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Abstract. With high performance systems exploiting multicore and
accelerator-based architectures on a distributed shared memory system,
heterogenous hybrid programming models are the natural choice to ex-
ploit all the hardware made available on these systems. Previous efforts
looking into hybrid models have primarily focused on using OpenMP
directives (for shared memory programming) with MPI (for inter-node
programming on a cluster), using OpenMP to spawn threads on a node
and communication libraries like MPI to communicate across nodes. As
accelerators get added into the mix, and there is better hardware sup-
port for PGAS languages/APIs, this means that new and unexplored
heterogenous hybrid models will be needed to effectively leverage the
new hardware. In this paper we explore the use of OpenACC directives
to program GPUs and the use of OpenSHMEM, a PGAS library for one-
sided communication between nodes. We use the NAS-BT Multi-zone
benchmark that was converted to use the OpenSHMEM library API for
network communication between nodes and OpenACC to exploit accel-
erators that are present within a node. We evaluate the performance of
the benchmark and discuss our experiences during the development of
the OpenSHMEM+OpenACC hybrid program.

1 Introduction

New HPC systems are increasingly turning to accelerators to increase compute
power while mitigating the rising cost of power [1]. For example, four of the top
ten super computers use GPUs as their main devices to perform the majority of
the computations. Oak Ridge National Laboratories Titan [2], a DOE leadership
class machine, makes extensive use of GPUs, using one Nvidia Kepler GPU per
node. Without a major breakthrough in technology, the future of the fastest
super computers will consist of clusters with multiple cores and attached to
specialized devices for accelerators, interconnects and I/O. Modern cluster nodes
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have many different types of hardware that need to be exploited efficiently to
make the maximum use of the provided resources. Current nodes have multiple
sockets with attached memory, each socket has a CPU with multiple cores. On
top of this the node usually has an attached accelerator, currently the most
common one is the GPU. In addition the nodes are all connected with network
hardware that provides better support for PGAS languages/libraries to allow
them to communicate. This means that each node has three different major
components that need to be programmed for. Each of these components has
its own programming model with its own challenges. When these models are
used together for hybrid programming models, new challenges arise, specially
when one of the models deals with heterogeneous programming. In this paper
we explore a new hybrid programming model OpenSHMEM+OpenACC.

OpenSHMEM is the result of standardizing several shmem libraries [3]. It is
a one-sided communication library where individual processes do one-sided puts
and gets, as compared to MPI that does synchronized send/receive between pairs
of processes. This allows for data to be sent without having to wait on remote
nodes to do communication. OpenACC is the result of standardizing compiler
directives for accelerator programming sanctioned by the OpenACC organiza-
tion. It allows for an OpenMP-like programming with support for incremental
parallelism. This includes the ability to incrementally add directives to a code to
program for GPUs, rather than having to do a considerable amount of code re-
structure to just start using an accelerator (like with the OpenCL standard). We
use the NASA Advanced Supercomputing (NAS) Block Tri-diagonal (BT) Mul-
tizone benchmark [4] to evaluate our results. This benchmark is structured so
that there are multiple zones that can be solved independently with the bound-
ary values of each zone exchanged on each iteration, making it well suited to
experimentation with heterogeneous hybrid programming model.

This paper is organized into 5 sections. In Section 2 we discuss the other re-
search done on hybrid programming models and provide background information
on the BT-MZ benchmark used, the OpenACC directives, and the OpenSHMEM
library in Section 3 . In Section 4 we discuss the implementation details of how
OpenSHMEM and OpenACC are used together. The results are presented in
Section 5. We discuss the platforms used and the timings from running BT-MZ
on those platforms. In Section 6 we interpret the results we obtain and discuss
the future paths for exploration in this hybrid programming.

2 Related Work

Hybrid models that explore shared-memory and distributed-memory program-
ming have been researched over the last few decades. The idea is to exploit
the strengths of the different models, including the in-node efficiency, memory
savings, accelerator programming, and the scalability characteristics within a
distributed memory system. The shared and distributed programming models
models have been evolving separately and an attempt to unify them resulted in
the creation of new languages and models such as the HPCS and PGAS lan-
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guages (X10, Chapel, Fortress, UPC, etc). In terms of heterogenous program-
ming, there have been attempts to explore the use of message passing libraries
and accelerator languages and APIs (i.e. CUDA, OpenCL). Recently, a high-level
approach to program accelerators has been released, called OpenACC that im-
proves portability across accelerators. Some applications have successfully used
the model of MPI/OpenACC, MPI/OpenCL, MPI/CUDA. Very little work has
been done to explore OpenSHMEM with accelerator programming models.

3 Background

In this section we introduce the different models that we used to experiment
with heterogenous hybrid programming.

3.1 OpenSHMEM

The OpenSHMEM library is a PGAS library that provides a library API for
programmers using the Single Program Multiple Data (SPMD) programming
paradigm for programs written in C, C++ and Fortran. The OpenSHMEM Spec-
ification [5] provides the definition, functionality and expected behavior of these
powerful library calls that are meant for communicating and processing data.
The SGI SHMEM library specification and implementation motivated Open-
SHMEM Specification 1.0 which was finalized by the OpenSHMEM community
in early 2012. OpenSHMEM is an evolving open standard for all SHMEM library
implementations and we expect many useful changes to the API and library in
the near future to be able to cater to the growing and ever changing high perfor-
mance computing environment. The current library specification provides API
for one-sided reads and writes, remote atomic memory operations, broadcasts,
reductions, collects, distributed locking, and collective and point-to-point syn-
chronization and ordering primitives. OpenSHMEM put/get calls provide excel-
lent opportunities for hiding communication latency by overlapping communi-
cation with computation when the underlying hardware supports true one-sided
remote direct memory access (RDMA). Along with performance, application
programmers require both portability and productivity and the OpenSHMEM
library facilitates this by providing a standard and simple API.

3.2 OpenACC

Directives comprise a mechanism that allows a program to “direct” (or “hint”)
the compiler as to what it should do about a region of code that is often in prox-
imity to the directive’s occurrence in the program. In the C/C++ and Fortran
languages directives appear as lines prefixed with #pragma id or !$id, respec-
tively, where id signifies the directives API that these directives belong to. In
the case of Fortran, for instance, OpenMP and HPF use omp and hpf respec-
tively. It is the directive’s API specification that designates what is legal – when
put this way, directive APIs can be thought of as separate languages meant to
annotate C & Fortran sources.
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Using directives to program accelerators is not new. Data and executable
code placement on National Semiconductors’ NAPA1000 reprogrammable chips
is steered from pragma-annotated C [6], while intelligent memory operations
can be offloaded onto a FlexRAM array by using the the CFlex pragmas for
the C language [7]. IBM’s Cell BE is programmable with the Cell Superscalar
(CellSs) [8]. The accessibility to GPUs saw the emergence of OpenHMPP [9] and
hiCUDA [10], while for the more recent Intel Many Integrated Cores (MIC), it
was shown how work offloading can be achieved by OpenMP offloading (#pragma
offload target(mic) combined with OpenMP directives) [11].

The OpenACC specification comprises a programming model supported by
a directives-based API that was put together by a consortium of four, namely
CAPS enterprise, Cray Inc, the Portland Group Inc (PGI) and NVIDIA. The
specification was put together to provide a prototype implementation to speedup
the OpenMP accelerator directive process, which constantly gets merged in the
OpenMP accelerator model [12]. The OpenACC defines a host and accelerator
programming model where accelerated regions are used to define which parts
of the program can be (1) offloaded to an accelerator and/or (2) data regions
describe the data motion between the accelerator and the CPU, where some host
variables become available on the device. (acc data).

The data regions address concerns with the (mostly) disjoint CPU and accel-
erator memory spaces and the lifetime of data objects. Similar to OpenMP where
the programmer tags objects as private, shared, lastprivate, OpenACC of-
fers a number of clauses. Some of the supported clauses are the following: (1)
the copyin clause for objects that are to copied over to the accelerator at the
begining of the region, (2) the copyout and then copied back to the CPU at
the end of the region, (3) the present clause for checking if an object is already
available on the accelerator (in order to avoid redundant or outdated copies) and
(4) copy that combines copyin and copyout.

In recognition of existing accelerators’ processing element (PE) topology,
OpenACC orchestrates the work to be assigned to the accelerator’s PE in a
hierarchical fashion: there are gangs of workers where each worker performs a
vector operation. The actual mapping is both target and compiler specific. In
the case of NVIDIA GPUs, for instance, the number of gangs corresponds to
the number of CUDA threadblocks, the number of workers determines the size
of the warps or the Y dimension of the threadblock while the vector suggests
the SIMD length [13]. To designate work for offloading onto the accelerator,
OpenACC makes available the parallel directive, which will, essentially, launch
work on the device according to a compiler-selected or user-selected configuration
of gangs, workers and vectors.

In addition to the parallel directive, OpenACC offers the kernel and loop

directives. Given a region of sequential statements, where statements may be
loops or less complex statements, the kernel directive instructs the compiler to
organize the statements into kernels and execute them sequentially on the accel-
erator. An implementation is free to modify the organization of gangs, workers
and vectors between launches. The reader may assume that a mapping to CUDA
would suggest that the kernels have been queued up for serial launching over a
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CUDA stream. The loop directive is meant to map loop nests onto the gang,
worker and vector hierarchy.

3.3 Hybrid programming with OpenSHMEM and OpenACC

Using the OpenSHMEM and OpenACC programming models together is a new
type of hybrid model. The low latency characteristic of OpenSHMEM combined
with accelerator programming of OpenACC makes it an attractive model to
explore. However, there are limitations from both APIs that makes it hard for
them to interoperate. For example, the accelerator memory is not part of the
symmetric memory required and used by the OpenSHMEM library. Also, the
current OpenSHMEM 1.0 specification is not thread safe which limits the use of
OpenSHMEM library API to outside of OpenACC regions.

3.4 BT Multizone Benchmark

The Block Tri-diagonal (BT) benchmark is part of the NPB benchmark suite.
The benchmark simulates a CFD application that solves 3-dimensional com-
pressible Navier-Stokes equations using Alternating Direction Implicit (ADI) to
find the finite difference solution to the problem by solving three sets of uncou-
pled systems of equations in x, y and z directions. These equations are block
tridiagonal with a 5x5 block size. The multi-zone version of the benchmark a
logically rectangular discretization mesh is divided into a two-dimensional hor-
izontal tiling of three-dimensional zones [4] and the aspect ratios are changed
from the original NPB to avoid pathologically shaped zones. In the reference BT-
MZ implementation (MPI+OpenMP) a MPI process executes the initialization
step and after initial setup and synchronization of all processes the benchmark
loops over the computation kernels. Communication between processes occurs
after the computations are completed and the root process verifies the results
obtained for the problem size class chosen. The number of zones grows with the
problem size and the ratio of the largest zone over the smallest zone is about
20. The zones span a signifiant range and can be modulated by using different
classes of input data.

4 Implementation

The OpenSHMEM+OpenACC version of the BT-MZ benchmark is structured
into five distinct steps (similar to the reference BT-MZ implementation). The
first setup is to set up the zones, then all the zones are initialized. These two steps
are done independently on each node and without accelerators. The next step
is the boundary exchange and OpenSHMEM is used to communicate between
nodes as they exchange boundary values. The next step is the BT solver, where
using OpenACC directives computation is offloaded to the accelerator. These
two steps that consist of the boundary exchange and the solver, are looped over
for a fixed number of iterations. After this a verification step is performed to
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ensure that the solver produced the correct result. Conversion of the benchmark
from using MPI+OpenMP to OpenSHMEM+OpenACC is a two step process
where we first replace all MPI calls be equivalent OpenSHMEM calls to get
an intermediate OpenSHMEM+OpenMP BT-MZ version. This is used as the
starting point for OpenACC related modifications.

4.1 Inter process communication using OpenSHMEM

We use the OpenSHMEM communication library to communicate between pro-
cesses. It effectively accomplishes the same role as Message Passing Interface
(MPI) did in the reference implementation of the NPB-MZ hybrid parallel bench-
mark. The difference emanates from the fact that all communication in Open-
SHMEM is one-sided, thus not requiring the participation of the target process.
In the OpenSHMEM+OpenACC hybrid benchmark OpenSHMEM communi-
cates data related to overlap regions of zones, and OpenACC parallelizes loops
within each zone.

The BT-MZ benchmark has distinct communication and computation phases.
There is no communication during the solving stage (x-solve, y-solve and z-
solve). While porting the BT-MZ benchmark to use OpenSHMEM certain de-
sign choices have to be made which include decisions regarding the program
variables that need to be symmetric, the choice of communication primitives (put

1 if (iodd == 0) {
2 MPI_Isend (& qbc_ou[qoffset],m_size ,
3 dp_type ,ip ,tag+myid ,
4 comm_setup ,& requests[nr]);
5 MPI_Irecv (& qbc_in[qoffset],m_size ,
6 dp_type ,ip ,tag+ip,
7 comm_setup ,
8 &requests[nr+1]);
9 }

10 else {
11 MPI_Irecv (& qbc_in[qoffset],m_size ,
12 dp_type , ip, tag+ip,
13 comm_setup ,
14 &requests[nr]);
15 MPI_Isend (& qbc_ou[qoffset],m_size ,
16 dp_type , ip,tag+myid ,
17 comm_setup ,
18 &requests[nr+1]);
19 }

Listing 1.1: MPI buffer exchange in
reference BT-MZ exch qbc routine.

1 shmem_putmem (& dest_qoffset ,
2 &qoffset ,
3 sizeof(idx_t),ip);
4 shmem_fence ();
5 shmem_long_put (&done , &x,1,ip);
6 shmem_quiet ();
7 shmem_wait (&done , 0);
8 shmem_double_put(
9 &qbc_in[dest_qoffset],

10 &qbc_ou[qoffset],
11 m_size , ip);
12 shmem_quiet ();

Listing 1.2: OpenSHMEM buffer
exchange in exch qbc routine.

vs get) and synchronization points. Since OpenSHMEM does not have matching
sends and receives (refer Listing 1.1) this exchange has to be ordered with an ex-
tra communication to indicate the correct offset location (Listing 1.2, line 1) and
point to point synchronization (Listing 1.2, lines 4, 6, 7) that guarantees that the
correct data has been communicated. Listing 1.2 shows how the exchange is ef-
fected using OpenSHMEM communication and synchronization calls. Moreover
there is a significant benefit in using put as (unlike get) it returns as soon as the
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buffer is available for reuse [5]. The final verification stage performs a reduction
of solutions over all processes and computes residues from over all zones.

4.2 Targeting Hybrid Architectures with OpenACC directives

4.2.1 Introducing the OpenACC directives We started with the Open-
SHMEM and OpenMP version of BT-MZ. We first find the OpenMP pragmas,
which indicates code kernels that are already parallel and replaced them with
OpenACC pragmas. We started by replacing OpenMP pragma (refer Listing 1.3)
with OpenACC #pragma acc kernels around the main computational loops of
x-solve, y-solve, z-solve compute rhs, and add (refer Listing 1.4). This pragma
indicates to the compiler that it should generate accelerated kernels for each loop
nest. Only with this approach we do not expect to see performance gain since for
every kernel the runtime will transfer the data back and forth to the accelerator
and at this stage the kernels are not optimized at all. Unlike OpenMP where a
subroutine called in a OpenMP parallel context is the same machine code as the
host core, OpenACC regions are compiled to CUDA code and then compile by
the Nvidia CUDA compiler for the GPU. This means that the compiler must
either know that a function will be called in OpenACC or the function must be
inlined. Because of this the subroutines lhs init, matvec sub, matmul sub, bin-
vcrhs and bincrhs have to be manually copied to the same source file so they be
inlined by the OpenACC compiler. The new OpenACC 2.0 solves this problem
using the routine directive. 5

1 #pragma omp parallel for
2 for (k = 1; k <= nz -2; k++) {
3 for (j = 1; j <= ny -2; j++) {
4 for (i = 1; i <= nx -2; i++) {
5 for (m = 0; m < 5; m++) {
6 u(m,i,j,k) = u(m,i,j,k)

+ rhs(m,i,j,k);
7 }
8 }
9 }

10 }

Listing 1.3: Original OpenMP
pragmas in add routine.

1 #pragma acc kernels
2 for (k = 1; k <= nz -2; k++) {
3 for (j = 1; j <= ny -2; j++) {
4 for (i = 1; i <= nx -2; i++) {
5 for (m = 0; m < 5; m++) {
6 u(m,i,j,k) = u(m,i,j,k)

+ rhs(m,i,j,k);
7 }
8 }
9 }

10 }

Listing 1.4: New OpenACC
pragma add routine.

4.2.2 Split loop nests After inlining these subroutines the loops in the Ope-
nACC regions were very large with high memory utilization. By experience, we
know that splitting a huge loop nest into smaller ones will allow both OpenACC
compiler, capsmc, and NVCC, to generate more optimized code for the GPU.
This has advantages as it allows the compiler to find more parallelism to exploit,
reduce register pressure and the device shared memory footprint. It does not
negatively affect performance since maximum data is kept on the GPU between
the different calls to the OpenACC kernels, prefetch to local caches and memo-
ries, which improves performance.

5 This directive will be available in the CAPS OpenACC compiler later this year.
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After splitting the solver loop nests into smaller ones, these loop nests are not
anymore parallel. In order to enable the parallelization on the two outer loops,
two additional dimensions were added to the fjac, njac, and lhs arrays (refer
Listing 1.5 and Listing 1.6). We had to redeclare those arrays because the di-
mensions depend on the external loop levels. In the x-solve file (similarly for
y-solve and z-solve), the external loop levels are based on the nz and ny sizes
(respectively on, nz and nx, ny and nx). This enables the compiler to parallelize
this loop nest by removing the dependencies between the different iterations of
the outer loop accessing these arrays. While this puts additional pressure on the
GPU memory, it allows us to reestablish the parallelism lost by splitting the
loop nest.

1 for (k = 1; k <= nz -2; k++) {
2 for (j = 1; j <= ny -2; j++) {
3 for (i = 1; i <= nx -2; i++) {
4 ...
5 fjac[i][0][1] = -(u(1,i,j,k) * tmp2 *
6 u(1,i,j,k))
7 + c2 * qs(i,j,k);
8 fjac[i][1][1] = ( 2.e0 - c2 )
9 * ( u(1,i,j,k) / u(0,i,j,k) );

10 fjac[i][2][1] = - c2 * ( u(2,i,j,k) * tmp1 );
11 fjac[i][3][1] = - c2 * ( u(3,i,j,k) * tmp1 );
12 fjac[i][4][1] = c2;
13 ...
14 }
15 }
16 }

Listing 1.5: Original arrays in x solve routine.

1 double fjacX [5][5][ PROBLEM_SIZE +1][ny][nz];
2 #pragma acc kernels loop independent present(up[0: size5],rhsp [0: size5])
3 for (k = 1; k <= nz -2; k++) {
4 for (j = 1; j <= ny -2; j++) {
5 for (i = 1; i <= nx -2; i++) {
6 ...
7 fjacX[i][1][0][j][k] = -(u(1,i,j,k) * temp2 * u(1,i,j,k))
8 + c2 * qs(i,j,k);
9 fjacX[i][1][1][j][k] = ( 2.0 - c2 ) * ( u(1,i,j,k) / u(0,i,j,k) );

10 fjacX[i][1][2][j][k] = - c2 * ( u(2,i,j,k) * temp1 );
11 fjacX[i][1][3][j][k] = - c2 * ( u(3,i,j,k) * temp1 );
12 fjacX[i][1][4][j][k] = c2;
13 ...
14 }
15 }
16 }

Listing 1.6: Expanded arrays and OpenACC pragma x sovle routine.

4.2.3 Reducing Data transfers To reduce the data transfer between the
different OpenACC kernels we make the data reside on the GPU. We allocate
the data on the GPU with the pragma #pragma acc enter data create for all the
data at the beginning of the BT-MZ benchmark. The #pragma acc data present
pragma is used to indicate to the kernels that the data already resides on the
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accelerator when the kernels block arrives. The #pragma acc update host and
#pragma acc update device pragmas are used to manually update the data on
the host or device after the data on the other side is modified.
To allocate the memory for the different matrices, we used the OpenACC enter
data directive from OpenACC 2.0 was already available in the CAPS OpenACC
compiler. As shown in Listing 1.7, we allocate all the zones for each matrices. We
cannot do only one allocation per matrix because the OpenACC’s present table
maps the addresses between the hosts and device pointers using the address of
the first element. In our case, the matrix is a double linked vector and these
addresses will in not available in the solver functions.
1 u = (double *) shmalloc(sizeof(double)*PROC_MAX_SIZE5);
2 for (iz = 0; iz < proc_num_zones; iz++) {
3 zone = proc_zone_id[iz];
4 size=nxmax[zone]*ny[zone]*nz[zone ]*5;
5 up=&u[start5[iz]];

7 #pragma acc enter data create(up[0: size], ...)

9 initialize (&u[start5[iz]], ...);
10 ...
11 }

Listing 1.7: Allocates in main routine to create data on GPU.

In the solver functions, to indicate the data is already available on the device,
we used the #pragma acc data directive with the present clause. This allows the
runtime to know this data is already on the device and ready to be used. On
this data directive we also specify to the runtime to allocate the locals lhs, fjac
and njac buffer, if not already done, using the pcreate clause. The Listing 1.8
illustrates this.
1 #pragma acc data present(up[0: size5 ],...) pcreate(lhsX ,fjacX ,njacX)
2 {
3 #pragma acc kernels loop independent
4 for (i = 0; i <= isize; i++)
5 ...
6 } //end data

Listing 1.8: Data clauses in x solve routine.

Two operations compose the timestep loop, the exchange boundaries function
call and the solver function calls. At every timestep, we need to update U matrix
on the host with the values from the device before updating the boundary val-
ues. Then perform the OpenSHMEM communications to update the other PEs
and afterwards, we update the U matrix from the host to the device. We use
the #pragma acc update device—host directive around the OpenSHMEM calls
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(Refer to Listing 1.9).

1 #pragma acc update host(u[0: size])
2 ...
3 // OpenSHMEM communications
4 ...
5 #pragma acc update device(u[0: size])

Listing 1.9: Update clauses in exch qbc routine.

4.2.4 Improve kernels performance After improving the cumulative time
taken for transfers by reducing their occurrences we focus on optimizing the
kernels. There are many ways to improve the performance of these kernels. The
optimization we applied are the following: increased the threads to execute the
different kernels, take care of the coalescing, unrolled some of the loops and pre-
accessing some data.
To improve the global performance of the kernels, a first step consist in indi-
cating the compiler that it can parallelize on more loop levels. To do so, the
use of the #pragma acc loop independent indicates that the user knows for sure
this particular loop level is parallel and can be executed by multiple OpenACC
threads. As a result, the kernel in itself is executed by more number of threads
and each thread does less work.
A well-known performance issue on the Nvidia GPU is the non-contiguous global
memory accesses, also known as un-coalesced accesses (refer to Listing 1.10). The
goal of this optimization is to allow contiguous accelerator threads in the thread
grid to work on contiguous data in the memory. This way the memory controller
can reduce the number of memory loads and stores to the data. When a thread is
accessing data in the GPU memory, the memory controller will load the memory
segment that contains this particular data. So if contiguous threads are accessing
contiguous data at the same time, the memory controller will load the needed
memory segment for all this threads only once. To do so, we will ensure that
the inner parallelized loop level corresponds to the most contiguous dimension
of the main arrays of each loop nest (refer to Listing 1.11).

1 #pragma acc kernels loop independent present(up[0: size5],rhsp [0: size5])
2 for (k = 1; k <= nz -2; k++) {
3 #pragma acc loop independent
4 for (j = 1; j <= ny -2; j++) {
5 #pragma acc loop independent
6 for (i = 1; i <= nx -2; i++) {
7 ...
8 fjacX [1][0][i][j][k] = -(u(1,i,j,k) * temp2 * u(1,i,j,k))
9 + c2 * qs(i,j,k);

10 fjacX [1][1][i][j][k] = ( 2.0 - c2 ) * ( u(1,i,j,k) / u(0,i,j,k) );
11 fjacX [1][2][i][j][k] = - c2 * ( u(2,i,j,k) * temp1 );
12 fjacX [1][3][i][j][k] = - c2 * ( u(3,i,j,k) * temp1 );
13 fjacX [1][4][i][j][k] = c2;
14 ...
15 }
16 }
17 }

Listing 1.10: Un-coalesced array accesses in x solve routine.
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1 #pragma acc kernels loop independent present(up[0: size5],rhsp [0: size5])
2 for (i = 1; i <= nx -2; i++) {
3 #pragma acc loop independent
4 for (j = 1; j <= ny -2; j++) {
5 #pragma acc loop independent
6 for (k = 1; k <= nz -2; k++) {
7 ...
8 fjacX [1][0][i][j][k] = -(u(1,i,j,k) * temp2 * u(1,i,j,k))
9 + c2 * qs(i,j,k);

10 fjacX [1][1][i][j][k] = ( 2.0 - c2 ) * ( u(1,i,j,k) / u(0,i,j,k) );
11 fjacX [1][2][i][j][k] = - c2 * ( u(2,i,j,k) * temp1 );
12 fjacX [1][3][i][j][k] = - c2 * ( u(3,i,j,k) * temp1 );
13 fjacX [1][4][i][j][k] = c2;
14 ...
15 }
16 }
17 }

Listing 1.11: Coalesced array access in x sovle routine.

Unrolling is a well-known technique to increase the global performance of ker-
nels. It allows to increase the amount of work per thread and takes advantage
of data reuse.
Finally, in order to help the CAPS OpenACC compiler get better performance,
in some kernels, we pre-loaded some of the values in temporary variables (refer
to Listing 1.12). At runtime, the data will be preloaded in a register which has
a very low latency access latency (few memory cycles) compare to an access to
gloabl memory (400-700 memory cycles). Otherwise, it accesses the same data
in global memory multiple times resulting in higher latencies.

1 double tmprhs0 , tmprhs1 , tmprhs2 , tmprhs3 , tmprhs4;
2 tmprhs0 = rhs(0,i-1,j,k);
3 tmprhs1 = rhs(1,i-1,j,k);
4 tmprhs2 = rhs(2,i-1,j,k);
5 tmprhs3 = rhs(3,i-1,j,k);
6 tmprhs4 = rhs(4,i-1,j,k);

8 rhs(0,i,j,k) = rhs(0,i,j,k) - lhsX [0][0][ AA][i][j][k]* tmprhs0
9 - lhsX [0][1][ AA][i][j][k]* tmprhs1

10 - lhsX [0][2][ AA][i][j][k]* tmprhs2
11 - lhsX [0][3][ AA][i][j][k]* tmprhs3
12 - lhsX [0][4][ AA][i][j][k]* tmprhs4;

Listing 1.12: Preloading temporary values matvec sub routine.

5 Results

5.1 Platform

These tests were run on the Titan supercomputer, a Cray XK7 supercomputer
[14]. Titan has 18,688 compute nodes equipped with 1 GPU per node. The nodes
are connected with Cray’s Gemini interconnect. For OpenSHMEM Titan has
installed Cray’s shmem implementation version 5.6.3. For OpenACC Titan has
capsmc version 3.3.4. For this paper we used a beta version of the CAPS compiler,
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version 3.3beta-r50937. Additionally the GNU compiler collection version 4.7.1,
nvidia CUDA compiler version 5.5 and CUDA driver 5.0 were used.

5.2 Timing and Scalability

In the following figure you can see the different speedup. the Figure 1 shows the
speed ups of the different configuration compared to the fully serial version 1
PE on 1 node of the class C. the Figure 2 shows the speed ups of the different
configuration compared to the fully serial version 16 PEs on 16 nodes of the class
D.

We focused on the execution of the OpenSHMEM version and the OpenSHMEM-
OpenACC version of the BT-MZ benchmark. We choose to compare the class
C and D. The class C is composed of 256 zones with zone sizes distributed
from 13x8x28 to 57x38x28 elements and executes 200 iterations. The class D is
composed of 1024 zones with zone sizes distributed from 22x16x34 to 98x73x34
elements and executes 250 iterations. We first run these tests against a serial
version on a single node, then compare the speed up of using 8, 16, 32, 64, 128,
and 256 nodes. We also compare the speed of using OpenACC as well, showing
what benefits or deficits that are incurred for using GPU acceleration. We do
this in a seperate graph for a class C run and a class D run.

In Figure 1 we can see that the OpenACC struggles to match the speedup
from the pure OpenSHMEM version at first. Then after 64 nodes the perfor-
mance of the pure OpenSHMEM version plateaus while the GPU version con-
tinues to see gains. The most likely explanation for this is that for class C after
64 nodes, OpenSHMEM is no longer able to extract additional parallelism. This
may be a result of the simplistic nature of the port from MPI to OpenSHMEM.
It may be possible to get additional performance gains by restructuring the
communication patterns. OpenACC continues to see performance gains because
distributing more zones across more PEs with more GPUs allows for fewer trans-
fers of zones across the PCIe bus increasing the efficiency of the GPUs.

Fig. 1: Speed-up for the Class C of BT-MZ
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In Figure 2 we can see that OpenACC and OpenSHMEM+OpenACC both
continue to see the same amount of performance gain as we add more PEs. How-
ever, unlike in Class C where OpenSHMEM saw an early lead before dropping off
in gains, both see the same amount of performance gain for the additional PEs.
However, in this run we also see the version with OpenACC has a consistent
performance advantage of 10%.

Fig. 2: Speed-up for the Class D pf BT-MZ

On the figure 3 we can see the percentage of the time spent in the exch boundary
function call for the OpenSHMEM-OpenACC version of the code. This function
call is also where the updates to GPU memory occur, so in addition to the time
spent in network communication it also encompasses the time spent transferring
data between the GPU and the system memory. For the OpenSHMEM serial
execution we observed up to 3% of time spent in exch qbc for 256 PE. Concern-
ing the OpenSHMEM-OpenACC version the time spent in exch qbc goes up to
47%.

We also compared the performance of the Serial-C version [15] and the Ope-
nACC version of the BT benchmark (non-MZ) for the class B and C. The B class
computes on a matrix of 102x102x102 elements for 200 iterations. The C class
computes on a matrix of 162x162x162 elements for 200 iterations. In the table
1, you can see the time of execution of the different class on 1 node of Titan.
Here we can see that increasing the size of the data to compute on the accelera-
tor allows us to get some good speedup compare to the serial execution. It uses
the same algorithm with the same code implementation for the BT solver. This
isolates the performance of OpenACC versus the performance of OpenSHMEM
for this algorithm. We do this to demonstrate the performance gains of using a
GPU implementation without OpenSHMEM communication.

6 Conclusions and Future Work

While the non multi-zone version of the BT benchmark showed great perfor-
mance benefit, the Multizone version struggled to match serial performance.



XIV

Fig. 3: Proportion of time spent in exch qbc and the solver for the Class D Of
BT-MZ

Class B C

serial 427.53 1575.67
ACC 99.71 460.74
speed-up 4.29 3.42

Table 1: Execution time of the NAS BT benchmark for Class B & C

This was largely because, as seen in the time spent exchanging data, because as
the zones got smaller the benefits extracted from the GPU became smaller, since
the transfer times overwhelmed the computational benefits. Using larger prob-
lem sizes should also result in larger gains in speed, since we can see increases in
the ratio of transfer versus computation as the number of nodes was increased
for the same problem size.

In our OpenSHMEM and OpenACC hybrid most of the performance prob-
lems came from the need to communicate memory stored on the GPU across the
network. Network performance was good but since the GPUs had to send their
data to main memory to communicate over the network the performance gains
of having accelerators was hard to realize in a distributed environment.

Using an accelerator that uses host memory should eliminate these problems.
The AMD APUs would not suffer from the performance degradation associated
with transferring memory from the accelerator to the host system and thus
should not have problems associated with transferring small zones to and from
the independent accelerator memory. This would solve a large part of the growth
seen in figure 3 since the boundary exchange includes memory transfer from the
accelerator.

We can see in Table 1 that OpenACC saw a solid performance gain when run
in serial with one zone, so it is safe to say that we are not seeing performance
degradation because of the execution on the accelerator. In figure 3 we can see
that the memory exchange, including updating system memory and transfers
across the network, quickly grew in the dominance of the total run time. In
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figure 1 we can see that the BT-MZ benchmark without OpenACC is initially
faster, and with the evidence in table 1 and figure 3 it is reasonable to guess that
most of this slowdown is the accelerator transfer. Because of this we believe it
is reasonable to project that an integrated solution like an AMD APU will see
performance closer to what we saw in figure 2.

Further work can include increasing the problem size, allowing the GPU to
do more compute work for the zones between transfers. The ability to target
the benchmark to fill the memory size of the GPU would expose the maximum
benefits of the GPUs. It would also be interesting to see the results of exceeding
the maximum size of the GPU memory to see how OpenACC would cope or
suggest to future OpenACC specifications to support the swapping of memory
from the GPU to the host.

One interesting avenue to explore for this purpose would be using the accel-
erator as the primary source of memory, as opposed to the system memory. In
the current implementation, the benchmark still has to transfer memory to the
system memory in order to communicate barrier conditions with OpenSHMEM.
If something similar to the GPU direct with CUDA and MPI could be imple-
mented for OpenSHMEM there would be no need to transfer this memory to
the system memory. In fact, the host system could be made unnecessary in an
extreme case. Further exploration of how OpenSHMEM and OpenACC can be
utilized together represents a large challenge that also holds promise for excel-
lent performance. The main hurdle to this remains an awareness of the GPU
and how it works with memory transfers and it’s impact on communication.
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