Extending the OpenSHMEM Analyzer to
perform synchronization and multi-valued
analysis

Swaroop Pophale!, Oscar Hernandez?, Stephen Poole?, and Barbara Chapman®

L University of Houston, Houston, Texas 77004, USA,
spophale, chapman@cs.uh.edu
2 Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37840, USA
oscar, spoole@ornl.gov

Abstract. OpenSHMEM Analyzer (OSA) is a compiler-based tool that
provides static analysis for OpenSHMEM programs. It was developed
with the intention of providing feedback to the users about semantics
errors due to incorrect use of the OpenSHMEM API in their programs,
thus making development of OpenSHMEM applications an easier task
for beginners as well as experienced programmers. In this paper we dis-
cuss the improvements to the OSA tool to perform parallel analysis to
detect collective synchronization structure of a program. Synchroniza-
tion is a critical aspect of all programming models and in OpenSHMEM
it is the responsibility of the programmer to introduce synchronization
calls to ensure the completion of communication among processing ele-
ments (PEs) to prevent use of old/incorrect data, avoid deadlocks and
ensure data race free execution keeping in mind the semantics of Open-
SHMEM library specification. Our analysis yields three tangible outputs:
a detailed control flow graph (CFG) making all the OpenSHMEM calls
used, a system dependence graph and a barrier tree. The barrier tree
represents the synchronization structure of the program presented in a
simplistic manner that enables visualization of the program’s synchro-
nization keeping in mind the concurrent nature of SPMD applications
that use OpenSHMEM library calls. This provides a graphical represen-
tation of the synchronization calls in the order in which they appear
at execution time and how the different PEs in OpenSHMEM may en-
counter them based upon the different execution paths available in the
program. Our results include the summarization of the analysis con-
ducted within the middle-end of a compiler and the improvements we
have done to the existing analysis to make it aware of the parallelism in
the OpenSHMEM program.

1 Introduction

OpenSHMEM is a PGAS library that may be used with C, C++ or Fortran
SPMD programs to achieve potentially low-latency communication via its one-
sided remote direct memory access (RDMA) calls on shared as well as distributed
systems that have the required hardware capability. Compilers are not aware

II

of the parallel semantics of the OpenSHMEM library and they treat it like a
black box, thus hindering optimizations. OpenSHMEM analyzer (OSA) [1] is
the first effort to develop a compiler-base tool aware of the parallel semantics
of an OpenSHMEM library. OSA is built on top of the OpenUH compiler, that
provides information about the structure of the OpenSHMEM code and semantic
checks to ensure the correct use of the symmetric data in OpenSHMEM calls.

This paper describes how we built on top of the existing OSA framework to
provide an in-depth synchronization analysis based on the control flow of the
OpenSHMEM program that can be used to match collective synchronization
calls, which are the building blocks for detecting the possible concurrent execu-
tion paths of an application. Our framework uses the concepts of multivalued
seeds and multivalued expressions to build a multi-valued system dependence
graph in the context of OpenSHMEM, which later is used to build a barrier-tree
representation. Concurrency in an SPMD application results from distinct paths
of execution which are effected by providing conditions that evaluate to differ-
ent values on different PEs. Such expressions within the conditionals are called
multi-valued expressions [2H5] and the particular variable used within the expres-
sion that causes this phenomenon is the multi-valued seed. Here we implement
the critical parts of the framework proposed in 6] and provide insights into the
the practical aspects of detection of multi-valued expressions by identification
and tracing of multi-valued seeds.

Within the OpenUH compiler the source code is converted into an inter-
mediate representation (IR) called WHIRL. Each phase within the OpenUH
compiler performs lowering of WHIRL (starting from Very High WHIRL) to
finally get the executable in machine instructions. We do our analysis within the
inter-procedural analysis phase (IPA) using the High WHIRL to help us build
inter-procedural control flow and data flow graphs while preserving the high
level constructs of a program, such as DO_LOOP, DO_WHILE, and IF, which
are critical for multi-valued analysis. We merge information available from dif-
ferent phases of the compiler and present the results of our analysis in the form
of two graphs: a system dependence graph at the statement level clearly marking
the control and data dependences across statements in the program, while the
second graph structure is the barrier- tree where the leaves of tree are Open-
SHMEM collective synchronization calls (shmem_barrier and shmem_barrier_all)
and the nodes are operators (discussed in Section [4)) that represent the possible
concurrent control flow within the program. This visual aid provides the pro-
grammer with necessary information to verify if there is congruence in the intent
of the program with its actual execution structure.

This paper is organized as follows. We describe our motivation for extending
the analysis capability of OSA in Section [2] and provide better understanding of
OpenSHMEM’s memory model and synchronization semantics in Section [3] We
discuss the changes to the infrastructure and implementation details in Section [4]
and present our results with the help of the Matrix Multiplication application in
Section 5] Section [6]describes different static analysis techniques that have been
explored for concurrency and synchronization detection in parallel programming

111

models. In Section [7] we summarize our contributions and our aspirations for the
future of the OSA tool.

2 Motivation

The main characteristics of a program are captured by the control flow and data
flow within the program. Especially in parallel programming it is often benefi-
cial to be able to visualize the interaction of the different program components.
PEs executing in parallel may take different paths depending on the explicit or
implicit requirements set by the programmer. These are often expressed as condi-
tions over variables that evaluate to different values on different PEs. Capturing
this information in a simplistic visual manner can aid the users understand the
concurrency in their applications. Figure |1 show a control flow graph (CFG) of
an OpenSHMEM program described in Listing 1.1. Here each basic block has
a single entry point and a single point of exit, and may contain OpenSHMEM
calls. Using this CFG alone cannot convey the different paths that are possi-
ble within the program. To be able to distinguish these different paths we need
to identify multi-value conditionals we need to essentially follow the propaga-
tion of the multi-value seeds through the program and mark the conditionals
that are affected directly or indirectly by them [7]. To build such multi-valued
CFG, we need to identify multi-valued seeds, determine the control flow and
capture the effect of such seeds by analyzing the data flow. This results in a
system dependence graph that can be used to do logical program slicing based
on multi-valued conditions. This can later used to build a barrier tree to perform
our synchronization analysis.

Listing 1.1: An OpenSHMEM program example with unaligned barriers.

I int main(int argc, char *argv[]){
2 int me,npes;
3 int i,old;

start_pes (0);

¢ me = _my_pe();

7 npes = _num_pes();

8 y = mex*2;

) x=me;

10 if (me==0){

11 shmem_barrier_all();

12 int temp = x+y;

13 shmem_barrier_all();

14 ¥

15 else {

16 if (me==1){

17 shmem_barrier_all();

18 old = shmem_int_finc (&y, 0);
19 shmem_int_sum_to_all(&y,&x,1,1,0,npes-1,pWrk,pSync);
20 x= x+10;
21 shmem_int_get (&y,&y,1,0);
22 shmem_barrier_all();
23 ¥
24 elseq{
25 shmem_barrier_all();
26 shmem_int_sum_to_all (&y,&x,1,1,0,npes-1,pWrk,pSync);
27 x=y*0.23

28 shmem_barrier_all();
29 }

30 }

31 return O;

32}

start_pes(0);
me =_my_pe();
npes =_num_pes();
x=me;

if(me==0)

True,

shmem_barrier_all();
int temp = x+y;
shmem_barrier_all(); True False

shmem_barrier_all
old = shmem_int_finc (&y, 0); shmem_barrier_all();
shmem_int_sum_to_all{&y,&x1,1, shmem_int_sum_to_all{&y,&x
0 ,npes-1,pWrk,pSync); ,1,1,0,npes, pWrk,pSync);
x=xH0; x=y*0.23;
shmem_int_get(&y,&y,1,0); shmem_barrier_all(};
shmem_barrier_all();

| J

Fig. 1: Control Flow Graph of the OpenSHMEM program from Listing 1.1.

The CFG is represented as a sequence of basic blocks which shows the possi-
ble alternatives within the program but does not provide explicit information
on what or how the control is determined and what data dependence may af-
fect the concurrency relationship between different parallel paths of execution.
This is better depicted by the system dependence graph as shown in Figure
[2l To determine the exact execution path or slice we look at the combination
of the data flow and control flow information generated by the compiler. The
system dependence graph is expressed in terms of statements and based on the
CFG and the outcome of the conditional statements each control edge is either
marked true (T) or false (F). In Figure [2] if we were to take a forward slice
of the sample program based on the multi-valued PE number me at A2, then
we get either A2-A3-A4-A5-A6-B1-B2-B3-C or A2-A3-A4-A5-A6-C-D1-D2-D3-
D4-D5-D6 or A2-A3-A4-A5-A6-C-E1-E2-E3-E4 depending on the value of me.
These slices help us identify the multi-valued conditionals in the program by
finding the points at with the execution paths diverge. Synchronization anal-
ysis is another important aspect to understand the relationship between code
regions. A code phases [9] can be defined as a valid (synchronization free) path
enclosed within two global synchronization statements. Since OpenSHMEM has
unaligned global synchronization, the first step is to identify these statements
across different execution paths. This helps in the identification of potentially
concurrent code or errors due to unmatched barriers. Our work in this paper ad-
dresses the challenges of extracting information from the compiler and merging

shmem_int_get(&y,&y,1,0) I
sllmem_lm_sum_to_alI(&y,&x,l,l}\l S o

N oo aT
0,npes-1,pWrk,pSync); >
T . \ o D6| shmem_barrier_all()
\ N
\ N
\

F

E4| shmem_barrler_all” |

1,pWrk,pSync);

= = => Control Dependence Edge

> Data Dependence Edge

E‘l shmem_barrier_all(); IEZ| shmem_int_sum_to_all(&y,&x,1,1,0,npes-

Fig. 2: System Dependence Graph of OpenSHMEM example (Listing 1.1) show-
ing the control and data dependencies at statement level.

it with rules based off OpenSHMEM library semantics and presenting it to the
user in a condensed meaningful format for visual inspection which can be used
to detect synchronization mismatch, incorrect conditionals etc.

3 OpenSHMEM Library

As mentioned before OpenSHMEM is a PGAS library that provides routines
for programmers using the SPMD programming paradigm. The OpenSHMEM
Specification provides the definition, functionality and expected behavior of
these library calls. OpenSHMEM communication calls are one-sided, i.e. they
do not require the involvement of the target PE for completion and when the
underlying hardware allows RDMA, it can provide excellent opportunities for
hiding communication latency by overlapping communication with computation.

OpenSHMEM introduces the concept of symmetric variables. By definition,
symmetric data consists of variables that are allocated by an OpenSHMEM li-
brary (using special memory allocation calls) or defined as global or static in
C/C++ or in common or save blocks in Fortran [10]. These variables have the

VI

same name, size, type, storage allocation, and offset address on all PEs. The
library calls shmalloc (C/C++) and shpalloc (Fortran) allocate and manage
symmetric variables on the symmetric heap, which is remotely accessible from
every other PE. Symmetric data allocation is a collective process and Open-
SHMEM Specification requires that it appear at the same point in the code
with identical size value [10]. This data is local to the PE and is not visible
or directly accessible to a remote PE. Some OpenSHMEM library routines like
shmem put and shmem get may use local variables as the source and target re-
spectively. Hence for analysis for multi-valued seeds we must consider both types
of data in conjunction with the OpenSHMEM calls they are used with.

3.1 Synchronization Semantics

Collective synchronization is provided by shmem_barrier and shmem_barrier_all
(over a subset of PEs and all PEs respectively) in OpenSHMEM. A barrier
call guarantees synchronization as well as completion of all pending remote
and local OpenSHMEM data transfer operations and leaves the memory in
a consistent state. A shmem barrier is defined over an active set. An ac-
tive set is a logical grouping of PEs based on the triplet, namely, PE_start,
logPE pe, and the PE_size [10]. OpenSHMEM allows for unaligned barri-
ers, both the code listings, Listing 1.2 and 1.3, are equivalent and valid as
per OpenSHMEM Specification 1.0. This makes it easy to miss synchroniza-
tion errors and may lead to unintended execution patterns or worse, dead-lock.

Listing 1.2: C code with unaligned o . .
Listing 1.3: C code with aligned bar-

barriers !
rier
1 |if(_my_pe () % 2 == 0){
2 cee 1 | £f(_my_pe() % 2 == 0){
3 shmem_barrier_all(); 2 .
4 |} elseq 3 |} elsed{
5 S 1 .
6 shmem_barrier_all(); 5 1}
71y 6 | shmem_barrier_all();

By providing information at compile time the programmer can analyze the
program structure before execution, thus preventing resource wastage.

4 Methodology

As discussed above, the two main concepts to consider for concurrency analysis
of OpenSHMEM program are multi-valued expressions and unaligned barriers.
In this section, we discuss the structure of the OSA and the additional analysis
added to it to be able to do the multi-valued analysis and evaluate the system
dependence graph and the barrier-tree for the entire program.

4.1 OSA Infrastructure

Figure |3| shows the different stages within the compiler and the shaded region
are the phases where OSA tool does most of its analysis. Since we need the

VII

data flow information, alias analysis and the control flow information for each
individual procedure we build our analysis at the local inter-procedural phase. At
this phase all analyses is performed on the High WHIRL IR where variables and
control flow statements are preserved and can be easily mapped to the source
code and the control flow is fixed . We used the DU-manager, Alias Manager
and control flow analysis data structures to build our system dependence graph
to perform multi-valued analysis.

[FRONT-END(s)]

]

LOCAL INTRA-PROCEDURAL ANALYSIS
* Data and Control flow analysis

* Procedure Summarization

!

INTER-PROCEDURAL ANALYSIS
* call Graph Generation
* Inter-Procedural data flow analysis,

procedure cloning, array region
analysis, inlining

e J

e A

MIDDLE END/BACKEND
* Loop nest optimizations
* Whole program optimizations

* Code Generation

()
I

[EXECUTABLE]

Fig. 3: Shaded blocks indicate OSA analysis within the OpenUH compiler.

4.1.1 Identification of Multivalued seeds As defined in Section] multi-
valued expressions evaluate to different results on different PEs. The outcome
of a multi-valued expression depends on a multi-valued seed. states certain
generic rules governing the multi-calued property of programming variables. For
example, uninitialized data structures are marked as multi-valued. We extend
certain assumptions about the expressions that generate from a known single-
valued or multi-valued seed based on the OpenSHMEM programming model.
We modify the classification scheme for multi-valued seed in presence of Open-
SHMEM calls and their treatment of different program variables.

For example, the return value for the OpenSHMEM call _my_pe() is unique
for every PE and hence is multi-valued. In contrast _num_pes() returns the same
value throughout the program for all PEs and hence the return value (and the

VIII

variable associated with it) is considered single valued. Likewise, other Open-
SHMEM library calls have an impact on the variable they modify. Generally,
all PE-to-PE operations that modify data cause the variable to become multi-
valued, while collective operations that modify target variables on all the PEs
cause the target to be single-valued (else they result in multi-valued target). By

Placement of barriers Operator used Result

b1 followed by b2 . bl - b2

if{ bl } else { b2 }; | bl | b2
for(n times) b; . bl- b2 - ... bn

Table 1: Rules for building a barrier expression

analyzing the type of a variable and how it is modified (for example, if it is
defined via a multi-valued OpenSHMEM call) we can then classify it as a single
or multi-valued seed. A multi-valued seed may affect the value of other program
variables or may only alter the control flow. The detection of resulting multi-
valued variables is done by propagating the multi-valued seeds using the D-U
Chains generated. For every definition of a program variable there is a use-list
associated with it and a set of statements that may directly or indirectly (via
aliases) use the variable. We append this information with the control depen-
dencies extracted from the control flow graph with the help of the dominator
frontier information. Both of this combined gives the system dependence graph
which the OSA generates for the user to inspect.

4.1.2 Generating Barrier Trees (7] defines a barrier expression as being
very similar to a path expression, with barriers connected by operators that
best describe the control flow of the program. We extract the synchronization
structure in a tree format by iterating over the IR generated by the compiler.
By recording the barriers (both shmem_barrier_all and shmem_barrier) their
relative position, and the control flow between them we generate a barrier tree
for the entire program where the barriers are leaf nodes and the operators are
the nodes of the tree. Like regular expressions, barrier trees use three types of
operators: concatenation (-), alternation (|), and quantification (x) [12]. Table[]
gives the rules that govern the barrier expression generation. It is important to
note that if the result of a quantification operation can at times be statically non-
deterministic and we may not be able to compute the barrier-expression in terms
of the exact number of barriers encountered for such a program. Additionally we
borrow the operator | from [7] to indicate the operator concurrent alternation.
This operator indicates that the different execution paths diverge from a multi-
valued conditional.

IX

Listing 1.4: OpenSHMEM example to explain concurrent alternate paths of ex-
ecution.
1 int main(){

if ()
shmem_barrier_all(); //bi

w v

shmem_barrier_all(); //b2
6 }

7 else {

8 shmem_barrier_all(); //b3

return O;

BAL B2 = B2

(a) Barrier-tree without multi-valued (b) Barrier-tree with multi-valued anal-
analysis ysis

Fig.4: Barrier trees generated by OSA for code Listing 1.4(where CON-
CAT=concatenation, ALT= alternation, AltC = alternate concurrent, B =
shmem _barrier, and BA = shmem_barrier_all)

We use the multi-value analysis saved in the system dependence graph to dis-
tinguish concurrent paths that may be present with a barrier tree. In our barrier
tree representation the main function entry is indicated by the concatenation
(CONCAT) as root. All operators are appended by a number which indicates
their relative position of occurrence in the program’s control flow. All barriers
(barrier_all = BA, barrier=B) have independent numbering based on breadth
first traversal ordering. This means that barriers in the if-then branch will have
lower numeric labels than the if-else branch. Other operators are represented as
follows: quantification (QUANT), alternation (ALT), and alternate concurrent
(AltC). For example, the code in Listing 1.4 would evaluate to the barrier expres-
sion: (b1.b2) | b3 and would be represented by our compiler analysis (without
multi-value information)by a barrier-tree in Figure Purely based on Fig-
ure [a] the programmer has no way of knowing the different paths of execution

X

that may be possible. Consider two possible scenarios, if the first if conditional
in line 2 resulted in the same value on all PEs then all PEs would either en-
counter barriers 01-b2 or b3. But if the same conditional resulted in different
values on different PEs then some PEs would encounter barriers 61-b2 and oth-
ers would encounter b3: which is a obvious stall situation caused by un-matched
synchronization calls. This is indicated by AltC (alternate concurrent) label in
Figure [Ab] We augment the multi-value analysis to this providing a more mean-
ingful representation of the program structure. Figure [b] depicts the barrier tree
for the second scenario discussed above.

5 Results

We test our analysis framework on the Matrix Multiplication application which is
part of the examples in the OpenSHMEM Validation and Verification Suite [13].
The application consists of three 2-D arrays A, B, and C, where C is used to
store the product of two matrices A and B.

Listing 1.5: Matrix Multiplication application’s main body.

2 for (i = 0; i < rows; i++)
3 {

4 for (p = 1; p <= np; p++)

5 {

6 // compute the partial product of c[i][j]

8 // send a block of matrix A to the adjacent PE

9 shmem_barrier_all ();

10 if (rank == np - 1){

11 shmem_double_put (&a_local[i][0], &a_local[i][0], blocksize, 0);
12 shmem_barrier_all ();

13 ¥

14 elseq

15 shmem_double_put (&a_local[i]l[0], &a_local[i][0], blocksize,
16 rank + 1);

17 shmem_barrier_all ();

18 }

19 o

20 shmem_barrier_all ();

This program performs matrix multiplication based on 1D block-column distri-
bution where in every iteration, the PE calculates the partial result of matrix-
matrix multiply and communicates the current portion of matrix A to its right
neighbor and receives the next portion of matrix A from its left neighbor. The
main body of the benchmark is as shown in the code Listing 1.5.

Figure [5] shows the control flow as captured by our analysis which clearly
marks out the OpenSHMEM calls and their placement. From the control flow
analysis of the compiler, we use the dominator frontier information to extract
control dependencies at the statement level. We merge this information with the
data flow analysis (captured by Def-Us chains as discussed in Section and
present it as a system dependence graph in Figure [6]

Here, the control dependencies are represented by light/dashed arrows while
the data dependencies are represented by bold arrows. For conditionals branches

XI

are marked with either T or F indicating when the branch is taken. This makes
understanding the control and data dependence easier for the programmer.

(0) start_pes 15
ENTRY (1) _my_pe 16

(2) _num_pes 17
(3) shmem_parrier_all [Bl|
(4) shmalloc 22

(5) shmalloc 23
(6) shmalloc 24

STMTS(25) (0) shmalloc 26
(1) shmalloc 27
l (2) shmalloc 28

STMTS(25)
(0) shmem_barrier_all [l <Tms(z‘

(1) shmem_ barr)er _a11 il

[sTs(38) | LCOP(;

sTHTs | sTTs |

BRANCH (38)

(0) shmem_barrier_all - STMTS (39)
(1) shmem_double_max_to_all [§ll] /

Fig.5: Control flow representation with OpenSHMEM calls for Matrix Multipli-
cation application.

We present the result of our multi-valued analysis in Figure [7] When we
perform a logical slicing on the system dependence graph based on the PE num-
ber (stored in variable rank). In a multi PE execution scenario the statements in
shaded boxes are executed only by PE 0. The program synchronization structure
along with the multi-valued analysis is captured by the barrier tree generated by
OSA in Figure |8} The entry into main() is indicated by operator CONCAT1.
We follow the representation discussed in Section [4l The alternate concurrent
paths are indicated by the double-circles labeled AltC4 and AltC5 and the
two nested for-loops are represented by QUANT2 and QUANTS3. Since all
loops run for the same number of times for all PEs, all PEs will encounter either
BA4 or BA5 equal number of times. Thus, just by glancing at the barrier tree
generated by OSA it is evident that the all PEs will encounter the same num-
ber of barriers. This makes the process of debugging and verification a trivial

XII

rank=_my_pe

star_pes(0)

ffor (i i < ROWS; i++)}

B_mat_disperank-blocksize] ([a_tocalffi=is17¢1ranke] o _ocalii=i+25+2#rank 1

for(j=0:j<blocksize:j++)

[qank = !\pv-][{B,r;m,msp = o) ‘ior‘(k: k < blocksize: LH;H shinem_Barier_allo]

L | T ES i e,

shmem_double_put (. shmem_double_put(..][shmem_barie_a] [tmem_barir_a) [B_ma_isp = B_mat_isp - blocksize][B_mat_disp = Jfor : < locksze; j++)]

1#b_local[Kk + B_mat_disp]] J\‘

‘c,l»cmmm:c,muu.m]»,)|

Fig. 6: System dependence graph as generated by OSA for Matrix Multiplication
application.

siléz,num,pes()\\b\ocks.lc:cﬁLUMNSH \Shmem,mn,er,nh(ﬂ‘: \ror(mKRO\;«'s;;;L .| lreturn (0

; for (i i < ROWS; i++)',
a_ocall =i+ 145+ ranke 1 o_locallji=i+2#5+2*ranke 1| ffrank = 0)] _mat_disp=rankblocksize for(j=0:j<blocksize:js+

I ‘smrl,pes(ﬂ)‘

Jfor i <= ; o) [B_mat_disp = (p - 1) * blocksize] shmem_barier(..np.)":hmem;bnmer(.v.np;)Hpm\ﬂ 0] etocaltit=0.]f_tocal= Hb:\ocal[nHJI:]

_ma_disp ==) or (k: k< blocksize: ke [shmem_Barier_allo]

shmem_double_put (.| [shmem_barrir_all)]shmem_doube_put(..) shmem_barier_at1o] - [B_ma_isp = B_mat_aisp - blocksize

B _mat_disp=] [fo G <blocksizes 4]

[e_tocalfJ = c_local + 1] *b_locallk + B_mat_aisplil

Fig. 7: Slicing of the System dependence graph on PE 0 indicating statements
executed by PE 0 only.

task. This becomes more critical when applications become more complex with
numerous branching statements involving multi-valued conditionals.

6 Related Work

Depending on the semantics of the parallel programming model, most applica-
tions rely on synchronization primitives to ensure updates or maintain order-
ing of different programming sub-tasks. Errors in synchronization could lead
to incorrect or irreproducible execution characteristics. Hence research on syn-
chronization and concurrency has always been an important aspect for the high
performance programming community. One of the first research to verify pro-
gram synchronization patterns and was done in [14] for Split-C. They analyze the
effects of single valued expression on the control flow and concurrency character-

[shmem_barrier(...np . ‘sh;em_bamer(..,np,..)u [B_matgisp=(ap-) * block:“ze‘ [for 9 p <= nps pro ‘c_lncal[i][j‘]:(! offaJocatit=. ‘l;_loml[i][l]:...

XIII

Fig.8: Barrier tree as generated by OSA for Matrix Multiplication appli-
cation (where CONCAT=concatenation, ALT= alternation, AltC = alter-
nate concurrent, QUANT = quantification, B = shmem _barrier, and BA =
shmem _barrier_all). * Indicates operators and barriers in code Listing 1.5.

istics of the program and define rules that govern the synchronization sequences.
Like OpenSHMEM, Split-C has unaligned barriers and this work simplifies their
identification with the use of keywords that are used for annotating the named
barriers. 7] tries to identify and match unaligned barriers for MPI programs to
uncover potential synchronization errors. They evaluate the different concurrent
paths the processes in the MPI program may take by using multi-value condi-
tional and barrier expression analysis and verify that each processes encounters
an equal number of barriers. For other PGAS languages, like Titanium [15] is
in identification of textually aligned barriers and was first proposed in [9]. They
propose an inter-procedural algorithm that computes the set of all concurrent
statements by first modifying the CFG and provide rules to perform a modified
depth first search to ascertain pairs of concurrent expressions. Other parallel
programming languages, such as X10 [16}/17], Ada [18//19], and Java [20,21] have
also explored analysis based on synchronization structure of a program.

7 Conclusions and Future Work

The main contribution of our work is to provide an enhanced OSA that presents
more complex analysis in an easy to understand visual manner to an Open-
SHMEM programmer. We provide CFG explicit with the OpenSHMEM calls, for
providing detailed information about the usage and placement of OpenSHMEM
calls, and a system dependence graph that clearly indicates the control and data
dependencies prevalent in the application. The barrier tree provides a simplistic
representation of the synchronization pattern along with information on concur-

XIV

rent execution paths available which makes discovering potential errors due to
mis-aligned or missing synchronization easier for the OpenSHMEM programmer.
We also pave the way for more complex analysis towards suggesting optimiza-
tions, which needs information like the system dependence graph along with the
multivalued analysis and the synchronization analysis.

During the development of this analysis framework tracking and evaluating
active-sets was challenging and we hope that the future library specification of
OpenSHMEM will address this by providing implicit active-sets with handles.
This will simplify the analysis considerably resulting in better accuracy of pre-
dicting which PEs may take a particular concurrent path making it possible to
provide specialized optimization feedback based on a particular PE or a group of
PEs. Our current implementation considers OpenSHMEM barrier and barrier all
synchronization calls but can be easily extended to account for other collective
calls with implicit synchronization semantics. As future work we would like to
integrate support for implicit synchronization and provide useful optimization
hints to the user based on OpenSHMEM semantics. For example, if an appli-
cation has no updates between two consecutive barriers on the same execution
path we would want to indicate that there is no requirement for the extra syn-
chronization to the application programmer/user at compile time thus helping
achieve better performance.

8 Acknowledgments

This work is supported by the United States Department of Defense and used
resources of the Extreme Scale Systems Center located at the Oak Ridge National
Laboratory.

References

1. Oscar, H., Siddhartha, J., Pophale, S., Stephen, P., Kuehn, J., Barbara, C.: The
OpenSHMEM Analyzer. In: Proceedings of the Sixth Conference on Partitioned
Global Address Space Programming Model. PGAS ’12 (2012)

2. Taylor, R.N.: A general-purpose algorithm for analyzing concurrent programs.
Commun. ACM 26 (1983) 361-376

3. Lin, Y.: Static nonconcurrency analysis of openmp programs. In: Proceedings of
the 2005 and 2006 international conference on OpenMP shared memory parallel
programming. IWOMP’05/ITWOMP’06, Berlin, Heidelberg, Springer-Verlag (2008)
36-50

4. Masticola, S.P., Ryder, B.G.: Non-concurrency analysis. In: Proceedings of the
fourth ACM SIGPLAN symposium on Principles and practice of parallel program-
ming. PPOPP 93, New York, NY, USA, ACM (1993) 129-138

5. Auslander, J., Philipose, M., Chambers, C., Eggers, S.J., Bershad, B.N.: Fast, effec-
tive dynamic compilation. In: Proceedings of the ACM SIGPLAN 1996 conference
on Programming language design and implementation. PLDI ’96, New York, NY,
USA, ACM (1996) 149-159

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

XV

. Swaroop, P., Oscar, H., Stephen, P., Barbara, C.: Static analyses for unaligned

collective synchronization matching for OpenSHMEM. In: Proceedings of the Sev-
enth Conference on Partitioned Global Address Space Programming Model. PGAS
"13 (2013)

Zhang, Y., Duesterwald, E.: Barrier matching for programs with textually un-
aligned barriers. In: Proceedings of the 12th ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming. PPoPP ’07, New York, NY, USA,
ACM (2007) 194-204

Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: Proceedings of the ACM SIGPLAN 1988 conference on Programming Language
design and Implementation. PLDI 88, New York, NY, USA, ACM (1988) 35-46
Kamil, A.A., Yelick, K.A.: Concurrency analysis for parallel programs with textu-
ally aligned barriers. Technical Report UCB/EECS-2006-41, EECS Department,
University of California, Berkeley (2006)

OpenSHMEM.org: OpenSHMEM specification 1.0 (2011)

Chakrabarti, G., Chow, F., Llc, P.: Structure layout optimizations in the open64
compiler: Design, implementation and measurements (2008)

Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata
Studies (1956)

Swaroop, P., Oscar, H., Stephen, P., Barbara, C.: Poster: Validation and veri-
fication suite for OpenSHMEM. In: Proceedings of the Seventh Conference on
Partitioned Global Address Space Programming Model. PGAS 13 (2013)

Aiken, A., Gay, D.: Barrier inference. In: Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. POPL 98, New
York, NY, USA, ACM (1998) 342-354

Luigi, K.Y., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy,
A., Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high-
performance java dialect. In: In ACM. (1998) 10-11

Markstrum, S.A., Fuhrer, R.M., Millstein, T.D.: Towards concurrency refactoring
for x10. In: Proceedings of the 14th ACM SIGPLAN symposium on Principles and
practice of parallel programming. PPoPP ’09, New York, NY, USA, ACM (2009)
303-304

Muller, S., Chong, S.: Towards a practical secure concurrent language. In: Pro-
ceedings of the ACM international conference on Object oriented programming
systems languages and applications. OOPSLA 12, New York, NY, USA, ACM
(2012) 57-74

Kaiser, C., Pajault, C., Pradat-Peyre, J.F.: Modelling remote concurrency with
ada: case study of symmetric non-deterministic rendezvous. In: Proceedings of the
12th international conference on Reliable software technologies. Ada-Europe’07,
Berlin, Heidelberg, Springer-Verlag (2007) 192-207

Burns, A., Wellings, A.: Concurrency in Ada. Cambridge University Press, New
York, NY, USA (1995)

Vakilian, M., Negara, S., Tasharofi, S., Johnson, R.E.: Keshmesh: a tool for de-
tecting and fixing java concurrency bug patterns. In: Proceedings of the ACM
international conference companion on Object oriented programming systems lan-
guages and applications companion. SPLASH ’11, New York, NY, USA, ACM
(2011) 39-40

Magee, J., Kramer, J.: Concurrency: state models & Java programs. John Wiley
& Sons, Inc., New York, NY, USA (1999)

	Extending the OpenSHMEM Analyzer to perform synchronization and multi-valued analysis
	Swaroop Pophale (University of Houston), Oscar Hernandez, Stephen Poole (Oak Ridge National Laboratory)

