
Cray SHMEM Update

Monika ten Bruggencate
Cray Inc.

March 2014

Outline

3/6/2014
2

● OpenSHMEM Compliance
● Incremental Extensions to Cray SHMEM
● Thread Safety Extensions in more Detail
● Future Work

OpenSHMEM Compliance

3/6/2014
3

● Cray SHMEM has been compliant with OpenSHMEM 1.0
as of Cray Message Passing Toolkit (MPT) release 5.6.2,
released Feb 2013.

Enhancements to Cray SHMEM

3/6/2014
4

● We continue to enhance Cray SHMEM to meet our
customers needs

● Exploring interfaces beyond the OpenShmem 1.0 base line
in conjunction with our customers

● Each API extension implemented to be proposed to
OpenSHMEM community for review and discussion

● Ultimately we would like inclusion of extensions in the
spec, with modifications as necessary

● Avoid API bloat

Extension – Initialization and Finalization

3/6/2014
5

void shmem_init(void)

void shmem_finalize(void)

● Naming of initialization and finalization routines more
consistent with other APIs

● shmem_init()has same semantics as start_pes(npes)
● Use of shmem_finalize() is good practice and can be

helpful for tools
● Supported on Cray XT, XE and XC

Extension – Non-blocking Puts and Gets

3/6/2014
6

void shmem_put_nb(void *trg, const void *src, size_t

 nelems, int pe, void **transfer_hnld)

void shmem_get_nb(void *trg, const void *src, size_t

 nelems, int pe, void **transfer_hndl)

● Allow overlap of communication and computation
● Adopted Quadrics API
● No demand for explicit variants, no transfer hndl returned
● shmem_quiet() checks for completion
● All size and type variants are supported
● Supported on Cray XE, XC (shmem_put_nb() also on XT)

Extension – On-node shmem_ptr()

3/6/2014
7

void *shmem_local_ptr(void *trg, size_t len, int pe)

int shmem_local_npes(void)

void shmem_local_pes(int *pes, int npes)

● shmem_local_ptr() has same effect as shmem_ptr()
but for on-node use only

● Returns non-NULL for symmetric data objects on PEs for
which data object can be accessed via memory loads
/stores

● Allows direct access to symmetric memory of another PE
on the node

Extension – Signalling Put

3/6/2014
8

void shmem_put_signal[_nb](void *target,

 const void *source, size_t len,

 uint64_t *sig_target, uint64_t sig_val, int pe)

● Semantically equivalent to shmem_put[_nb]() PLUS
after the Put transfer is complete, the signal value will be
delivered to the signal location on the target PE

● The target buffer and signal location must reside in
symmetric memory

● All data size and type variants are supported

Extension – SHMEM Teams

3/6/2014
9

● Flexible way to manage PE subsets
● Current method to specify subgroups is restrictive
● Create, query, use, reuse, destroy arbitrary sets of PEs
● Follows the API adopted by UPC, which again follows the

MPI communicator concept => consistency across PGAS
● Supports the existing triplet interface

Flexible Subsets – Team Interfaces

3/6/2014
10

● SHMEM_TEAM_WORLD, SHMEM_TEAM_NODE created by
shmem_init()

● Create /destroy teams (collective ops, subset determined
by color, rank by key)
void shmem_team_split(shmem_team_t team, int color,

 int key, shmem_team_t *newteam)

void shmem_team_free(shmem_team_t *team)

void shmem_team_create_strided(int PE_start,

 int PE_stride, int PE_size,

 shmem_team_t *newteam)

Flexible Subsets – Team Interfaces

3/6/2014
11

● Team info
int shmem_team_npes(shmem_team_t team)

int shmem_team_mype(shmem_team_t team)

int shmem_team_translate_pe(shmem_team_t team1,

 int team1_pe, shmem_team_t team2)

● Use in collective operations
void shmem_team_barrier(shmem_team_t team,

 long *pSync)

Extension - Alltoall Collective Communication

3/6/2014
12

void shmem_team_alltoall(void *trg, const void *src,

 size_t len, shmem_team_t team, long *pSync)

● Fixed size alltoall: each PE exchanges constant amount of
data with all other PEs in team

● Allows reliable use and optimized implementation of
alltoall communications for applications

● Mimics MPI_Alltoall()
● Also supported for existing subset triplet
● General rules for collectives apply

Alltoall Collective Communication

3/6/2014
13

void shmem_team_alltoallv(void *trg, size_t *t_offsets,

 size_t *t_sizes, const void *src, size_t *s_offsets,

 size_t *s_sizes, shmem_team_t team, long *pSync)

void shmem_team_alltoallv_packed(void *trg, size_t t_len,

 size_t *t_size, const void *src, size_t *s_offsets,

 size_t *s_sizes, shmem_team_t team, long *pSync

● Variable size alltoall: each PE exchanges variable amount
of data with all other PEs in team

● Also supported for existing subset triplet

Extension -Thread Safety

3/6/2014
14

● Motivation
● Customer requests for thread-safe SHMEM, especially thread-safe

Puts, Gets, AMOs

● Desire to achieve high per-process issue rates for small pt2pt
operations in a multi-threaded environment

⇒Two components to thread safety work
● Performance

● API extensions necessary

● Common Use Case
● 1 PE per node or NUMA node

● No more than one thread/core or hyper-thread

Thread Safety – API

3/6/2014
15

● To satisfy customer requirement, we came up with a set of
short-term API extensions

● Keep API changes minimal, yet give user control to
achieve good performance

● Some limitations are imposed
● It may be that only a subset of the threads of a process

makes SHMEM calls
● Made some adjustments to initial proposal incorporating

feedback from community
● Long-term solution needs to be discussed with

community (endpoint, context)

Thread Safety – API Overview

3/6/2014
16

● Initialization
int shmem_init_thread(int required)

int shmem_query_thread(void)

void shmem_thread_[un]register(void)

● Per-thread issue of one-sided operations
● No change to existing functionality

● Addition of per thread sync functions

void shmem_thread_fence(void)

void shmem_thread_quiet(void)

● Per process collectives and symmetric heap functions
● No change to interface

Thread Safety - Initialization

3/6/2014
17

int shmem_init_thread(int required)

● Used instead of start_pes() when TS should be enabled
● Specify level of TS support desired

SHMEM_THREAD_SINGLE – no threading/one thread per process

SHMEM_THREAD_MULTIPLE – processes may have multiple threads and
any thread may issue SHMEM calls at any time (currently some
restrictions apply)

● Returns level of TS support enabled
● Specify max # of threads/process via env var (hints)
● Called by only one thread per process
● MPI interface is model

Thread Safety – Query and Finalization

3/6/2014
18

int shmem_query_thread(void)

● Query level of thread safety enabled
● Returns level of thread safety support enabled

● Finalization routine shmem_finalize() also restricted to

being called by only one thread per process

Thread Safety – Thread Registration

3/6/2014
19

void shmem_thread_register(void)

void shmem_thread_unregister(void)

● Allows a thread to register/unregister with SHMEM
● Any thread that wants to make SHMEM calls must register

itself (optional for the thread which initialized thread
safety) and later unregister

● Ease of use vs. performance
● Explicit registration minimizes overhead for pt2pt

operations
● Allows threads to dynamically register/unregister
● Allows dedicated and optimized use of resources
● Very low overhead

Thread Safety – Pt2Pt Operations

3/6/2014
20

● No change to semantics of Put, Get, AMO operations
● Multiple threads per process can simultaneously call pt2pt

operations

Thread Safety – Synchronization

3/6/2014
21

● No change to semantics of shmem_quiet() and
shmem_fence()

● Concurrent calls to shmem_quiet() and pt2pt operations
leads to undefined completion behavior

● Thread specific, lighter-weight synchronization is desired
void shmem_thread_fence(void)

void shmem_thread_quiet(void)

● Allow thread to order or wait for completion of its
previously issued pt2pt ops

 Thread Safety – Collectives

3/6/2014
22

● No change in per-process collectives interface
● Only one collective operation per process can be active at

a time
● No change to requirement that collectives have to be

called in the same order across processes
● Symmetric heap management functions must be treated

as collective operations and affect the entire process
● Currently no thread barrier function planned

 Thread Safety – Cray SHMEM Implementation

3/6/2014
23

● Cray SHMEM thin layer over DMAPP
● Majority of thread safety work done in DMAPP
● More effective use of NIC resources: dedicated use w/o

contention or shared use with limited contention
● Fine-grain locking
● Performance analysis in progress
● Further optimizations to be implemented in DMAPP for

well-behaved apps: around NIC resources, possibly s/w
resources

● API extensions in Cray SHMEM to be released

DMAPP Performance Data

3/6/2014
24

● Tested Put rates for single and multi-threaded tests
● Tests execute Puts to random PEs and target addresses

● 8 byte to 1024 byte Puts

● Multi-threaded tests mimic common use case

● Non-blocking implicit transfers, 1024 ops outstanding

● Running across two nodes

● Cray XC 30 testbed
● Intel Sandybridge processors (32 hardware threads/node, 2.7 or

3.3 GHz)

● CLE 5.1up01 DMAPP library

DMAPP Performance Data

3/6/2014
25

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 32

Issue Rate for 8 byte nbi Puts across 2 nodes

single-threaded

multi-threaded
(1 PE/node)

multi-threaded
(4 PEs/node)

M
illi

on
 P

ut
s/

se
c

npes * nthreads/node

Proto-type DMAPP Performance Data

3/6/2014
26

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 32

Issue Rate for 8 byte nbi Puts across 2 nodes

no h/w res locks
(single-threaded)

no h/w res lock
(1PE/node)

no h/w res lock
(4PEs/node)

M
illi

on
 P

ut
s/

se
c

npes * nthreads/node

DMAPP Performance Data

3/6/2014
27

0

1000

2000

3000

4000

5000

6000

7000

8000

8 16 32 64 128 256 512 1024

Bandwidth for nbi Puts, 2 PEs/node, 2 nodes

1 thread/PE
1 thread/PE opt
2 threads/PE
2 threads/PE opt
4 threads/PE
4 threads/PE opt
8 threads/PE
8 threads/PE opt

G
B

/s

Transfer size (bytes)

Future Work

3/6/2014
28

● Implement thread safety h/w locks optimization
● Implement non-blocking implicit AMOs
● Work with OpenSHMEM community to integrate the Cray

extensions into the OpenSHMEM spec, this may require
adjustments to the extensions

● Work with community on long-term solutions for thread
safety support, error handling, flexible subsets, API
compaction etc.

● Remain OpenSHMEM compliant

	Cray SHMEM Update
	Outline
	OpenSHMEM Compliance
	Enhancements to Cray SHMEM
	Extension – Initialization and Finalization
	Extension – Non-blocking Puts and Gets
	Extension – On-node shmem_ptr()
	Extension – Signalling Put
	Extension – SHMEM Teams
	Flexible Subsets – Team Interfaces
	Flexible Subsets – Team Interfaces
	Extension - Alltoall Collective Communication
	Alltoall Collective Communication
	Extension -Thread Safety
	Thread Safety – API
	Thread Safety – API Overview
	Thread Safety - Initialization
	Thread Safety – Query and Finalization
	Thread Safety – Thread Registration
	Thread Safety – Pt2Pt Operations
	Thread Safety – Synchronization
	 Thread Safety – Collectives
	 Thread Safety – Cray SHMEM Implementation
	DMAPP Performance Data
	DMAPP Performance Data
	Proto-type DMAPP Performance Data
	DMAPP Performance Data
	Future Work

