When all the steps are completed,

the PE safely reinitializes the barrier and returns indicating that the barrier is com-

plete. This initial OpenSHMEM trial ran in 1.463 seconds.

 For the next evolution, we switched the barrier data structure from using 32-

bit integers to 64-bit integers. AMOs done over Mellanox InfiniBand HCAs are not

coherent with CPU memory operations. To preserve coherency during runs across

multiple cluster nodes in SGI SHMEM, all AMOs are done through InfiniBand. This

does not protect CPU loads and stores to the same 64-bit word that a 32-bit atomic

variable resides in, and so the OpenSHMEM implementation must take extra steps.

The end result is that 32-bit AMOs are slower than 64-bit AMOs. By switching to

using 64-bit AMOs the run time dropped to 0.663 seconds.

 We noticed that in the barrier code, the local PE does not require any result

from AMOs to other PEs’ memories. That is, for some AMOs like fetch-and-add and

compare-and-swap, the AMO returns a value that was in the target PE’s memory and

the AMO caller uses the value for later computation. For the AMOs used in the barri-

er implementation, shmem_long_inc() and shmem_long_add(), the AMOs

return void. In the SGI SHMEM implementation those interfaces were built upon the

same code as AMOs with return values. Those interfaces waited for the return values

from the lower code but did not return them to the caller. We modified the SHMEM

implementation to allow those two AMOs to proceed asynchronously. This reduced

the performance to 0.688 seconds.

 Since the split-mode barrier implementation could do several AMOs in suc-

cession, we experimented with a modification to the SHMEM library that could keep

multiple AMOs going at once. We verified that in the benchmark and the split-mode

barrier implementation, the possibility of AMOs completing out of order would not

affect correctness. Trials with allowing two and four AMOs at once resulted in 0.678

and 0.671 seconds respectively.

 We reasoned that since changes to how AMOs were being used or imple-

mented had stopped showing any further performance improvements, experimentation

should be done on not using AMOs. The split-mode barrier code was modified to use

only shmem_long_put(). For purposes of safely allowing one barrier synchroni-

zation to end while the next was starting, we doubled the size of the data structure

involved. Synchronization points iterated between using different halves of the data

structure to prevent interfering with each other. While this did slightly increase the

amount of space used, it resulted in a drop in time to 0.485 seconds.

 Finally, we observed that while the application was looping calling

msg_probe() and msg_receive() to read in data, no progress was being made

on the split-mode barrier. In the control implementation using MPI_Ibarrier(),

SGI MPT's internal progress engine ensured regular updates of the barrier every time

that a communication routine was called. Because the experimental spilt-mode barrier

existed entirely inside the application, it was not seeing the same benefit. A high qual-

ity productization would include complete internal support for split-mode barriers, but

for this research project we changed the application to visit the barrier_check()

code more often. This resulted in an insignificant drop to 0.484 seconds. This sug-

gests that the benchmark had already been checking barrier progress frequently

enough.

Table 1. Summary of Results

Split-Mode Barrier Implementation Run Time (seconds)

MPI_Ibarrier() 0.551

AMOs on 32-bit integers 1.463

AMOs on 64-bit integers 0.663

Non-blocking AMO 0.688

2 AMOs in progress 0.678

4 AMOs in progress 0.671

Puts to 64-bit integers 0.485

More frequent status checks 0.484

4 Conclusions

We showed that a split-mode barrier using OpenSHMEM primitives can be competi-

tive with a tuned split-mode barrier using message passing. We explored the perfor-

mance implications of using different operations and data type sizes in OpenSHMEM

on an InfiniBand cluster. Future research will explore basing the barrier implementa-

tion on designs other than dissemination barriers, and on benchmarking their perfor-

mance on other kinds of computing platforms, such as SGI’s UV CC-NUMA ma-

chines. As the OpenSHMEM community explores releasing a revision to its standard,

split-mode barriers have been shown to be feasible and useful to OpenSHMEM appli-

cations.

Acknowledgements

 We thank SGI engineers James Custer and John Baron for their critiques of

this paper.

References
1. OpenSHMEM, http://www.openshmem.org/

2. MPI Forum: MPI: A Message Passing Interface. In: Proceedings of Supercomputing.

(1993)

3. UPC Consortium, UPC Language Specifications, v1.2. Lawrence Berkeley National Lab,

Tech. Rep. LBNL-59208, (2005)

4. Hengsen, D., Finkel, R., Manber, U.: Two Algorithms for Barrier Synchronization. In: In-

ternational Journal of Parallel Programming 17, pp. 1-17. (1988)

5. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version

3.0. (2012)

6. SGI MPI, http://www.sgi.com/products/software/sps.html

7. Hoefler, T., Siebert, C., Lumsdaine, A.: Scalable Communication Protocols for Dynamic

Sparse Data Exchange. In: Principles and Practice of Parallel Programming. ACM (2010)

