
DRAFT

OpenSHMEM
Application Programming Interface

http://www.openshmem.org/

Version 1.1 DRAFT

27th February 2014

Developed by

• High Performance Computing Tools group at the University of Houston
http://www.cs.uh.edu/˜hpctools/

• Extreme Scale Systems Center, Oak Ridge National Laboratory
http://www.csm.ornl.gov/essc/

http://www.openshmem.org/
http://www.cs.uh.edu/~hpctools/
http://www.csm.ornl.gov/essc/

DRAFT

1.1 DRAFT — DRAFT —

Sponsored by

• U.S. Department of Defense (DoD)
http://www.defense.gov/

• Oak Ridge National Laboratory (ORNL)
http://www.ornl.gov/

Authors and Collaborators

• Tony Curtis, University of Houston (UH)

• Swaroop Pophale, UH

• Barbara Chapman, UH

• Stephen Poole, ORNL

• Jeff Kuehn, ORNL

• Oscar Hernandez, ORNL

• Manjunath Gorentla Venkata, ORNL

• Pavel Shamis, ORNL

• Gregory Koenig, ORNL

• Jens Manser, DoD

• Nick Park, DoD

• Lauren Smith, DoD

• Karl Feind, SGI

• Michael Raymond, SGI

Acknowledgements

The OpenSHMEM specification belongs to Open Source Software Solutions, Inc. (OSSS), a non-profit organization,
under an agreement with SGI. The development work of the specification is supported by the Oak Ridge National
Laboratory Extreme Scale Systems Center and the Department of Defense.

We would also like to acknowledge the contribution of the members of the OpenSHMEM mailing list for their ideas,
discussions, suggestions, and constructive criticism which has helped us improve this document.

2

http://www.defense.gov/
http://www.ornl.gov/

DRAFT
Contents

1 The OpenSHMEM Effort . 1
2 Programming Model Overview . 1
3 Memory Model . 3
4 Execution Model . 4

4.1 Progress of OpenSHMEM operations . 4
4.2 Atomicity Guarantees . 4

5 Language Bindings and Conformance . 4
6 Library Constants . 4
7 Environment Variables . 5
8 OpenSHMEM Library API . 6

8.1 Library Setup and Query Operations . 6
8.1.1 START_PES . 6
8.1.2 SHMEM_MY_PE . 7
8.1.3 SHMEM_N_PES . 7
8.1.4 SHMEM_PE_ACCESSIBLE . 8
8.1.5 SHMEM_ADDR_ACCESSIBLE . 9
8.1.6 SHMEM_PTR . 10

8.2 Memory Management Operations . 11
8.2.1 SHMALLOC, SHFREE, SHREALLOC, SHMEMALIGN 11
8.2.2 SHPALLOC . 13
8.2.3 SHPCLMOVE . 13
8.2.4 SHPDEALLC . 14

8.3 Remote Memory Access Operations . 15
8.3.1 SHMEM_PUT . 15
8.3.2 SHMEM_P . 17
8.3.3 SHMEM_IPUT . 18
8.3.4 SHMEM_GET . 20
8.3.5 SHMEM_G . 22
8.3.6 SHMEM_IGET . 23

8.4 Atomic Memory Operations . 25
8.4.1 SHMEM_ADD . 25
8.4.2 SHMEM_CSWAP . 26
8.4.3 SHMEM_SWAP . 27
8.4.4 SHMEM_FINC . 29
8.4.5 SHMEM_INC . 30
8.4.6 SHMEM_FADD . 31

8.5 Collective Operations . 32
8.5.1 SHMEM_BARRIER_ALL . 33
8.5.2 SHMEM_BARRIER . 34
8.5.3 SHMEM_BROADCAST . 35
8.5.4 SHMEM_COLLECT, SHMEM_FCOLLECT 37
8.5.5 SHMEM_REDUCTIONS . 39

8.6 Point-to-point synchronization functions . 46

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

1.1 DRAFT — DRAFT —

8.6.1 SHMEM_WAIT . 46
8.7 Memory Ordering Operations . 48

8.7.1 SHMEM_FENCE . 48
8.7.2 SHMEM_QUIET . 49
8.7.3 Synchronization and Communication Ordering in OpenSHMEM 51

8.8 Distributed Locking Operations . 54
8.8.1 SHMEM_LOCK . 54

8.9 Deprecated API . 55
8.9.1 SHMEM_CACHE . 55

A Writing OpenSHMEM Programs 57

B Compiling and Running Applications 60
1 Compilation . 60
2 Running Applications . 60

C Undefined Behavior in OpenSHMEM 61

D Interoperability with other Programming Models 62
1 Message Passing Interface (MPI) Interoperability . 62

E History of OpenSHMEM 63

F Changes to this Document 64
1 Version 1.1 . 64

4

DRAFT

1. THE OPENSHMEM EFFORT 1

Introduction

1 The OpenSHMEM Effort

OpenSHMEM is a Partitioned Global Address Space (PGAS) library interface specification. OpenSHMEM aims
to provide a standard Application Programming Interface (API) for SHMEM libraries to aid portability and facili-
tate uniform predictable results of OpenSHMEM applications by explicitly stating the behavior and semantics of the
OpenSHMEM library calls. Through the different versions, OpenSHMEM will continue to address the requirements
of the PGAS community. As of this specification, existing vendors are moving towards OpenSHMEM compliant im-
plementations and new vendors are developing OpenSHMEM library implementations to help the users write portable
OpenSHMEM code. This ensures that applications can run on multiple platforms without having to deal with sub-
tle vendor-specific implementation differences. For more details on the history of OpenSHMEM please refer to The
History of OpenSHMEM section.

The OpenSHMEM1 effort is driven by the Extreme Scale Systems Center (ESSC) at ORNL and the University of
Houston with significant input from the OpenSHMEM community. Besides the specification, the effort also includes
providing a reference OpenSHMEM implementation, validation and verification suites, tools, a mailing list and website
infrastructure to support specification activities. For more information please refer to: http://www.openshmem.
org/.

2 Programming Model Overview

OpenSHMEM implements PGAS by defining remotely accessible data objects as mechanisms to share information
among OpenSHMEM processes or Processing Elements (PEs) and private data objects that are accessible by the PE
itself. The API allows communication and synchronization operations on both private (local) and remotely accessible
data objects. The key feature of OpenSHMEM is that data transfer functions are one-sided in nature. This means that
a local PE executing a data transfer does not require the participation of the remote PE to complete the operation. This
allows for overlap between communication and computation to hide data transfer latencies, which makes OpenSHMEM
ideal for unstructured, small/medium size data communication patterns. The OpenSHMEM library functions have the
potential to provide low-latency, high-bandwidth communication API for use in highly parallelized scalable programs.

The OpenSHMEM interfaces can be used to implement Single Program Multiple Data (SPMD) style programs.
It provides interfaces to start the OpenSHMEM PEs in parallel, and communication and synchronization interfaces to
access remotely accessible data objects across PEs. These interfaces can be leveraged to divide a problem into mul-
tiple sub-problems that can solved independently or with coordination using the communication and synchronization
interfaces. The OpenSHMEM specification defines library calls, constants, variables, and language bindings for C
and Fortran. The C++ interface is currently the same as that for C. Unlike UPC, Fortran 2008, Titanium, X10 and
Chapel, which are all PGAS languages, OpenSHMEM relies on the programmer to use the library calls to implement
the correct semantics of its programming model.

An overview of the OpenSHMEM operations is described below:

1. Library Setup and Query

(a) Initialization: The OpenSHMEM library environment is initialized.

(b) Query: The local PE may get number of PEs running the same application and its unique integer identifier.

(c) Accessibility: The local PE can find out if a remote PE is executing the same binary, or if a particular
symmetric data object can be accessed by a remote PE, or may obtain a pointer to a symmetric data object
on the specified remote PE on shared memory systems.

2. Symmetric Data Object Management

(a) Allocation: All executing PEs must participate in the allocation of a symmetric data object with identical
arguments.

1The OpenSHMEM specification is owned by Open Source Software Solutions Inc., a non-profit organization, under an agreement with SGI.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

http://www.openshmem.org/
http://www.openshmem.org/

DRAFT

2 CONTENTS

(b) Deallocation: All executing PEs must participate in the deallocation of the same symmetric data object
with identical arguments.

(c) Reallocation: All executing PEs must participate in the reallocation of the same symmetric data object with
identical arguments.

3. Remote Memory Access

(a) Put: The local PE specifies the source data (local or symmetric) that is copied to the symmetric data object
on the remote PE.

(b) Get: The local PE specifies the symmetric data object on the remote PE that is copied to a data object (local
or symmetric) on the local PE.

4. Atomics

(a) Swap: The PE initiating the swap gets the old value of the symmetric data object it is copying a new value
to on the remote PE.

(b) Increment: The PE initiating the increment adds 1 to the symmetric data object on the remote PE.

(c) Add: The PE initiating the add specifics the value to be added to the symmetric data object on the remote
PE.

(d) Compare and Swap: The PE initiating the swap gets the old value of the symmetric data object based on a
value to be compared and copies a new value to the symmetric data object on the remote PE.

(e) Fetch and Increment: The PE initiating the increment adds 1 to the symmetric data object on the remote
PE and returns with the old value.

(f) Fetch and Add: The PE initiating the add specifics the value to be added to the symmetric data object on
the remote PE and returns with the old value.

5. Synchronization and Ordering

(a) Fence: The PE calling fence ensure ordering of remote access operations and stores to symmetric data
objects with respect to a specific target PE.

(b) Quiet: The PE calling quiet ensures completion of remote access operations and stores to symmetric data
objects.

(c) Barrier: All or some PEs collectively synchronize and ensure completion of all remote and local updates
prior to any PE returning from the call.

6. Collective Communication

(a) Broadcast: The root PE specifics a symmetric data object to be copied to a symmetric data object on one
or more remote PEs (not including itself).

(b) Collection: All PEs participating in the operation get the result of concatenated symmetric objects con-
tributed by each of the PE in another symmetric data object.

(c) Reduction: All PEs participating in the operation get the result of associative binary operation over elements
of the specified symmetric data object on another symmetric data object.

7. Mutual Exclusion

(a) Set Lock: The PE acquires exclusive access to the region bounded by the symmetric lock variable.

(b) Test Lock: The PE tests the symmetric lock variable for availability.

(c) Clear Lock: The PE which has previously acquired the lock releases it.

8. Data Cache Control (deprecated on cache coherent systems)

(a) Implementation of mechanisms to exploit the capabilities of hardware cache if available.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

3. MEMORY MODEL 3

PE N-1

Global and Static
Variables

Symmetric Heap

Local Variables

PE 0

Global and Static
Variables

Symmetric Heap

Local Variables

PE 1

Global and Static
Variables

Symmetric Heap

Local Variables

Re
m

ot
el

y A
cc

es
sib

le
 S

ym
m

et
ric

Da

ta
 O

bj
ec

ts

Variable: X Variable: X Variable: X
X = shmalloc(sizeof(long))

Pr
iva

te
 D

at
a

O
bj

ec
ts

Figure 1: OpenSHMEM Memory Model

3 Memory Model

An OpenSHMEM program consists of data objects that are private to each PE and data objects that are remotely
accessible by all PEs. Private data objects are stored in the local memory of each PE and can only be accessed by the
PE itself; these data objects cannot be accessed by other PEs via OpenSHMEM routines. Private data objects follow
the memory model of C or Fortran. Remotely accessible objects, however, can be accessed by remote PEs using
OpenSHMEM routines. Remotely accessible data objects are called Symmetric Objects. All symmetric data objects
have a corresponding object with the same name, type, size, and offset (from an arbitrary memory address) on all PEs.
Symmetric objects are accessible by all executing PEs via the OpenSHMEM API. Symmetric data objects accessed
via typed OpenSHMEM interfaces are required to be natural aligned based on their type requirements and underlying
architecture. In OpenSHMEM the following kinds of data objects are symmetric:

• Fortran data objects in common blocks or with the SAVE attribute. These data objects must not be defined in a
dynamic shared object (DSO).

• Global and static C and C++ variables. These data objects must not be defined in a DSO.

• Fortran arrays allocated with shpalloc

• C and C++ data allocated by shmalloc

OpenSHMEM dynamic memory allocation routines (shpalloc and shmalloc) allow collective allocation of Symmet-
ric Data Objects on a special memory region called the Symmetric Heap. The Symmetric Heap is created during the
execution of a program at a memory location determined by the implementation. The Symmetric Heap may reside on
different memory regions on different PEs. Figure 1 shows how OpenSHMEM implements a PGAS model using re-
motely accessible (Symmetric objects) and private data objects when executing an OpenSHMEM program. Symmetric
data objects are stored on the symmetric heap or in the global/static memory section of each PE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

4 CONTENTS

4 Execution Model

An OpenSHMEM program consists of a set of OpenSHMEM processes called PEs that execute in a SPMD-like model
where each PE can take a different execution path. A PE can be implemented using an OS process or an OS thread2.
The PEs progress asynchronously, and can communicate/synchronize via the OpenSHMEM interfaces. All PEs in
an OpenSHMEM program should start by calling the initialization function start_pes before using any of the other
OpenSHMEM library routines. As of now, an OpenSHMEM program finishes execution by returning from the main
function. On program exit, OpenSHMEM can release all the resources associated to the library.

The PEs of the OpenSHMEM program are identified by unique integers. The identifiers are integers assigned
in a monotonically increasing manner from zero to the total number of PEs minus 1. PE identifiers are used for
OpenSHMEM calls (e.g. to specify Put or Get operations on symmetric data objects, collective synchronization calls,
etc) or to dictate a control flow for PEs using constructs of C or Fortran. The identifiers are fixed for the life cycle of
the OpenSHMEM program.

4.1 Progress of OpenSHMEM operations

The OpenSHMEM model assumes that computation and communication are naturally overlapped, and that all data
transfers eventually complete.

Note to implementors: while delivery can be deferred, for example until a synchronization point at which data
is known to be available, high-quality implementations should attempt asynchronous delivery, whenever possible, for
performance reasons. Progress will often be ensured through the use of a dedicated progress thread in software, or
through network hardware that offloads communication handling from processors, for example.

4.2 Atomicity Guarantees

OpenSHMEM contains a number of routines that operate on symmetric data atomically (Section 8.4). These routines
guarantee that accesses by OpenSHMEM’s atomic operations will be exclusive, but do not guarantee exclusivity in
combination with other routines, either inside OpenSHMEM or outside.

For example: during the execution of a atomic remote integer increment operation on a symmetric variable X, no
other OpenSHMEM atomic operation may access X. After the increment, X will have increased its value by 1 on the
target PE, at which point other atomic operations may then modify that X. However, access to the symmetric object X
with non-atomic operations, such as one-sided Put or Get operations, will invalidate the atomicity guarantees.

5 Language Bindings and Conformance

OpenSHMEM provides ISO C and Fortran 90 language bindings. Any implementation that provides both C and
Fortran bindings can claim conformance to the specification. An implementation that provides e.g. only a C interface
may claim to conform to the OpenSHMEM specification with respect to the C language, but not to Fortran, and should
make this clear in its documentation. The OpenSHMEM header files for C and Fortran must contain only the interfaces
and constant names defined in this specification.

OpenSHMEM APIs can be implemented as either functions or macros. However, implementing the interfaces
using macros is strongly discouraged as this could severely limit the use of external profiling tools and high-level
compiler optimizations. An OpenSHMEM program should avoid defining function names, variables, or identifiers
with the prefix SHMEM_ (for C and Fortran), _SHMEM_ (for C) or with OpenSHMEM API names.

6 Library Constants

Constants Related To Collective Operations

Below are the library constants for collective operations. The constants that start with SHMEM_* are for Fortran and
SHMEM* for C.

2However, implementing a PE using an OS thread requires compiler techniques to implement the OpenSHMEM memory model.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

7. ENVIRONMENT VARIABLES 5

Constant Description
C/C++:

_SHMEM_BCAST_SYNC_SIZE

Fortran:
SHMEM_BCAST_SYNC_SIZE

Length of the pSync arrays needed for broadcast operations.
The value of this constant is implementation specific. Refer
to the Broadcast Routines section under Library Routines
for more information about the usage of this constant.

C/C++:
_SHMEM_SYNC_VALUE

Fortran:
SHMEM_SYNC_VALUE

Holds the value used to initialize the elements of pSync ar-
rays. The value of this constant is implementation specific.

C/C++:
_SHMEM_REDUCE_SYNC_SIZE

Fortran:
SHMEM_REDUCE_SYNC_SIZE

Length of the work arrays needed for reduction operations.
The value of this constant is implementation specific. Refer
to the Reduction Routines section under Library Routines
for more information about the usage of this constant.

C/C++:
_SHMEM_BARRIER_SYNC_SIZE

Fortran:
SHMEM_BARRIER_SYNC_SIZE

Length of the work array needed for barrier operations. The
value of this constant is implementation specific. Refer to
the Barrier Synchronization Routines section under Library
Routines for more information about the usage of this con-
stant.

C/C++:
_SHMEM_COLLECT_SYNC_SIZE

Fortran:
SHMEM_COLLECT_SYNC_SIZE

Length of the work array needed for collect operations. The
value of this constant is implementation specific. Refer
to the Collect Routines section under Library Routines for
more information about the usage of this constant.

C/C++:
_SHMEM_REDUCE_MIN_WRKDATA_SIZE

Fortran:
SHMEM_REDUCE_MIN_WRKDATA_SIZE

Minimum length of work arrays used in various collective
operations.

7 Environment Variables

The OpenSHMEM specification provides a set of environment variables that allows users to configure the OpenSHMEM
implementation, and receive information about the implementation. The implementations of the specification are free
to define additional variables. Currently, the specification defines four environment variables.

Variable Value Function
SMA_VERSION any print the library version at start-up
SMA_INFO any print helpful text about all these environment variables
SMA_SYMMETRIC_SIZE non-negative integer number of bytes to allocate for symmetric heap
SMA_DEBUG any enable debugging messages

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

6 CONTENTS

8 OpenSHMEM Library API

8.1 Library Setup and Query Operations

The library setup and query interfaces that initialize and monitor the parallel environment of the PEs.

8.1.1 START_PES

Called at the beginning of an OpenSHMEM program to initialize the execution environment.

SYNOPSIS

C/C++:
void start_pes(int npes);

FORTRAN:
CALL START_PES(npes)

DESCRIPTION

Arguments
npes Unused Should be set to 0.

API description
The start_pes routine initializes the OpenSHMEM execution environment. An OpenSHMEM application
must call start_pes before calling any other OpenSHMEM routine.

Return Values
None.

Notes
If any other OpenSHMEM call occurs before start_pes, unexpected behavior may occur.
Although it is recommended to set npes to 0, this is not mandated. The value is ignored.

EXAMPLES
This is a simple program that calls start_pes:

PROGRAM PUT

INTEGER TARG, SRC, RECEIVER, BAR
COMMON /T/ TARG
PARAMETER (RECEIVER=1)
CALL START_PES(0)

IF (MY_PE() .EQ. 0) THEN
SRC = 33
CALL SHMEM_INTEGER_PUT(TARG, SRC, 1, RECEIVER)

ENDIF

CALL SHMEM_BARRIER_ALL ! SYNCHRONIZES SENDER AND RECEIVER

IF (MY_PE() .EQ. RECEIVER) THEN
PRINT*,’PE ’, MY_PE(),’ TARG=’,TARG,’ (expect 33)’

ENDIF
END

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 7

8.1.2 SHMEM_MY_PE

Returns the number of the calling PE.

SYNOPSIS

C/C++:
int shmem_my_pe(void);

int _my_pe (void);

FORTRAN:
INTEGER SHMEM_MY_PE, ME

ME = SHMEM_MY_PE()

ME = MY_PE ()

DESCRIPTION

Arguments
None

API description
This function returns the PE number of the calling PE. It accepts no arguments. The result is an integer
between 0 and npes - 1, where npes is the total number of PEs executing the current program.

Return Values
Integer - Between 0 and npes - 1

Notes
Each PE has a unique number or identifier.

EXAMPLES
The following _my_pe example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

int me;

start_pes(0);
me = _my_pe();
printf("My PE id is: %d\n", me);

return 0;
}

8.1.3 SHMEM_N_PES

Returns the number of PEs running in an application.

SYNOPSIS

C/C++:
int shmem_n_pes(void);

int _num_pes (void);

FORTRAN:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8 CONTENTS

INTEGER SHMEM_N_PES, N_PES

N_PES = SHMEM_N_PES()

N_PES = NUM_PES()

DESCRIPTION

Arguments
None

API description
The function returns the number of PEs running the application.

Return Values
Integer - Number of PEs running the OpenSHMEM application.

Notes
None.

EXAMPLES
The following _num_pes example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

int main(void)
{

int npes;

start_pes(0);

npes = _num_pes();

if (_my_pe() == 0) {
printf("Number of PEs executing this application is: %d\n", npes);

}

return 0;
}

8.1.4 SHMEM_PE_ACCESSIBLE

Determines whether a PE is accessible via OpenSHMEM’s data transfer operations.

SYNOPSIS

C/C++:
int shmem_pe_accessible(int pe);

FORTRAN:
LOGICAL LOG, SHMEM_PE_ACCESSIBLE

INTEGER pe

LOG = SHMEM_PE_ACCESSIBLE(pe)

DESCRIPTION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 9

Arguments
IN pe Specific pe that needs to be checked if accessible from the local PE.

API description
shmem_pe_accessible is a query function that indicates whether a specified PE is accessible via OpenSHMEM
from the local PE. The shmem_pe_accessible function returns TRUE only if the remote PE is a process run-
ning from the same executable file as the local PE, indicating that full OpenSHMEM support for symmetric
data objects (that resides in the static memory and symmetric heap) is available, otherwise it returns FALSE.
This function may be particular useful for hybrid programming with other communication libraries (such
as a MPI) or parallel languages. For example, on SGI Altix series systems, OpenSHMEM is supported
across multiple partitioned hosts and InfiniBand connected hosts. When running multiple executable MPI
applications using OpenSHMEM on an Altix, full OpenSHMEM support is available between processes
running from the same executable file. However, OpenSHMEM support between processes of different
executable files is supported only for data objects on the symmetric heap, since static data objects are not
symmetric between different executable files.

Return Values
C: The return value is 1 if the specified PE is a valid remote PE for OpenSHMEM functions; otherwise,it
is 0.

Fortran: The return value is .TRUE. if the specified PE is a valid remote PE for OpenSHMEM functions;
otherwise, it is .FALSE..

Notes
None.

8.1.5 SHMEM_ADDR_ACCESSIBLE

Determines whether an address is accessible via OpenSHMEM data transfers operations from the specified remote PE.

SYNOPSIS

C/C++:
int shmem_addr_accessible(void *addr, int pe);

FORTRAN:
LOGICAL LOG, SHMEM_ADDR_ACCESSIBLE

INTEGER pe

LOG = SHMEM_ADDR_ACCESSIBLE(addr, pe)

DESCRIPTION

Arguments
IN addr Data object on the local PE.
IN pe Integer id of a remote PE.

API description
shmem_addr_accessible is a query function that indicates whether a local address is accessible via OpenSHMEM
operations from the specified remote PE.
This function verifies that the data object is symmetric and accessible with respect to a remote PE via
OpenSHMEM data transfer functions. The specified address addr is a data object on the local PE.
TThis function may be particular useful for hybrid programming with other communication libraries (such
as a MPI) or parallel languages. For example, in SGI Altix series systems, for multiple executable MPI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

10 CONTENTS

applications that use OpenSHMEM functions, it is important to note that static memory, such as a Fortran
common block or C global variable, is symmetric between processes running from the same executable
file, but is not symmetric between processes running from different executable files. Data allocated from
the symmetric heap (shmalloc or shpalloc) is symmetric across the same or different executable files.

Return Values
C/C++: The return value is 1 if addr is a symmetric data object and accessible via OpenSHMEM operations
from the specified remote PE; otherwise,it is 0.
Fortran: The return value is .TRUE. if addr is a symmetric data object and accessible via OpenSHMEM
operations from the specified remote PE; otherwise, it is .FALSE..

Notes
None.

8.1.6 SHMEM_PTR

Returns a pointer to a data object on a specified PE.

SYNOPSIS

C/C++:
void *shmem_ptr(void *target, int pe);

FORTRAN:
POINTER (PTR, POINTEE)

INTEGER pe

PTR = SHMEM_PTR(target, pe)

DESCRIPTION

Arguments
IN target The symmetric data object to be referenced.
IN pe An integer that indicates the PE number on which target is to be ac-

cessed. If you are using Fortran, it must be a default integer value.

API description
shmem_ptr returns an address that may be used to directly reference target on the specified PE. This
address can be assigned to a pointer. After that, ordinary loads and stores to this remote address may be
performed.
When a sequence of loads (gets) and stores (puts) to a data object on a remote PE does not match the
access pattern provided in a OpenSHMEM data transfer routine like shmem_put32 or shmem_real_iget,
the shmem_ptr function can provide an efficient means to accomplish the communication.

Return Values
shmem_ptr returns a pointer to the data object on the specified remote PE. If target is not remotely acces-
sible, a NULL pointer is returned.

Notes
The shmem_ptr function is available only on systems where ordinary memory loads and stores are used to
implement OpenSHMEM put and get operations. When calling shmem_ptr, you pass the address on the
calling PE for a symmetric array on the remote PE.

EXAMPLES
This Fortran program calls shmem_ptr and then PE 0 writes to the BIGD array on PE 1:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 11

PROGRAM REMOTEWRITE
INCLUDE ’shmem.fh’

INTEGER BIGD(100)
SAVE BIGD

INTEGER POINTEE(*)
POINTER (PTR,POINTEE)

CALL START_PES(0)

IF (MY_PE() .EQ. 0) THEN
! initialize PE 1’s BIGD array
PTR = SHMEM_PTR(BIGD, 1) ! get address of PE 1’s BIGD

! array
DO I=1,100

POINTEE(I) = I
ENDDO

ENDIF

CALL SHMEM_BARRIER_ALL

IF (MY_PE() .EQ. 1) THEN
PRINT*,’BIGD on PE 1 is: ’
PRINT*,BIGD

ENDIF
END

This is the equivalent program written in C:

#include <shmem.h>
int main(void)
{

static int bigd[100];
int *ptr;
int i;

start_pes(0);

if (_my_pe() == 0) {
/* initialize PE 1’s bigd array */
ptr = shmem_ptr(bigd, 1);
for (i=0; i<100; i++)

*ptr++ = i+1;
}

shmem_barrier_all();

if (_my_pe() == 1) {
printf("bigd on PE 1 is:\n");
for (i=0; i<100; i++)

printf(" %d\n",bigd[i]);
printf("\n");

}
return 1;

}

8.2 Memory Management Operations

OpenSHMEM provides a set of APIs for managing the symmetric heap. The APIs allow to dynamically allocate,
deallocate, reallocate and align symmetric data objects in the symmetric heap, in C and Fortran.

8.2.1 SHMALLOC, SHFREE, SHREALLOC, SHMEMALIGN

Symmetric heap memory management functions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

12 CONTENTS

SYNOPSIS

C/C++:
void *shmalloc(size_t size);

void shfree(void *ptr);

void *shrealloc(void *ptr, size_t size);

void *shmemalign(size_t alignment, size_t size);

extern long malloc_error;

DESCRIPTION

Arguments
IN size In bytes, to request a block to be allocated from the symmetric heap.

This argument is of type size_t
IN ptr Points to a block within the symmetric heap.
IN alignment Byte alignment of the block allocated from the symmetric heap.

API description
The shmalloc function returns a pointer to a block of at least size bytes suitably aligned for any use. This
space is allocated from the symmetric heap (in contrast to malloc, which allocates from the private heap).
The shmemalign function allocates a block in the symmetric heap that has a byte alignment specified by
the alignment argument.
The shfree function causes the block to which ptr points to be deallocated, that is, made available for further
allocation. If ptr is a null pointer, no action occurs; otherwise, if the argument does not match a pointer
earlier returned by a symmetric heap function, or if the space has already been deallocated, malloc_error
is set to indicate the error, and shfree returns.
The shrealloc function changes the size of the block to which ptr points to the size (in bytes) specified by
size. The contents of the block are unchanged up to the lesser of the new and old sizes. If the new size
is larger, the value of the newly allocated portion of the block is indeterminate. If ptr is a NULL pointer,
the shrealloc function behaves like the shmalloc function for the specified size. If size is 0 and ptr is not
a NULL pointer, the block to which it points is freed. Otherwise, if ptr does not match a pointer earlier
returned by a symmetric heap function, or if the space has already been deallocated, the malloc_error
variable is set to indicate the error, and shrealloc returns a NULL pointer. If the space cannot be allocated,
the block to which ptr points is unchanged.
The shmalloc, shfree, and shrealloc functions are provided so that multiple PEs in an application can
allocate symmetric, remotely accessible memory blocks. These memory blocks can then be used with
OpenSHMEM communication routines. Each of these functions call the shmem_barrier_all function be-
fore returning; this ensures that all PEs participate in the memory allocation, and that the memory on other
PEs can be used as soon as the local PE returns. The user is responsible for calling these functions with
identical argument(s) on all PEs; if differing size arguments are used, subsequent calls may not return the
same symmetric heap address on all PEs.

Return Values
The shmalloc function returns a pointer to the allocated space (which should be identical on all PEs);
otherwise, it returns a NULL pointer (with malloc_error set).
The shfree function returns no value.
The shrealloc function returns a pointer to the allocated space (which may have moved); otherwise, it
returns a null pointer (with malloc_error set).

Notes
The total size of the symmetric heap is determined at job startup. One can adjust the size of the heap using
the SMA_SYMMETRIC_SIZE environment variable (where available).
The shmalloc, shfree, and shrealloc functions differ from the private heap allocation functions in that all
PEs in an application must call them (a barrier is used to ensure this).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 13

8.2.2 SHPALLOC

Allocates a block of memory from the symmetric heap.

SYNOPSIS
FORTRAN:
POINTER (addr, A(1))

INTEGER (length, errcode, abort)

CALL SHPALLOC(addr, length, errcode, abort)

DESCRIPTION

Arguments
OUT addr First word address of the allocated block.
IN length Number of words of memory requested. One word is 32 bits.
OUT errcode Error code is 0 if no error was detected; otherwise, it is a negative inte-

ger code for the type of error.
IN abort Abort code; nonzero requests abort on error; 0 requests an error code.

API description
SHPALLOC allocates a block of memory from the program’s symmetric heap that is greater than or equal
to the size requested. To maintain symmetric heap consistency, all PEs in an program must call SHPALLOC
with the same value of length; if any PEs are missing, the program will hang.
By using the Fortran POINTER mechanism in the following manner, you can use array A to refer to the
block allocated by SHPALLOC: POINTER (addr, A())

Return Values
Error Code Condition
-1 Length is not an integer greater than 0
-2 No more memory is available from the system (checked if the

request cannot be satisfied from the available blocks on the sym-
metric heap).

Notes
The total size of the symmetric heap is determined at job startup. One may adjust the size of the heap using the
SMA_SYMMETRIC_SIZE environment variable (if available).

8.2.3 SHPCLMOVE

Extends a symmetric heap block or copies the contents of the block into a larger block.

SYNOPSIS
FORTRAN:
POINTER (addr, A(1))

INTEGER length, status, abort

CALL SHPCLMOVE (addr, length, status, abort)

DESCRIPTION

Arguments
INOUT addr On entry, first word address of the block to change; on exit, the new

address of the block if it was moved.
IN length Requested new total length in words. One word is 32 bits.
OUT status Status is 0 if the block was extended in place, 1 if it was moved, and a

negative integer for the type of error detected.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

14 CONTENTS

IN abort Abort code. Nonzero requests abort on error; 0 requests an error code.

API description
The SHPCLMOVE function either extends a symmetric heap block if the block is followed by a large
enough free block or copies the contents of the existing block to a larger block and returns a status code
indicating that the block was moved. This function also can reduce the size of a block if the new length
is less than the old length. All PEs in a program must call SHPCLMOVE with the same value of addr to
maintain symmetric heap consistency; if any PEs are missing, the program hangs.

Return Values
Error Code Condition
-1 Length is not an integer greater than 0
-2 No more memory is available from the system (checked if the

request cannot be satisfied from the available blocks on the sym-
metric heap).

-3 Address is outside the bounds of the symmetric heap.
-4 Block is already free.
-5 Address is not at the beginning of a block.

Notes
None.

8.2.4 SHPDEALLC

Returns a memory block to the symmetric heap.

SYNOPSIS
FORTRAN:
POINTER (addr, A(1))

INTEGER errcode, abort

CALL SHPDEALLC(addr, errcode, abort)

DESCRIPTION

Arguments
IN addr First word address of the block to deallocate.
OUT errcode Error code is 0 if no error was detected; otherwise, it is a negative inte-

ger code for the type of error.
IN abort Abort code. Nonzero requests abort on error; 0 requests an error code.

API description
SHPDEALLC returns a block of memory (allocated using SHPALLOC) to the list of available space in the
symmetric heap. To maintain symmetric heap consistency, all PEs in a program must call SHPDEALLC
with the same value of addr; if any PEs are missing, the program hangs.

Return Values
Error Code Condition
-1 Length is not an integer greater than 0
-2 No more memory is available from the system (checked if the

request cannot be satisfied from the available blocks on the sym-
metric heap).

-3 Address is outside the bounds of the symmetric heap.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 15

-4 Block is already free.
-5 Address is not at the beginning of a block.

Notes
None.

8.3 Remote Memory Access Operations

Remote Memory Access (RMA) operations described in this section are one-sided communication mechanisms of
the OpenSHMEM API. While using these mechanisms, the programmer is required to provide parameters only on the
calling side. A characteristic of one-sided communication is that it decouples communication from the synchronization.
One-sided communication mechanisms transfer the data but do not synchronize the sender of the data with the receiver
of the data.

OpenSHMEM RMA operations are all performed on the symmetric objects. The initiator PE of the call is desig-
nated as source, and the PE in which memory is accessed is designated as target. In the case of the remote update
operation, Put, the origin is the source PE and the destination PE is the target PE. In the case of the remote read
operation, Get, the origin is the target PE and the destination is the source PE.

OpenSHMEM provides three different types of one-sided communication interfaces. shmem_put<bits> inter-
face transfers data in chunks of bits. shmem_put32, for example, copies data to a target PE in chunks of 32 bits.
shmem_<datatype>_put interface copies elements of type datatype from a source PE to a target PE. For example,
shmem_integer_put, copies elements of type integer from a source PE to a target PE. shmem_<datatype>_p interface
is similar to shmem_<datatype>_put except that it only transfers one element of type datatype.

OpenSHMEM provides interfaces for transferring both contiguous and non-contiguous data. The non-contiguous
data transfer interfaces are prefixed with “i”. shmem_<datatype>_iput interface, for example, copies strided data
elements from the source PE to a target PE.

8.3.1 SHMEM_PUT

The put routines provide a method for copying data from a contiguous local data object to a data object on a specified
PE.

SYNOPSIS

C/C++:
void shmem_double_put(double target, const double *source, size_t len, int pe);

void shmem_float_put(float *target, const float *source, size_t len, int pe);

void shmem_int_put(int *target, const int *source, size_t len, int pe);

void shmem_long_put(long *target, const long *source, size_t len, int pe);

void shmem_longdouble_put(long double *target, const long double *source, size_t len,int pe);

void shmem_longlong_put(long long *target, const long long *source, size_t len, int pe);

void shmem_put32(void *target, const void *source, size_t len, int pe);

void shmem_put64(void *target, const void *source, size_t len, int pe);

void shmem_put128(void *target, const void *source, size_t len, int pe);

void shmem_putmem(void *target, const void *source, size_t len, int pe);

void shmem_short_put(short*target, const short*source, size_t len, int pe);

FORTRAN:
CALL SHMEM_CHARACTER_PUT(target, source, len, pe)

CALL SHMEM_COMPLEX_PUT(target, source, len, pe)

CALL SHMEM_DOUBLE_PUT(target, source, len, pe)

CALL SHMEM_INTEGER_PUT(target, source, len, pe)

CALL SHMEM_LOGICAL_PUT(target, source, len, pe)

CALL SHMEM_PUT(target, source, len, pe)

CALL SHMEM_PUT4(target, source, len, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

16 CONTENTS

CALL SHMEM_PUT8(target, source, len, pe)

CALL SHMEM_PUT32(target, source, len, pe)

CALL SHMEM_PUT64(target, source, len, pe)

CALL SHMEM_PUT128(target, source, len, pe)

CALL SHMEM_PUTMEM(target, source, len, pe)

CALL SHMEM_REAL_PUT(target, source, len, pe)

DESCRIPTION

Arguments
IN target Data object to be updated on the remote PE. This data object must be

remotely accessible.
OUT source Data object containing the data to be copied.
IN len Number of elements in the target and source arrays. len must be of type

size_t for C. If you are using Fortran, it must be a constant, variable, or
array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. If you are
using Fortran, it must be a constant, variable, or array element of default
integer type.

API description
The routines return after the data has been copied out of the source array on the local PE. The delivery of
data words into the data object on the destination PE may occur in any order. Furthermore, two successive
put operations may deliver data out of order unless a call to shmem_fence is introduced between the two
calls.

The target and source data objects must conform to certain typing constraints, which are as follows:

Routine Data Type of target and source

shmem_putmem Fortran: Any noncharacter type. C: Any data type. len is scaled
in bytes.

shmem_put4, shmem_put32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_put4, shmem_put32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_put8, shmem_put64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_put8, shmem_put64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_put128 Any noncharacter type that has a storage size equal to 128 bits.
shmem_double_put Elements of type double.
shmem_longdouble_put Elements of type long double.
SHMEM_CHARACTER_PUT Elements of type character. len is the number of characters to

transfer. The actual character lengths of the source and target
variables are ignored.

SHMEM_COMPLEX_PUT Elements of type complex of default size.
SHMEM_DOUBLE_PUT Elements of type double precision.
SHMEM_INTEGER_PUT Elements of type integer.
SHMEM_LOGICAL_PUT Elements of type logical.
SHMEM_REAL_PUT Elements of type real.

Return Values
None.

Notes
If you are using Fortran, data types must be of default size. For example, a real variable must be declared

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 17

as REAL, REAL*4, or REAL(KIND=4).

EXAMPLES
The following shmem_put example is for programs:

#include <stdio.h>
#include <shmem.h>
int main(void)
{

long source[10] = { 1, 2, 3, 4, 5,
6, 7, 8, 9, 10 };

static long target[10];
start_pes(0);
if (_my_pe() == 0) {

/* put 10 words into target on PE 1 */
shmem_long_put(target, source, 10, 1);

}
shmem_barrier_all(); /* sync sender and receiver */
printf("target[0] on PE %d is %d\n", _my_pe(), target[0]);
return 1;

}

8.3.2 SHMEM_P

Copies one data item to a remote PE.

SYNOPSIS

C/C++:
void shmem_char_p(char *addr, char value, int pe);

void shmem_short_p(short *addr, short value, int pe);

void shmem_int_p(int *addr, int value, int pe);

void shmem_long_p(long *addr, long value, int pe);

void shmem_longlong_p(long long *addr, long long value, int pe);

void shmem_float_p(float *addr, float value, int pe);

void shmem_double_p(double *addr, double value, int pe);

void shmem_longdouble_p(long double *addr, long double value, int pe);

DESCRIPTION

Arguments
IN addr The remotely accessible array element or scalar data object which will

receive the data on the remote PE.
IN value The value to be transferred to addr on the remote PE.
IN pe The number of the remote PE.

API description
These routines provide a very low latency put capability for single elements of most basic types.
As with shmem_put, these functions start the remote transfer and may return before the data is delivered to
the remote PE. Use shmem_quiet to force completion of all remote Put transfers.

Return Values
None.

Notes
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

18 CONTENTS

EXAMPLES
The following simple example uses shmem_double_p in a C program.

#include <stdio.h>
#include <math.h>
#include <shmem.h>
static const double e = 2.71828182;
static const double epsilon = 0.00000001;

int main(void)
{

double *f;
int me;

start_pes(0);
me = _my_pe();
f = (double *) shmalloc(sizeof (*f));

*f = 3.1415927;
shmem_barrier_all();

if (me == 0)
shmem_double_p(f, e, 1);

shmem_barrier_all();
if (me == 1)

printf("%s\n", (fabs (*f - e) < epsilon) ? "OK" : "FAIL");

return 0;
}

8.3.3 SHMEM_IPUT

Copies strided data to a specified PE.

SYNOPSIS

C/C++:
void shmem_double_iput(double *target, const double *source, ptrdiff_t tst, ptrdiff_t sst,

size_t nelems, int pe);

void shmem_float_iput(float *target, const float *source, ptrdiff_t tst, ptrdiff_t sst,

size_t nelems, int pe);

void shmem_int_iput(int *target, const int *source, ptrdiff_t tst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_iput32(void *target, const void *source, ptrdiff_t tst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_iput64(void *target, const void *source, ptrdiff_t tst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_iput128(void *target, const void *source, ptrdiff_t tst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_long_iput(long *target, const long *source, ptrdiff_t tst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_longdouble_iput(long double *target, const long double *source, ptrdiff_t tst,

ptrdiff_t sst, size_t nelems, int pe);

void shmem_longlong_iput(long long *target, const long long *source, ptrdiff_t tst, ptrdiff_t

sst, size_t nelems, int pe);

void shmem_short_iput(short *target, const short *source, ptrdiff_t tst, ptrdiff_t sst,

size_t nelems, int pe);

FORTRAN:
INTEGER tst, sst, nelems, pe

CALL SHMEM_COMPLEX_IPUT(target, source, tst, sst, nelems, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 19

CALL SHMEM_DOUBLE_IPUT(target, source, tst, sst, nelems, pe)

CALL SHMEM_INTEGER_IPUT(target, source, tst, sst, nelems, pe)

CALL SHMEM_IPUT4(target, source, tst, sst, nelems, pe)

CALL SHMEM_IPUT8(target, source, tst, sst, nelems, pe)

CALL SHMEM_IPUT32(target, source, tst, sst, nelems, pe)

CALL SHMEM_IPUT64(target, source, tst, sst, nelems, pe)

CALL SHMEM_IPUT128(target, source, tst, sst, nelems, pe)

CALL SHMEM_LOGICAL_IPUT(target, source, tst, sst, nelems, pe)

CALL SHMEM_REAL_IPUT(target, source, tst, sst, nelems, pe)

DESCRIPTION

Arguments
OUT target Array to be updated on the remote PE. This data object must be re-

motely accessible.
IN source Array containing the data to be copied.
IN tst The stride between consecutive elements of the target array. The stride

is scaled by the element size of the target array. A value of 1 indicates
contiguous data. tst must be of type ptrdiff_t. If you are using Fortran,
it must be a default integer value.

IN sst The stride between consecutive elements of the source array. The stride
is scaled by the element size of the source array. A value of 1 indicates
contiguous data. sst must be of type ptrdiff_t. If you are using Fortran,
it must be a default integer value.

IN nelems Number of elements in the target and source arrays. nelems must be
of type size_t for C. If you are using Fortran, it must be a constant,
variable, or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. If you are
using Fortran, it must be a constant, variable, or array element of default
integer type.

API description

The iput routines provide a method for copying strided data elements (specified by sst) of an array from a
source array on the local PE to locations specified by stride tst on a target array on specified remote PE.
Both strides, tst and sst must be greater than or equal to 1. The routines return when the data has been
copied out of the source array on the local PE but not necessarily before the data has been delivered to the
remote data object.
The target and source data objects must conform to typing constraints, which are as follows:

Routine Data Type of target and source

shmem_iput32, shmem_iput4 Any noncharacter type that has a storage size equal to 32 bits.
shmem_iput64, shmem_iput8 Any noncharacter type that has a storage size equal to 64 bits.
shmem_iput128 Any noncharacter type that has a storage size equal to 128 bits.
shmem_short_iput Elements of type short.
shmem_int_iput Elements of type short.
shmem_long_iput Elements of type long.
shmem_longlong_iput Elements of type long long.
shmem_float_iput Elements of type float.
shmem_double_iput Elements of type float.
shmem_longdouble_iput Elements of type long double.
SHMEM_COMPLEX_IPUT Elements of type complex of default size.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

20 CONTENTS

SHMEM_DOUBLE_IPUT Elements of type double precision.
SHMEM_INTEGER_IPUT Elements of type integer.
SHMEM_LOGICAL_IPUT Elements of type logical.
SHMEM_REAL_IPUT Elements of type real.

Return Values
None.

Notes
If you are using Fortran, data types must be of default size. For example, a real variable must be declared
as REAL, REAL*4 or REAL(KIND=4). See Introduction for a definition of the term remotely accessible.

EXAMPLES
Consider the following simple shmem_long_iput example for C/C++ programs.

#include <shmem.h>
int main(void)
{

short source[10] = { 1, 2, 3, 4, 5,
6, 7, 8, 9, 10 };

static short target[10];
start_pes(0);
if (_my_pe() == 0) {

/* put 10 words into target on PE 1 */
shmem_short_iput(target, source, 1, 2, 5, 1);

}
shmem_barrier_all(); /* sync sender and receiver */
if (_my_pe() == 1) {

printf("target on PE %d is %d %d %d %d %d0, _my_pe(),
(int)target[0], (int)target[1], (int)target[2],
(int)target[3], (int)target[4]);

}
shmem_barrier_all(); /* sync before exiting */
return 1;

}

8.3.4 SHMEM_GET

Copies data from a specified PE.

SYNOPSIS

C/C++:
void shmem_double_get(double *target, const double *source, size_t nelems, int pe);

void shmem_float_get(float *target, const float *source, size_t nelems, int pe);

void shmem_get32(void *target, const void *source, size_t nelems, int pe);

void shmem_get64(void *target, const void *source, size_t nelems, int pe);

void shmem_get128(void *target, const void *source, size_t nelems, int pe);

void shmem_getmem(void *target, const void *source, size_t nelems, int pe);

void shmem_int_get(int *target, const int *source, size_t nelems, int pe);

void shmem_long_get(long *target, const long *source, size_t nelems, int pe);

void shmem_longdouble_get(long double *target, const long double *source, size_t nelems, int

pe);

void shmem_longlong_get(long long *target, const long long *source, size_t nelems, int pe);

void shmem_short_get(short *target, const short *source, size_t nelems, int pe);

FORTRAN:
INTEGER nelems, pe

CALL SHMEM_CHARACTER_GET(target, source, nelems, pe)

CALL SHMEM_COMPLEX_GET(target, source, nelems, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 21

CALL SHMEM_DOUBLE_GET(target, source, nelems, pe)

CALL SHMEM_GET4(target, source, nelems, pe)

CALL SHMEM_GET8(target, source, nelems, pe)

CALL SHMEM_GET32(target, source, nelems, pe)

CALL SHMEM_GET128(target, source, nelems, pe)

CALL SHMEM_GETMEM(target, source, nelems, pe)

CALL SHMEM_INTEGER_GET(target, source, nelems, pe)

CALL SHMEM_LOGICAL_GET(target, source, nelems, pe)

CALL SHMEM_REAL_GET(target, source, nelems, pe)

DESCRIPTION

Arguments
OUT target Local data object to be updated.
IN source Data object on the PE identified by pe that contains the data to be

copied. This data object must be remotely accessible.
IN nelems Number of elements in the target and source arrays. nelems must be

of type size_t for C. If you are using Fortran, it must be a constant,
variable, or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. If you are
using Fortran, it must be a constant, variable, or array element of default
integer type.

API description
The get routines provide a method for copying a contiguous symmetric data object from a different PE to a
contiguous data object on a the local PE. The routines return after the data has been delivered to the target
array on the local PE.
The target and source data objects must conform to typing constraints, which are as follows:

Routine Data Type of target and source

shmem_getmem Fortran: Any noncharacter type. C: Any data type. nelems is
scaled in bytes.

shmem_get4, shmem_get32 Any noncharacter type that has a storage size equal to 32 bits.
shmem_get8, shmem_get64 Any noncharacter type that has a storage size equal to 64 bits.
shmem_get128 Any noncharacter type that has a storage size equal to 128 bits.
shmem_short_get Elements of type short.
shmem_int_get Elements of type int.
shmem_long_get Elements of type long.
shmem_longlong_get Elements of type long long.
shmem_float_get Elements of type float.
shmem_double_get Elements of type double.
shmem_longdouble_get Elements of type long double.
SHMEM_CHARACTER_GET Elements of type character. nelems is the number of characters

to transfer. The actual character nelemsgths of the source and
target variables are ignored.

SHMEM_COMPLEX_GET Elements of type complex of default size.
SHMEM_DOUBLE_GET Fortran: Elements of type double precision.
SHMEM_INTEGER_GET Elements of type integer.
SHMEM_LOGICAL_GET Elements of type logical.
SHMEM_REAL_GET Elements of type real.

Return Values
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

22 CONTENTS

Notes
See Introduction for a definition of the term remotely accessible.

EXAMPLES
Consider this simple example for Fortran.

PROGRAM REDUCTION
REAL VALUES, SUM
COMMON /C/ VALUES
REAL WORK
CALL START_PES(0) ! ALLOW ANY NUMBER OF PES
VALUES = MY_PE() ! INITIALIZE IT TO SOMETHING
CALL SHMEM_BARRIER_ALL
SUM = 0.0
DO I = 0,NUM_PES()-1

CALL SHMEM_REAL_GET(WORK, VALUES, 1, I)
SUM = SUM + WORK

ENDDO
PRINT*,’PE ’,MY_PE(),’ COMPUTED SUM=’,SUM
CALL SHMEM_BARRIER_ALL
END

8.3.5 SHMEM_G

Transfers one data item from a remote PE

SYNOPSIS

C/C++:
char shmem_char_g(char *addr, int pe);

short shmem_short_g(short *addr, int pe);

int shmem_int_g(int *addr, int pe);

long shmem_long_g(long *addr, int pe);

long long shmem_longlong_g(long long *addr, int pe);

float shmem_float_g(float *addr, int pe);

double shmem_double_g(double *addr, int pe);

long double shmem_longdouble_g(long double *addr, int pe);

DESCRIPTION

Arguments
IN addr The remotely accessible array element or scalar data object.
IN pe The number of the remote PE on which addr resides.

API description
These routines provide a very low latency get capability for single elements of most basic types.

Return Values
Returns a single element of type specified in the synopsis.

Notes
None.

EXAMPLES
The following shmem_long_g example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>
long x = 10101;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 23

int main(void)
{

int me, npes;
long y = -1;

start_pes(0);
me = _my_pe();
npes = _num_pes();

if (me == 0)
y = shmem_long_g(&x, 1);

printf("%d: y = %ld\n", me, y);

return 0;
}

8.3.6 SHMEM_IGET

Copies strided data from a specified PE.

SYNOPSIS

C/C++:
void shmem_double_iget(double *target, const double *source, ptrdiff_t tst, ptrdiff_t sst,

size_t nelems, int pe);

void shmem_float_iget(float *target, const float *source, ptrdiff_t tst, ptrdiff_t sst,

size_t nelems, int pe);

void shmem_iget32(void *target, const void *source, ptrdiff_t tst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_iget64(void *target, const void *source, ptrdiff_t tst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_iget128(void *target, const void *source, ptrdiff_t tst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_int_iget(int *target, const int *source, ptrdiff_t tst, ptrdiff_t sst, size_t

nelems, int pe);

void shmem_long_iget(long *target, const long *source, ptrdiff_t tst, ptrdiff_t sst,

size_t nelems, int pe);

void shmem_longdouble_iget(long double *target, const long double *source, ptrdiff_t tst,

ptrdiff_t sst, size_t nelems, int pe);

void shmem_longlong_iget(long long *target, const long long *source, ptrdiff_t tst, ptrdiff_t

sst, size_t nelems, int pe);

void shmem_short_iget(short *target, const short *source, ptrdiff_t tst, ptrdiff_t sst,

size_t nelems, int pe);

FORTRAN:
INTEGER tst, sst, nelems, pe

CALL SHMEM_COMPLEX_IGET(target, source, tst, sst, nelems, pe)

CALL SHMEM_DOUBLE_IGET(target, source, tst, sst, nelems, pe)

CALL SHMEM_IGET4(target, source, tst, sst, nelems, pe)

CALL SHMEM_IGET8(target, source, tst, sst, nelems, pe)

CALL SHMEM_IGET32(target, source, tst, sst, nelems, pe)

CALL SHMEM_IGET64(target, source, tst, sst, nelems, pe)

CALL SHMEM_IGET128(target, source, tst, sst, nelems, pe)

CALL SHMEM_INTEGER_IGET(target, source, tst, sst, nelems, pe)

CALL SHMEM_LOGICAL_IGET(target, source, tst, sst, nelems, pe)

CALL SHMEM_REAL_IGET(target, source, tst, sst, nelems, pe)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

24 CONTENTS

DESCRIPTION

Arguments
OUT target Array to be updated on the local PE.
IN source Array containing the data to be copied on the remote PE.
IN tst The stride between consecutive elements of the target array. The stride

is scaled by the element size of the target array. A value of 1 indicates
contiguous data. tst must be of type ptrdiff_t. If you are calling from
Fortran, it must be a default integer value.

IN sst The stride between consecutive elements of the source array. The stride
is scaled by the element size of the source array. A value of 1 indicates
contiguous data. sst must be of type ptrdiff_t. If you are calling from
Fortran, it must be a default integer value.

IN nelems Number of elements in the target and source arrays. nelems must be
of type size_t for C. If you are using Fortran, it must be a constant,
variable, or array element of default integer type.

IN pe PE number of the remote PE. pe must be of type integer. If you are
using Fortran, it must be a constant, variable, or array element of default
integer type.

API description
The iget routines provide a method for copying strided data elements from a symmetric array from a speci-
fied remote PE to strided locations on a local array. The routines return when the data has been copied into
the local target array.

The target and source data objects must conform to typing constraints, which are as follows:

Routine Data Type of target and source

shmem_iget32, shmem_iget4 Any noncharacter type that has a storage size equal to 32 bits.
shmem_iget64, shmem_iget8 Any noncharacter type that has a storage size equal to 64 bits.
shmem_iget128 Any noncharacter type that has a storage size equal to 128 bits.
shmem_short_iget Elements of type short.
shmem_int_iget Elements of type int.
shmem_long_iget Elements of type long.
shmem_longlong_iget Elements of type long long.
shmem_float_iget Elements of type float.
shmem_double_iget Elements of type double.
shmem_longdouble_iget Elements of type long double.
SHMEM_COMPLEX_IGET Elements of type complex of default size.
SHMEM_DOUBLE_IGET Fortran: Elements of type double precision.
SHMEM_INTEGER_IGET Elements of type integer.
SHMEM_LOGICAL_IGET Elements of type logical.
SHMEM_REAL_IGET Elements of type real.

Return Values
None.

Notes
If you are using Fortran, data types must be of default size. For example, a real variable must be declared
as REAL, REAL*4, or REAL(KIND=4).

EXAMPLES
The following simple example uses shmem_logical_iget in a Fortran program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 25

PROGRAM STRIDELOGICAL
LOGICAL SOURCE(10), TARGET(5)
SAVE SOURCE ! SAVE MAKES IT REMOTELY ACCESSIBLE
DATA SOURCE /.T.,.F.,.T.,.F.,.T.,.F.,.T.,.F.,.T.,.F./
DATA TARGET / 5*.F. /
CALL START_PES(2)
IF (MY_PE() .EQ. 0) THEN

CALL SHMEM_LOGICAL_IGET(TARGET, SOURCE, 1, 2, 5, 1)
PRINT*,’TARGET AFTER SHMEM_LOGICAL_IGET:’,TARGET

ENDIF
CALL SHMEM_BARRIER_ALL

8.4 Atomic Memory Operations

Atomic Memory Operation (AMO) is a one-sided communication mechanism that combines memory update operations
with atomicity guarantees described in Section 4.2. Similar to the RMA routines, described in Section 8.3, the AMOs
are performed only on symmetric objects. OpenSHMEM defines the two types of AMO routines:

• The fetch-and-operate routines combine memory update and fetch operations in a single atomic operation. The
routines return after the data has been fetched and delivered to the local PE.

The fetch-and-operate operations include: SHMEM_CSWAP, SHMEM_SWAP, SHMEM_FINC, and
SHMEM_FADD.

• The non-fetch atomic routines update the remote memory in a single atomic operation. A non-fetch atomic
routine starts the atomic operation and may return before the operation execution on the remote PE. To force
completion for these non-fetch atomic routines, shmem_quiet, shmem_barrier, or shmem_barrierall can be used
by an OpenSHMEM program.

The non-fetch operations include: SHMEM_INC and SHMEM_ADD.

8.4.1 SHMEM_ADD

Performs an atomic add operation on a remote symmetric data object.

SYNOPSIS

C/C++:
void shmem_int_add(int *target, int value, int pe);

void shmem_long_add(long *target, long value, int pe);

void shmem_longlong_add(long long *target, long long value, int pe);

FORTRAN:
INTEGER pe

CALL SHMEM_INT4_ADD(target, value, pe)

CALL SHMEM_INT8_ADD(target, value, pe)

DESCRIPTION

Arguments
OUT target The remotely accessible integer data object to be updated on the re-

mote PE. If you are using C/C++, the type of target should match
that implied in the SYNOPSIS section. If you are using the Fortran
compiler, it must be of type integer with an element size of 4 bytes for
SHMEM_INT4_ADD and 8 bytes for SHMEM_INT8_ADD.

IN value The value to be atomically added to target. If you are using C/C++, the
type of value should match that implied in the SYNOPSIS section. If
you are using Fortran, it must be of type integer with an element size of
target.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

26 CONTENTS

IN pe An integer that indicates the PE number upon which target is to be
updated. If you are using Fortran, it must be a default integer value.

API description
The shmem_add routine performs an atomic add operation. It adds value to target on PE pe and atomically
increments the target without returning the value.

Return Values
None.

Notes
The term remotely accessible is defined in the Introduction.

EXAMPLES

int main(void)
{

int me, old;

start_pes(0);
me = _my_pe();

old = -1;
dst = 22;
shmem_barrier_all();

if (me == 1){
old = shmem_int_fadd(&dst, 44, 0);

}
shmem_barrier_all();
printf("%d: old = %d, dst = %d\n", me, old, dst);
return 0;

}

8.4.2 SHMEM_CSWAP

Performs an atomic conditional swap to a remote data object.

SYNOPSIS

C/C++:
int shmem_int_cswap(int *target, int cond, int value, int pe);

long shmem_long_cswap(long *target, long cond, long value, int pe);

long shmem_longlong_cswap(long long *target, long long cond, long long value, int pe);

FORTRAN:
INTEGER pe

INTEGER(KIND=4) SHMEM_INT4_CSWAP

ires = SHMEM_INT4_CSWAP(target, cond, value, pe)

INTEGER(KIND=8) SHMEM_INT8_CSWAP

ires = SHMEM_INT8_CSWAP(target, cond, value, pe)

DESCRIPTION

Arguments
OUT target The remotely accessible integer data object to be updated on the remote

PE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 27

IN cond cond is compared to the remote target value. If cond and the remote
target are equal, then value is swapped into the remote target. Other-
wise, the remote target is unchanged. In either case, the old value of the
remote target is returned as the function return value. cond must be of
the same data type as target.

IN value The value to be atomically written to the remote PE. value must be the
same data type as target.

IN pe An integer that indicates the PE number upon which target is to be
updated. If you are using Fortran, it must be a default integer value.

API description
The conditional swap routines conditionally update a target data object on an arbitrary PE and return the
prior contents of the data object in one atomic operation.

The target and source data objects must conform to certain typing constraints, which are as follows:

Routine Data Type of target and source

SHMEM_INT4_CSWAP 4-byte integer.
SHMEM_INT8_CSWAP 8-byte integer.

Return Values
The contents that had been in the target data object on the remote PE prior to the conditional swap. Data
type is the same as the target data type.

Notes
None.

EXAMPLES
The following call ensures that the first PE to execute the conditional swap will successfully write its PE number
to race_winner on PE 0.

int main(void)
{

static int race_winner = -1;
int oldval;
start_pes(2);
oldval = shmem_int_cswap(&race_winner, -1, _my_pe(), 0);
if(oldval == -1) printf("pe %d was first\n",_my_pe());
return 1;

}

8.4.3 SHMEM_SWAP

Performs an atomic swap to a remote data object.

SYNOPSIS

C/C++:
double shmem_double_swap(double *target, double value, int pe);

float shmem_float_swap(float *target, float value, int pe);

int shmem_int_swap(int *target, int value, int pe);

long shmem_long_swap(long *target, long value, int pe);

long long shmem_longlong_swap(long long *target, long long value, int pe);

long shmem_swap(long *target, long value, int pe);

FORTRAN:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

28 CONTENTS

INTEGER pe

INTEGER SHMEM_SWAP

ires = SHMEM_SWAP(target, value, pe)

INTEGER(KIND=4) SHMEM_INT4_SWAP

ires = SHMEM_INT4_SWAP(target, value, pe)

INTEGER(KIND=8) SHMEM_INT8_SWAP

ires = SHMEM_INT8_SWAP(target, value, pe)

REAL(KIND=4) SHMEM_REAL4_SWAP

res = SHMEM_REAL4_SWAP(target, value, pe)

REAL(KIND=8) SHMEM_REAL8_SWAP

res = SHMEM_REAL8_SWAP(target, value, pe)

DESCRIPTION

Arguments
OUT target The remotely accessible integer data object to be updated on the remote

PE. If you are using C/C++, the type of target should match that im-
plied in the SYNOPSIS section.

IN value Value to be atomically written to the remote PE. value is the same type
as target.

IN pe An integer that indicates the PE number on which target is to be up-
dated. If you are using Fortran, it must be a default integer value.

API description
shmem_swap performs an atomic swap operation. It writes value value into target on PE and returns the
previous contents of target as an atomic operation.

If you are using Fortran, target must be of the following type:

Routine Data Type of target and source

SHMEM_SWAP Integer of default kind
SHMEM_INT4_SWAP 4-byte integer
SHMEM_INT8_SWAP 8-byte integer
SHMEM_REAL4_SWAP 4-byte real
SHMEM_REAL8_SWAP 8-byte real

Return Values
The contents that had been at the target address on the remote PE prior to the swap is returned.

Notes
None.

EXAMPLES
The following call ensures that the first PE to execute the conditional swap will successfully write its PE number
to race_winner on PE 0.

#include <stdio.h>
#include <shmem.h>

int main(void)
{

long *target;
int me, npes;
long swapped_val, new_val;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 29

start_pes(0);
me = _my_pe();
npes = _num_pes();
target = (long *) shmalloc(sizeof (*target));

*target = me;
shmem_barrier_all();
new_val = me;
if (me & 1){

swapped_val = shmem_long_swap(target, new_val, (me + 1) % npes);
printf("%d: target = %d, swapped = %d\n", me, *target, swapped_val);

}
shfree(target);
return 0;

}

8.4.4 SHMEM_FINC

Performs an atomic fetch-and-increment operation on a remote data object.

SYNOPSIS

C/C++:
int shmem_int_finc(int *target, int pe);

long shmem_long_finc(long *target, int pe);

long long shmem_longlong_finc(long long *target, int pe);

FORTRAN:
INTEGER pe

INTEGER(KIND=4) SHMEM_INT4_FINC, target4

INTEGER(KIND=8) SHMEM_INT8_FINC, target8

ires4 = SHMEM_INT4_FINC(target4, pe)

ires8 = SHMEM_INT8_FINC(target8, pe)

DESCRIPTION

Arguments
IN target The remotely accessible integer data object to be updated on the remote

PE. The type of target should match that implied in the SYNOPSIS
section.

IN pe An integer that indicates the PE number on which target is to be up-
dated. If you are using Fortran, it must be a default integer value.

API description
These functions perform a fetch-and-increment operation. The target on PE pe is increased by one and the
function returns the previous contents of target as an atomic operation.

Return Values
The contents that had been at the target address on the remote PE prior to the increment. The data type of
the return value is the same as the target.

Notes
None.

EXAMPLES
The following shmem_finc example is for C/C++ programs:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

30 CONTENTS

#include <stdio.h>
#include <shmem.h>
int dst;

int main(void)
{

int me;
int old;

start_pes(0);
me = _my_pe();

old = -1;
dst = 22;
shmem_barrier_all();

if (me == 0)
old = shmem_int_finc(&dst, 1);

shmem_barrier_all();
printf("%d: old = %d, dst = %d\n", me, old, dst);
return 0;

}

8.4.5 SHMEM_INC

Performs an atomic fetch-and-increment operation on a remote data object.

SYNOPSIS

C/C++:
void shmem_int_inc(int *target, int pe);

void shmem_long_inc(long *target, int pe);

void shmem_longlong_inc(long long *target, int pe);

FORTRAN:
INTEGER pe

INTEGER(KIND=4) target4

INTEGER(KIND=8) target8

CALL SHMEM_INT4_INC(target4, pe)

CALL SHMEM_INT8_INC(target8, pe)

DESCRIPTION

Arguments
IN target The remotely accessible integer data object to be updated on the remote

PE. The type of target should match that implied in the SYNOPSIS
section.

IN pe An integer that indicates the PE number on which target is to be up-
dated. If you are using Fortran, it must be a default integer value.

API description
These functions perform an atomic increment operation on the target data object on PE.

Return Values
None.

Notes
The term remotely accessible is defined in the Introduction.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 31

EXAMPLES
The following shmem_int_inc example is for C/C++ programs:
#include <stdio.h>
#include <shmem.h>
int dst;

int main(void)
{

int me;

start_pes(0);
me = _my_pe();

dst = 74;
shmem_barrier_all();

if (me == 0)
shmem_int_inc(&dst, 1);

shmem_barrier_all();

printf("%d: dst = %d\n", me, dst);
return 0;

}

8.4.6 SHMEM_FADD

Performs an atomic fetch-and-add operation on a remote data object.

SYNOPSIS

C/C++:
int shmem_int_fadd(int *target, int value, int pe);

long shmem_long_fadd(long *target, long value, int pe);

long long shmem_longlong_fadd(long long *target, long long value, int pe);

FORTRAN:
INTEGER pe

INTEGER(KIND=4) SHMEM_INT4_FADD, ires, target, value

ires = SHMEM_INT4_FADD(target, value, pe)

INTEGER(KIND=8) SHMEM_INT8_FADD, ires, target, value

ires = SHMEM_INT8_FADD(target, value, pe)

DESCRIPTION

Arguments
OUT target The remotely accessible integer data object to be updated on the remote

PE. The type of target should match that implied in the SYNOPSIS
section.

IN value The value to be atomically added to target. The type of value should
match that implied in the SYNOPSIS section.

IN pe An integer that indicates the PE number on which target is to be up-
dated. If you are using Fortran, it must be a default integer value.

API description
shmem_fadd functions perform an atomic fetch-and-add operation. An atomic fetch-and-add operation
fetches the old target and adds value to target without the possibility of another atomic operation on the
target between the time of the fetch and the update. These routines add value to target on pe and return the
previous contents of target as an atomic operation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

32 CONTENTS

Return Values
The contents that had been at the target address on the remote PE prior to the atomic addition operation.
The data type of return value is the same as the target.

Notes
None.

EXAMPLES
The following shmem_fadd example is for C/C++ programs:

int main(void)
{

int me, old;

start_pes(0);
me = _my_pe();

old = -1;
dst = 22;
shmem_barrier_all();

if (me == 1){
old = shmem_int_fadd(&dst, 44, 0);

}
shmem_barrier_all();
printf("%d: old = %d, dst = %d\n", me, old, dst);
return 0;

}

8.5 Collective Operations

Collective operations are defined as communication or synchronization operations on a group of PEs called Active set.
The collective operations require all PEs in the Active set to simultaneously call the operation. A PE that is not part
of the Active set calling the collective operations results in an undefined behavior. All collective operations have an
Active set as an input parameter except SHMEM_BARRIER_ALL. The SHMEM_BARRIER_ALL is called by all PEs
of the OpenSHMEM program.

The Active set is defined by the arguments PE_start, logPE_stride, and PE_size. PE_start is the starting PE
number, a log (base 2) of logPE_stride is the stride between PEs, and PE_size is the number of PEs participating in
the Active set. All PEs participating in the collective operations provide the same values for these arguments.

Another argument important to collective operations is pSync, which is a symmetric work array. All PEs participat-
ing in a collective must pass the same pSync array. On completion of a collective call, the pSync is restored to its original
contents. The reuse of pSync array is allowed for a PE, if all previous collective operations using the pSync array is
completed by all participating PEs. One can use a synchronization collective operation such as SHMEM_BARRIER to
ensure completion of previous collective operations. The two cases below show the reuse of pSync array:

• The shmem_barrier function allows the same pSync array to be used on consecutive calls as long as the active
PE set does not change.

• If the same collective function is called multiple times with the same Active set, the calls may alternate between
two pSync arrays. The OpenSHMEM functions guarantee that a first call is completely finished by all PEs by
the time processing of a third call begins on any PE.

All collective operations defined in the specification are blocking. The collective operations return on completion.
The collective operations defined in the OpenSHMEM specification are:

SHMEM_BROADCAST

SHMEM_BARRIER

SHMEM_BARRIER_ALL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 33

SHMEM_COLLECT

Reduction Operations

8.5.1 SHMEM_BARRIER_ALL

Registers the arrival of a PE at a barrier and suspends PE execution until all other PEs arrive at the barrier and all local
and remote memory updates are completed.

SYNOPSIS

C/C++:
void shmem_barrier_all(void);

FORTRAN:
CALL SHMEM_BARRIER_ALL

DESCRIPTION

Arguments
None.

API description
The shmem_barrier_all function registers the arrival of a PE at a barrier. Barriers are a fast mechanism
for synchronizing all PEs at once. This routine causes a PE to suspend execution until all PEs have called
shmem_barrier_all. This function must be used with PEs started by start_pes.
Prior to synchronizing with other PEs, shmem_barrier_all ensures completion of all previously issued
memory stores and remote memory updates issued via OpenSHMEM AMOs and RMA routine calls such
as shmem_int_add and shmem_put32.

Return Values
None.

Notes
None.

EXAMPLES
The following shmem_barrier_all example is for C/C++ programs:
#include <stdio.h>
#include <shmem.h>
int x=1010;

int main(void)
{

int me, npes;

start_pes(0);
me = _my_pe();
npes = _num_pes();

/*put to next PE in a circular fashion*/
shmem_int_p(&x, 4, me+1%npes);
/*synchronize all PEs*/
shmem_barrier_all();

printf("%d: x = %d\n", me, x);
return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

34 CONTENTS

8.5.2 SHMEM_BARRIER

Performs all operations described in the shmem_barrier_all interface but with respect to a subset of PEs defined by
the Active set.

SYNOPSIS

C/C++:
void shmem_barrier(int PE_start, int logPE_stride, int PE_size, long *pSync);

FORTRAN:
INTEGER PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_BARRIER_SYNC_SIZE)

CALL SHMEM_BARRIER(PE_start, logPE_stride, PE_size, pSync)

DESCRIPTION

Arguments
IN PE_start The lowest virtual PE number of the Active set of PEs. PE_start must

be of type integer. If you are using Fortran, it must be a default integer
value.

IN logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers
in the Active set. logPE_stride must be of type integer. If you are using
Fortran, it must be a default integer value.

IN PE_size The number of PEs in the Active set. PE_size must be of type integer.
If you are using Fortran, it must be a default integer value.

IN pSync A symmetric work array. In C/C++, pSync must be of type long and
size _SHMEM_BARRIER_SYNC_SIZE. In Fortran, pSync must be of
type integer and size SHMEM_BARRIER_SYNC_SIZE. If you are us-
ing Fortran, it must be a default integer type. Every element of this
array must be initialized to 0 before any of the PEs in the Active set
enter shmem_barrier the first time.

API description
shmem_barrier is a collective synchronization routine over an Active set. Control returns from shmem_barrier
after all PEs in the Active set (specified by PE_start, logPE_stride, and PE_size) have called shmem_barrier.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the Active set
call the routine. If a PE not in the Active set calls a OpenSHMEM collective routine, undefined behavior
results.
The values of arguments PE_start, logPE_stride, and PE_size must be equal on all PEs in the Active set.
The same work array must be passed in pSync to all PEs in the Active set.
shmem_barrier ensures that all previously issued stores and remote memory updates, including AMOs and
RMA operations, done by any of the PEs in the Active set are complete before returning.
The same pSync array may be reused on consecutive calls to shmem_barrier if the same active PE set is
used.

Return Values
None.

Notes
If the pSync array is initialized at run time, be sure to use some type of synchronization, for example, a call
to shmem_barrier_all, before calling shmem_barrier for the first time.
If the Active set does not change, shmem_barrier can be called repeatedly with the same pSync array. No
additional synchronization beyond that implied by shmem_barrier itself is necessary in this case.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 35

EXAMPLES
The following barrier example is for C/C++ programs:
#include <stdio.h>
#include <shmem.h>

long pSync[_SHMEM_BARRIER_SYNC_SIZE];
int x = 10101;

int main(void)
{

int me, npes;

for (int i = 0; i < _SHMEM_BARRIER_SYNC_SIZE; i += 1){
pSync[i] = _SHMEM_SYNC_VALUE;

}

start_pes(0);
me = _my_pe();
npes = _num_pes();

if(me % 2 == 0){
x = 1000 + me;
/*put to next even PE in a circular fashion*/
shmem_int_p(&x, 4, me+2%npes);
/*synchronize all even pes*/
shmem_barrier(0, 1, (npes/2 + npes%2), pSync);

}
printf("%d: x = %d\n", me, x);
return 0;

}

8.5.3 SHMEM_BROADCAST

Broadcasts a block of data from one PE to one or more target PEs.

SYNOPSIS

C/C++:
void shmem_broadcast32(void *target, const void *source, size_t nlong, int PE_root, int

PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_broadcast64(void *target, const void *source, size_t nlong, int PE_root, int

PE_start, int logPE_stride, int PE_size, long *pSync);

FORTRAN:
INTEGER nlong, PE_root, PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_BCAST_SYNC_SIZE)

CALL SHMEM_BROADCAST4(target, source, nlong, PE_root, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_BROADCAST8(target, source, nlong, PE_root, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_BROADCAST32(target, source, nlong, PE_root, PE_start, logPE_stride, PE_size,pSync)

CALL SHMEM_BROADCAST64(target, source, nlong, PE_root, PE_start, logPE_stride, PE_size,pSync)

DESCRIPTION

Arguments
OUT target A symmetric data object.
IN source A symmetric data object that can be of any data type that is permissible

for the target argument.
IN nlong The number of elements in source. For shmem_broadcast32 and

shmem_broadcast4, this is the number of 32-bit halfwords. nlong must
be of type size_t in C. If you are using Fortran, it must be a default
integer value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

36 CONTENTS

IN PE_root Zero-based ordinal of the PE, with respect to the Active set, from which
the data is copied. Must be greater than or equal to 0 and less than
PE_size. PE_root must be of type integer. If you are using Fortran, it
must be a default integer value.

IN PE_start The lowest virtual PE number of the Active set of PEs. PE_start must
be of type integer. If you are using Fortran, it must be a default integer
value.

IN logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers
in the Active set. log_PE_stride must be of type integer. If you are
using Fortran, it must be a default integer value.

IN PE_size The number of PEs in the Active set. PE_size must be of type integer.
If you are using Fortran, it must be a default integer value.

IN pSync A symmetric work array. In C/C++, pSync must be of type long and
size _SHMEM_BCAST_SYNC_SIZE. In Fortran, pSync must be of
type integer and size SHMEM_BCAST_SYNC_SIZE. Every element of
this array must be initialized with the value _SHMEM_SYNC_VALUE
(in C/C++) or SHMEM_SYNC_VALUE (in Fortran) before any of the
PEs in the Active set enter shmem_barrier.

API description
OpenSHMEM broadcast routines are collective routines. They copy data object source on the processor
specified by PE_root and store the values at target on the other PEs specified by the triplet PE_start,
logPE_stride, PE_size. The data is not copied to the target area on the root PE.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the Active set
call the routine. If a PE not in the Active set calls a OpenSHMEM collective routine, undefined behavior
results.
The values of arguments PE_root, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
Active set. The same target and source data objects and the same pSync work array must be passed to all
PEs in the Active set.
Before any PE calls a broadcast routine, you must ensure that the following conditions exist (synchroniza-
tion via a barrier or some other method is often needed to ensure this): The pSync array on all PEs in the
Active set is not still in use from a prior call to a broadcast routine. The target array on all PEs in the
Active set is ready to accept the broadcast data.
Upon return from a broadcast routine, the following are true for the local PE: If the current PE is not the
root PE, the target data object is updated. The values in the pSync array are restored to the original values.

The target and source data objects must conform to certain typing constraints, which are as follows:

Routine Data Type of target and source

shmem_broadcast8,
shmem_broadcast64

Any noncharacter type that has an element size of 64 bits. No
Fortran derived types or C/C++ structures are allowed.

shmem_broadcast32 Any noncharacter type that has an element size of 32 bits. No
Fortran derived types or C/C++ structures are allowed.

shmem_broadcast4 Any noncharacter type that has an element size of 32 bits.

Return Values
None.

Notes
All OpenSHMEM broadcast routines restore pSync to its original contents. Multiple calls to OpenSHMEM
routines that use the same pSync array do not require that pSync be reinitialized after the first call.
You must ensure the that the pSync array is not being updated by any PE in the Active set while any of the
PEs participates in processing of a OpenSHMEM broadcast routine. Be careful to avoid these situations:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 37

If the pSync array is initialized at run time, some type of synchronization is needed to ensure that all PEs
in the working set have initialized pSync before any of them enter a OpenSHMEM routine called with
the pSync synchronization array. A pSync array may be reused on a subsequent OpenSHMEM broadcast
routine only if none of the PEs in the Active set are still processing a prior OpenSHMEM broadcast routine
call that used the same pSync array. In general, this can be ensured only by doing some type of synchro-
nization. However, in the special case of OpenSHMEM routines being called with the same Active set, you
can allocate two pSync arrays and alternate between them on successive calls.

EXAMPLES
In the following examples, the call to shmem_broadcast64 copies source on PE 4 to target on PEs 5, 6, and 7.
C/C++ example:

for (i=0; i < _SHMEM_BCAST_SYNC_SIZE; i++) {
pSync[i] = _SHMEM_SYNC_VALUE;

}
shmem_barrier_all(); /* Wait for all PEs to initialize pSync */
shmem_broadcast64(target, source, nlong, 0, 4, 0, 4, pSync);

Fortran example:

INTEGER PSYNC(SHMEM_BCAST_SYNC_SIZE)
INTEGER TARGET, SOURCE, NLONG, PE_ROOT, PE_START,
& LOGPE_STRIDE, PE_SIZE, PSYNC
COMMON /COM/ TARGET, SOURCE

DATA PSYNC /SHMEM_BCAST_SYNC_SIZE*SHMEM_SYNC_VALUE/

CALL SHMEM_BROADCAST64(TARGET, SOURCE, NLONG, 0, 4, 0, 4, PSYNC)

8.5.4 SHMEM_COLLECT, SHMEM_FCOLLECT

Concatenates blocks of data from multiple PEs to an array in every PE.

SYNOPSIS

C/C++:
void shmem_collect32(void *target, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_collect64(void *target, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_fcollect32(void *target, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

void shmem_fcollect64(void *target, const void *source, size_t nelems, int PE_start, int

logPE_stride, int PE_size, long *pSync);

FORTRAN:
INTEGER nelems

INTEGER PE_start, logPE_stride, PE_size

INTEGER pSync(SHMEM_COLLECT_SYNC_SIZE)

CALL SHMEM_COLLECT4(target, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT8(target, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT32(target, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_COLLECT64(target, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT4(target, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT8(target, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT32(target, source, nelems, PE_start, logPE_stride, PE_size, pSync)

CALL SHMEM_FCOLLECT64(target, source, nelems, PE_start, logPE_stride, PE_size, pSync)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

38 CONTENTS

DESCRIPTION

Arguments
OUT target A symmetric array. The target argument must be large enough to accept

the concatenation of the source arrays on all PEs. The data types are as
follows: For shmem_collect8, shmem_collect64, shmem_fcollect8, and
shmem_fcollect64, any data type with an element size of 64 bits. For-
tran derived types, Fortran character type, and C/C++ structures are not
permitted. For shmem_collect4, shmem_collect32, shmem_fcollect4,
and shmem_fcollect32, any data type with an element size of 32 bits.
Fortran derived types, Fortran character type, and C/C++ structures
are not permitted.

IN source A symmetric data object that can be of any type permissible for the
target argument.

IN nelems The number of elements in the source array. nelems must be of type
size_t for C. If you are using Fortran, it must be a default integer value.

IN PE_start The lowest virtual PE number of the Active set of PEs. PE_start must
be of type integer. If you are using Fortran, it must be a default integer
value.

IN logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers
in the Active set. logPE_stride must be of type integer. If you are using
Fortran, it must be a default integer value.

IN PE_size The number of PEs in the Active set. PE_size must be of type integer.
If you are using Fortran, it must be a default integer value.

IN pSync A symmetric work array. In C/C++, pSync must be of type long and
size _SHMEM_COLLECT_SYNC_SIZE. In Fortran, pSync must be of
type integer and size SHMEM_COLLECT_SYNC_SIZE. If you are us-
ing Fortran, it must be a default integer value. Every element of this
array must be initialized with the value _SHMEM_SYNC_VALUE in
C/C++ or SHMEM_SYNC_VALUE in Fortran before any of the PEs in
the Active set enter shmem_barrier.

API description
OpenSHMEM collect and fcollect routines concatenate nelems 64-bit or 32-bit data items from the source
array into the target array, over the set of PEs defined by PE_start, log2PE_stride, and PE_size, in pro-
cessor number order. The resultant target array contains the contribution from PE PE_start first, then the
contribution from PE PE_start + PE_stride second, and so on. The collected result is written to the target
array for all PEs in the Active set.
The fcollect routines require that nelems be the same value in all participating PEs, while the collect routines
allow nelems to vary from PE to PE.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the Active set
call the routine. If a PE not in the Active set calls a OpenSHMEM collective routine, undefined behavior
results.
The values of arguments PE_start, logPE_stride, and PE_size must be equal on all PEs in the Active set.
The same target and source arrays and the same pSync work array must be passed to all PEs in the Active set.
Upon return from a collective routine, the following are true for the local PE: The target array is updated.
The values in the pSync array are restored to the original values.

Return Values
None.

Notes
All OpenSHMEM collective routines reset the values in pSync before they return, so a particular pSync
buffer need only be initialized the first time it is used.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 39

You must ensure that the pSync array is not being updated on any PE in the Active set while any of the PEs
participate in processing of a OpenSHMEM collective routine. Be careful to avoid these situations: If the
pSync array is initialized at run time, some type of synchronization is needed to ensure that all PEs in the
working set have initialized pSync before any of them enter a OpenSHMEM routine called with the pSync
synchronization array. A pSync array can be reused on a subsequent OpenSHMEM collective routine only
if none of the PEs in the Active set are still processing a prior OpenSHMEM collective routine call that
used the same pSync array. In general, this may be ensured only by doing some type of synchronization.
However, in the special case of OpenSHMEM routines being called with the same Active set, you can
allocate two pSync arrays and alternate between them on successive calls.
The collective routines operate on active PE sets that have a non-power-of-two PE_size with some perfor-
mance degradation. They operate with no performance degradation when nelems is a non-power-of-two
value.

EXAMPLES
The following shmem_collect example is for C/C++ programs:
for (i=0; i < _SHMEM_COLLECT_SYNC_SIZE; i++) {

pSync[i] = _SHMEM_SYNC_VALUE;
}
shmem_barrier_all(); /* Wait for all PEs to initialize pSync */
shmem_collect32(target, source, 64, pe_start, logPE_stride,

pe_size, pSync);

The following SHMEM_COLLECT example is for Fortran programs:
INTEGER PSYNC(SHMEM_COLLECT_SYNC_SIZE)
DATA PSYNC /SHMEM_COLLECT_SYNC_SIZE*SHMEM_SYNC_VALUE/

CALL SHMEM_COLLECT4(TARGET, SOURCE, 64, PE_START, LOGPE_STRIDE,
& PE_SIZE, PSYNC)

8.5.5 SHMEM_REDUCTIONS

Performs a logical operations across a set of PEs.

SYNOPSIS

C/C++:
void shmem_int_and_to_all(int *target, int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_and_to_all(long *target, long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_and_to_all(long long *target, long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_and_to_all(short *target, short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_double_max_to_all(double *target, double *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_max_to_all(float *target, float *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_int_max_to_all(int *target, int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_max_to_all(long *target, long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_max_to_all(long double *target, long double *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_max_to_all(long long *target, long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

40 CONTENTS

void shmem_short_max_to_all(short *target, short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_double_min_to_all(double *target, double *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_min_to_all(float *target, float *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_int_min_to_all(int *target, int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_min_to_all(long *target, long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_min_to_all(long double *target, long double *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_min_to_all(long long *target, long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_min_to_all(short *target, short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_complexd_sum_to_all(double complex *target, double complex *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, double complex *pWrk, long *pSync);

void shmem_complexf_sum_to_all(float complex *target, float complex *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, float complex *pWrk, long *pSync);

void shmem_double_sum_to_all(double *target, double *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_sum_to_all(float *target, float *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_int_sum_to_all(int *target, int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_sum_to_all(long *target, long *source, int nreduce, int PE_start, int

logPE_stride,int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_sum_to_all(long double *target, long double *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_sum_to_all(long long *target, long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_sum_to_all(short *target, short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_complexd_prod_to_all(double complex *target, double complex *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, double complex *pWrk, long *pSync);

void shmem_complexf_prod_to_all(float complex *target, float complex *source, int nreduce,

int PE_start, int logPE_stride, int PE_size, float complex *pWrk, long *pSync);

void shmem_double_prod_to_all(double *target, double *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, double *pWrk, long *pSync);

void shmem_float_prod_to_all(float *target, float *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, float *pWrk, long *pSync);

void shmem_int_prod_to_all(int *target, int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_prod_to_all(long *target, long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longdouble_prod_to_all(long double *target, long double *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long double *pWrk, long *pSync);

void shmem_longlong_prod_to_all(long long *target, long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_prod_to_all(short *target, short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_or_to_all(int *target, int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_or_to_all(long *target, long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_or_to_all(long long *target, long long *source, int nreduce, int PE_start

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 41

, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_or_to_all(short *target, short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

void shmem_int_xor_to_all(int *target, int *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, int *pWrk, long *pSync);

void shmem_long_xor_to_all(long *target, long *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, long *pWrk, long *pSync);

void shmem_longlong_xor_to_all(long long *target, long long *source, int nreduce, int

PE_start, int logPE_stride, int PE_size, long long *pWrk, long *pSync);

void shmem_short_xor_to_all(short *target, short *source, int nreduce, int PE_start, int

logPE_stride, int PE_size, short *pWrk, long *pSync);

FORTRAN:
CALL SHMEM_INT4_AND_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_AND_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT4_MAX_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_MAX_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_MAX_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_MAX_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_MAX_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT4_MIN_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_MIN_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_MIN_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_MIN_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_MIN_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_COMP4_SUM_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_COMP8_SUM_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT4_SUM_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_SUM_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_SUM_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_SUM_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_SUM_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_COMP4_PROD_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_COMP8_PROD_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

42 CONTENTS

pSync)

CALL SHMEM_INT4_PROD_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_PROD_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL4_PROD_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL8_PROD_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_REAL16_PROD_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT4_OR_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_OR_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_COMP4_XOR_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT4_XOR_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

CALL SHMEM_INT8_XOR_TO_ALL(target, source, nreduce, PE_start, logPE_stride, PE_size, pWrk,

pSync)

DESCRIPTION

Arguments
IN target A symmetric array, of length nreduce elements, to receive the result of

the reduction operations. The data type of target varies with the version
of the reduction routine being called. When calling from C/C++, refer
to the SYNOPSIS section for data type information.

IN source A symmetric array, of length nreduce elements, that contains one ele-
ment for each separate reduction operation. The source argument must
have the same data type as target.

IN nreduce The number of elements in the target and source arrays. nreduce must
be of type integer. If you are using Fortran, it must be a default integer
value.

IN PE_start The lowest virtual PE number of the Active set of PEs. PE_start must
be of type integer. If you are using Fortran, it must be a default integer
value.

IN logPE_stride The log (base 2) of the stride between consecutive virtual PE numbers
in the Active set. logPE_stride must be of type integer. If you are using
Fortran, it must be a default integer value.

IN PE_size The number of PEs in the Active set. PE_size must be of type integer.
If you are using Fortran, it must be a default integer value.

IN pWrk A symmetric work array. The pWrk argument must have
the same data type as target. In C/C++, this contains
max(nreduce/2 + 1, _SHMEM_REDUCE_MIN_WRKDATA_SIZE)
elements. In Fortran, this contains max(nreduce/2 + 1,
SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 43

IN pSync A symmetric work array. In C/C++, pSync must be of type long and
size _SHMEM_REDUCE_SYNC_SIZE. In Fortran, pSync must be of
type integer and size SHMEM_REDUCE_SYNC_SIZE. If you are us-
ing Fortran, it must be a default integer value. Every element of this
array must be initialized with the value _SHMEM_SYNC_VALUE (in
C/C++) or SHMEM_SYNC_VALUE (in Fortran) before any of the PEs
in the Active set enter the reduction routine.

API description
OpenSHMEM reduction routines compute one or more reductions across symmetric arrays on multiple
virtual PEs. A reduction performs an associative binary operation across a set of values.
The nreduce argument determines the number of separate reductions to perform. The source array on all
PEs in the Active set provides one element for each reduction. The results of the reductions are placed
in the target array on all PEs in the Active set. The Active set is defined by the PE_start, logPE_stride,
PE_size triplet.
The source and target arrays may be the same array, but they may not be overlapping arrays.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the Active set
call the routine. If a PE not in the Active set calls a OpenSHMEM collective routine, undefined behavior
results.
The values of arguments nreduce, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
Active set. The same target and source arrays, and the same pWrk and pSync work arrays, must be passed
to all PEs in the Active set.
Before any PE calls a reduction routine, you must ensure that the following conditions exist (synchroniza-
tion via a barrier or some other method is often needed to ensure this): The pWrk and pSync arrays on all
PEs in the Active set are not still in use from a prior call to a collective OpenSHMEM routine. The target
array on all PEs in the Active set is ready to accept the results of the reduction.
Upon return from a reduction routine, the following are true for the local PE: The target array is updated.
The values in the pSync array are restored to the original values.

When calling from Fortran, the target date types are as follows:

Routine Data Type

shmem_int8_and_to_all Integer, with an element size of 8 bytes.
shmem__int4_and_to_all Integer, with an element size of 4 bytes.
shmem_comp8_max_to_all Complex, with an element size equal to two 8-byte real values.
shmem_int4_max_to_all Integer, with an element size of 4 bytes.
shmem_int8_max_to_all Integer, with an element size of 8 bytes.
shmem_real4_max_to_all Real, with an element size of 4 bytes.
shmem_real16_max_to_all Real, with an element size of 16 bytes.
shmem_int4_min_to_all Integer, with an element size of 4 bytes.
shmem_int8_min_to_all Integer, with an element size of 8 bytes.
shmem_real4_min_to_all Real, with an element size of 4 bytes.
shmem_real8_min_to_all Real, with an element size of 8 bytes.
shmem_real16_min_to_all Real,with an element size of 16 bytes.
shmem_comp4_sum_to_all COMPLEX(KIND=4).
shmem_comp8_sum_to_all Complex. If you are using Fortran, it must be a default complex

value.
shmem_int4_sum_to_all INTEGER(KIND=4).
shmem_int8_sum_to_all Integer. If you are using Fortran, it must be a default integer

value.
shmem_real4_sum_to_all REAL(KIND=4).
shmem_real8_sum_to_all Real. If you are using Fortran, it must be a default real value.
shmem_real16_sum_to_all Real. If you are using Fortran, it must be a default real value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

44 CONTENTS

shmem_comp4_prod_to_all Complex, with an element size equal to two 4-byte real values.
shmem_comp8_prod_to_all Complex, with an element size equal to two 8-byte real values.
shmem_int4_prod_to_all Integer, with an element size of 4 bytes.
shmem_int8_prod_to_all Integer, with an element size of 8 bytes.
shmem_real4_prod_to_all Real, with an element size of 4 bytes.
shmem_real8_prod_to_all Real, with an element size of 8 bytes.
shmem_real16_prod_to_all Real, with an element size of 16 bytes.
shmem_int8_or_to_all Integer, with an element size of 8 bytes.
shmem_int4_or_to_all Integer, with an element size of 4 bytes.
shmem_comp8_xor_to_all Complex, with an element size equal to two 8-byte real values.
shmem_comp4_xor_to_all Complex, with an element size equal to two 4-byte real values.
shmem_int8_xor_to_all Integer, with an element size of 8 bytes.
shmem_int4_xor_to_all Integer, with an element size of 4 bytes.
shmem_real8_xor_to_all Real, with an element size of 8 bytes.
shmem_real4_xor_to_all Real, with an element size of 4 bytes.

Return Values
None.

Notes
All OpenSHMEM reduction routines reset the values in pSync before they return, so a particular pSync buffer
need only be initialized the first time it is used.

You must ensure that the pSync array is not being updated on any PE in the Active set while any of the PEs
participate in processing of a OpenSHMEM reduction routine. Be careful to avoid the following situations: If
the pSync array is initialized at run time, some type of synchronization is needed to ensure that all PEs in the
working set have initialized pSync before any of them enter an OpenSHMEM routine called with the pSync
synchronization array. A pSync or pWrk array can be reused in a subsequent reduction routine call only if none
of the PEs in the Active set are still processing a prior reduction routine call that used the same pSync or pWrk
arrays. In general, this can be assured only by doing some type of synchronization. However, in the special case
of reduction routines being called with the same Active set, you can allocate two pSync and pWrk arrays and
alternate between them on successive calls.

EXAMPLES
This Fortran example statically initializes the pSync array and finds the logical AND of the integer variable FOO
across all even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
INTEGER FOO, FOOAND
COMMON /COM/ FOO, FOOAND, PWRK
INTRINSIC MY_PE

IF (MOD(MY_PE(),2) .EQ. 0) THEN
CALL SHMEM_INT8_AND_TO_ALL(FOOAND, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,MY_PE(),’ is ’,FOOAND

ENDIF

This Fortran example statically initializes the pSync array and finds the maximum value of real variable FOO
across all even PEs.

INCLUDE "shmem.fh"
INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 45

PARAMETER (NR=1)
REAL FOO, FOOMAX, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOMAX, PWRK
INTRINSIC MY_PE

IF (MOD(MY_PE(),2) .EQ. 0) THEN
CALL SHMEM_REAL8_MAX_TO_ALL(FOOMAX, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,MY_PE(),’ is ’,FOOMAX

ENDIF

This Fortran example statically initializes the pSync array and finds the minimum value of real variable FOO
across all the even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOMIN, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOMIN, PWRK
INTRINSIC MY_PE

IF (MOD(MY_PE(),2) .EQ. 0) THEN
CALL SHMEM_REAL8_MIN_TO_ALL(FOOMIN, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,MY_PE(),’ is ’,FOOMIN

ENDIF

This Fortran example statically initializes the pSync array and finds the sum of the real variable FOO across all
even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOSUM, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOSUM, PWRK
INTRINSIC MY_PE

IF (MOD(MY_PE(),2) .EQ. 0) THEN
CALL SHMEM_INT4_SUM_TO_ALL(FOOSUM, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,MY_PE(),’ is ’,FOOSUM

ENDIF

This Fortran example statically initializes the pSync array and finds the product of the real variable FOO across
all the even PEs.

INCLUDE "shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOPROD, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOPROD, PWRK
INTRINSIC MY_PE

IF (MOD(MY_PE(),2) .EQ. 0) THEN
CALL SHMEM_COMP8_PROD_TO_ALL(FOOPROD, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,MY_PE(),’ is ’,FOOPROD

ENDIF

This Fortran example statically initializes the pSync array and finds the logical OR of the integer variable FOO
across all even PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

46 CONTENTS

INCLUDE "mpp/shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
INTEGER FOO, FOOOR
COMMON /COM/ FOO, FOOOR, PWRK
INTRINSIC MY_PE

IF (MOD(MY_PE(),2) .EQ. 0) THEN
CALL SHMEM_INT8_OR_TO_ALL(FOOOR, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,MY_PE(),’ is ’,FOOOR

ENDIF

This Fortran example statically initializes the pSync array and computes the exclusive XOR of variable FOO
across all even PEs.

INCLUDE "mpp/shmem.fh"

INTEGER PSYNC(SHMEM_REDUCE_SYNC_SIZE)
DATA PSYNC /SHMEM_REDUCE_SYNC_SIZE*SHMEM_SYNC_VALUE/
PARAMETER (NR=1)
REAL FOO, FOOXOR, PWRK(MAX(NR/2+1,SHMEM_REDUCE_MIN_WRKDATA_SIZE))
COMMON /COM/ FOO, FOOXOR, PWRK
INTRINSIC MY_PE

IF (MOD(MY_PE(),2) .EQ. 0) THEN
CALL SHMEM_REAL8_XOR_TO_ALL(FOOXOR, FOO, NR, 0, 1, N$PES/2,

& PWRK, PSYNC)
PRINT*,’Result on PE ’,MY_PE(),’ is ’,FOOXOR

ENDIF

8.6 Point-to-point synchronization functions

The following section discusses OpenSHMEM API that provides a mechanism for synchronization between two PEs
based on the value of a symmetric data object.

8.6.1 SHMEM_WAIT

Wait for a variable on the local PE to change.

SYNOPSIS

C/C++:
void shmem_int_wait(int *var, int value);

void shmem_int_wait_until(int *var, int cond, int value);

void shmem_long_wait(long *var, long value);

void shmem_long_wait_until(long *var, int cond, long value);

void shmem_longlong_wait(long long *var, long long value);

void shmem_longlong_wait_until(long long *var, int cond, long long value);

void shmem_short_wait(short *var, short value);

void shmem_short_wait_until(short *var, int cond, short value);

void shmem_wait(long *ivar, long cmp_value);

void shmem_wait_until(long *ivar, int cmp, long value);

FORTRAN:
CALL SHMEM_INT4_WAIT(ivar, cmp_value)

CALL SHMEM_INT4_WAIT_UNTIL(ivar, cmp, cmp_value)

CALL SHMEM_INT8_WAIT(ivar, cmp_value)

CALL SHMEM_INT8_WAIT_UNTIL(ivar, cmp, cmp_value)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 47

CALL SHMEM_WAIT(ivar, cmp_value)

CALL SHMEM_WAIT_UNTIL(ivar, cmp, cmp_value)

DESCRIPTION

Arguments
OUT ivar A remotely accessible integer variable that is being updated by another

PE. If you are using C/C++, the type of ivar should match that implied
in the SYNOPSIS section.

IN cmp The compare operator that compares ivar with cmp_value. cmp must
be of type integer. If you are using Fortran, it must be of default kind.
If you are using C/C++, the type of cmp should match that implied in
the SYNOPSIS section.

IN cmp_value cmp_value must be of type integer. If you are using C/C++, the type
of cmp_value should match that implied in the SYNOPSIS section. If
you are using Fortran, cmp_value must be an integer of the same size
and kind as ivar.

API description
shmem_wait and shmem_wait_until wait for ivar to be changed by a remote write or atomic swap issued
by a different processor. These routines can be used for point-to-point directed synchronization. A call to
shmem_wait does not return until some other processor writes a value, not equal to cmp_value, into ivar
on the waiting processor. A call to shmem_wait_until does not return until some other processor changes
ivar to satisfy the condition implied by cmp and cmp_value. This mechanism is useful when a processor
needs to tell another processor that it has completed some action. The shmem_wait routines return when
ivar is no longer equal to cmp_value. The shmem_wait_until routines return when the compare condition
is true. The compare condition is defined by the ivar argument compared with the cmp_value using the
comparison operator, cmp.

If you are using Fortran, ivar must be a specific sized integer type according to the function being called,
as follows:

Function Type of ivar

shmem_wait, shmem_wait_until default INTEGER
shmem_int4_wait,
shmem_int4_wait_until

INTEGER*4

shmem_int8_wait,
shmem_int8_wait_until

INTEGER*8

The following cmp values are supported:

CMP Value Comparison

C/C++:
_SHMEM_CMP_EQ Equal
_SHMEM_CMP_NE Not equal
_SHMEM_CMP_GT Greater than
_SHMEM_CMP_LE Less than or equal to
_SHMEM_CMP_LT Less than
_SHMEM_CMP_GE Greater than or equal to

Fortran:
SHMEM_CMP_EQ Equal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

48 CONTENTS

SHMEM_CMP_NE Not equal
SHMEM_CMP_GT Greater than
SHMEM_CMP_LE Less than or equal to
SHMEM_CMP_LT Less than
SHMEM_CMP_GE Greater than or equal to

Return Values
None.

Notes
None.

EXAMPLES
The following call returns when variable ivar is not equal to 100:

INTEGER*8 IVAR
CALL SHMEM_INT8_WAIT(IVAR, INT8(100))

The following call to SHMEM_INT8_WAIT_UNTIL is equivalent to the call to SHMEM_INT8_WAIT in
example 1:

INTEGER*8 IVAR
CALL SHMEM_INT8_WAIT_UNTIL(IVAR, SHMEM_CMP_NE, INT8(100))

The following C/C++ call waits until the sign bit in ivar is set by a transfer from a remote PE:

int ivar;
shmem_int_wait_until(&ivar, SHMEM_CMP_LT, 0);

The following Fortran example is in the context of a subroutine:

SUBROUTINE EXAMPLE()
INTEGER FLAG_VAR
COMMON/FLAG/FLAG_VAR
. . .
FLAG_VAR = FLAG_VALUE ! initialize the event variable
. . .
IF (FLAG_VAR .EQ. FLAG_VALUE) THEN

CALL SHMEM_WAIT(FLAG_VAR, FLAG_VALUE)
ENDIF
FLAG_VAR = FLAG_VALUE ! reset the event variable for next time
. . .
END

8.7 Memory Ordering Operations

The following section discusses OpenSHMEM API that provides a mechanism to ensure ordering of remote writes
(puts) to symmetric data objects.

8.7.1 SHMEM_FENCE

Assures ordering of delivery of Put, AMOs, and store operations to symmetric data objects.

SYNOPSIS

C/C++:
void shmem_fence(void);

FORTRAN:
CALL SHMEM_FENCE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 49

DESCRIPTION

Arguments
None.

API description
This function assures ordering of delivery of Put, AMOs, and store operations to symmetric data objects.
All Put, AMOs, and store operations to symmetric data objects issued to a particular remote PE prior to the
call to shmem_fence are guaranteed to be ordered to be delivered before any subsequent Put, AMOs, and
store operations to symmetric data objects to the same PE.

Return Values
None.

Notes
shmem_fence only provides per-PE ordering guarantees and does not guarantee completion of delivery.
There is a subtle difference between shmem_fence and shmem_quiet, in that, that shmem_quiet guarantees
completion of Put, AMOs, and store operations to symmetric data objects which makes the updates visible
to all other PEs.
The shmem_quiet function should be called if completion of PUT, AMOs, and store operations to symmet-
ric data objects is desired when multiple remote PEs are involved.

EXAMPLES
The following shmem_fence example is for C/C++ programs:

#include <stdio.h>
#include <shmem.h>

long target[10] = {0};
int targ = 0;

int main(void)
{

long source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int src = 99;
start_pes(0);
if (_my_pe() == 0) {

shmem_long_put(target, source, 10, 1); /*put1*/
shmem_long_put(target, source, 10, 2); /*put2*/
shmem_fence();
shmem_int_put(&targ, &src, 1, 1); /*put3*/
shmem_int_put(&targ, &src, 1, 2); /*put4*/

}
shmem_barrier_all(); /* sync sender and receiver */
printf("target[0] on PE %d is %d\n", _my_pe(), target[0]);
return 1;

}

Put1 will be ordered to be delivered before put3 and put2 will be ordered to be delivered before put4.

8.7.2 SHMEM_QUIET

Waits for completion of all outstanding Put, AMOs and store operations to symmetric data objects issued by a PE.

SYNOPSIS

C/C++:
void shmem_quiet(void);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

50 CONTENTS

FORTRAN:
CALL SHMEM_QUIET

DESCRIPTION

Arguments
None.

API description
The shmem_quiet routine ensures completion of Put, AMOs, and store operations on symmetric data is-
sued by the calling PE. All Put, AMOs, store operations to symmetric data objects are guaranteed to be
completed and visible to all PEs when shmem_quiet returns.

Return Values
None.

Notes
shmem_quiet is most useful as a way of ensuring completion of several Put, AMOs, and store operations
to symmetric data objects initiated by the calling PE. For example, you might use shmem_quiet to await
delivery of a block of data before issuing another Put, which sets a completion flag on another PE.
shmem_quiet is not usually needed if shmem_barrier_all or shmem_barrier are called. The barrier rou-
tines wait for the completion of outstanding writes (Put, AMO, stores) to symmetric data objects on all
PEs.

EXAMPLES
The following simple example uses shmem_quiet in a C/C++ program:

#include <stdio.h>
#include <shmem.h>

long target[3] = {0};
int targ = 0;
long source[3] = {1, 2, 3};
int src = 90;

int main(void)
{

start_pes(0);
if (_my_pe() == 0) {

shmem_long_put(target, source, 3, 1); /*put1*/
shmem_int_put(&targ, &src, 1, 2); /*put4*/

shmem_quiet();

shmem_long_get(target, source, 3, 1);
shmem_int_get(&targ, &src, 1, 2);
printf("target: {%d,%d,%d}\n",target[0],target[1],target[2]); /*target: {1,2,3}*/
printf("targ: %d\n", targ); /*targ: 90*/

shmem_int_put(&targ, &src, 1, 1); /*put3*/
shmem_int_put(&targ, &src, 1, 2); /*put4*/

}
shmem_barrier_all(); /* sync sender and receiver */
printf("target[0] on PE %d is %d\n", _my_pe(), target[0]);
return 0;

}

Put1 will be completed and visible before put3 and put2 will be completed and visible before put4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 51

8.7.3 Synchronization and Communication Ordering in OpenSHMEM

When using the OpenSHMEM API, synchronization, ordering, and completion of communication become critical.
The updates via Put operations, AMOs and store operations on symmetric data cannot be guaranteed until some form
of synchronization or ordering is introduced by the application programmer. The table below gives the different syn-
chronization and ordering choices, and the situations where they may be useful.

OpenSHMEM API Working of OpenSHMEM API
Point-to-point synchro-
nization
shmem_wait,
shmem_wait_until PE 0 PE 1

shmem_int_wait_until(...)
is completed

shmem_int_p (addr, value, PE 1)

shmem_int_wait_until
(addr, _SHMEM_CMP_EQ, value)

shmem_wait is a blocking
operation therefore it waits

until value in addr is updated

The addr is updated to value

Waits for a symmetric variable to be updated by a remote PE. Should be used when
computation on the local PE cannot proceed without the value that the remote PE
is to update.

Ordering puts issued by
a local PE
shmem_fence

PE 0 PE 1

shmem_int_p (addr1, value1, PE 1)

shmem_fence()

shmem_int_p (addr2, value2, PE 2)

shmem_int_p (addr3, value3, PE 1)

shmem_int_p (addr4, value4, PE 1)

shmem_int_p (addr5, value5, PE 2)

PE 2

value2 is delivered to
PE2, before value5

value1 and value3
are delivered to PE1,

before value4

value4 will be
delivered after value1

and value3
value5 will be

delivered after value2

All Put operations, AMOs and store operations on symmetric data issued to same
PE are guaranteed to be ordered to be delivered before Puts (to the same PE) issued
after the fence call.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

52 CONTENTS

OpenSHMEM API Working of OpenSHMEM API
Ordering puts issued by
all PE
shmem_quiet

PE 0 PE 1

shmem_int_p (addr1, value1, PE 0)

shmem_quiet()

shmem_int_p (addr2, value2, PE 2)

shmem_int_p (addr3, value3, PE 0)

shmem_int_p (addr4, value4, PE 0)

shmem_int_p (addr5, value5, PE 2)

PE KPE 2

 PE K is any PE in the
system.

value1, value2, and value3
are delivered to target PEs
and visible for PE K after
the shmem_quiet() call.

All Put operations, AMOs and store operations on symmetric data issued by a local
PE to all remote PEs are guaranteed to be completed and visible once quiet returns.
This operation should be used when all remote writes issued by a local PE need to
be visible to all other PEs before the local PE proceeds.

Collective synchroniza-
tion over an Active set
shmem_barrier

Active Set

PE 0 PE 1

shmem_int_p (...)

shmem_barrier(...)

shmem_long_put(…)
shmem_int_add (...)

shmem_int_p (...)

shmem_long_p (...)

PE 2

All local and remote memory operations issued by PEs are guaranteed to be completed
before any PE returns from the call.

shmem_barrier(...)shmem_barrier(...)

shmem_int_p (...)

shmem_long_fadd(...)

shmem_int_get (...)

shmem_int_p (...)

PE K

shmem_int_get (...)

shmem_long_put(…)

All local and remote memory operations issued by all PEs within the Active set are
guaranteed to be completed before any PE in the Active set returns from the call.
Additionally, no PE my return from the barrier until all PEs in the Active set have
called the same barrier call. This operation should be used when synchronization
as well as completion of all stores and remote memory updates via OpenSHMEM
is required over a sub set of the executing PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 53

OpenSHMEM API Working of OpenSHMEM API
Collective synchroniza-
tion over all PEs
shmem_barrier_all

All PEs

PE 0 PE 1

shmem_int_p (...)

shmem_barrier_all(…)

shmem_long_put(…)
shmem_int_add (...)

shmem_int_p (...)

shmem_long_p (...)

PE 2

All local and remote memory operations issued by PEs are guaranteed to be completed before any PE returns from the call.

shmem_barrier_all(…)shmem_barrier_all(…)

shmem_int_p (...)

shmem_long_fadd(...)

shmem_int_get (...)

shmem_int_p (...)

PE K

shmem_int_get (...)

shmem_barrier_all(…)

shmem_long_p (...)

All local and remote memory operations issued by all PEs are guaranteed to be
completed before any PE returns from the call. Additionally no PE shall return
from the barrier until all PEs have called the same shmem_barrier_all call. This
operation should be used when synchronization as well as completion of all stores
and remote memory updates via OpenSHMEM is required over all PEs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

54 CONTENTS

8.8 Distributed Locking Operations

The following section discusses OpenSHMEM locks as a mechanism to provide mutual exclusion. Three operations
are available for distributed locking, set, test and clear.

8.8.1 SHMEM_LOCK

Releases, locks, and tests a mutual exclusion memory lock.

SYNOPSIS

C/C++:
void shmem_clear_lock(long *lock);

void shmem_set_lock(long *lock);

int shmem_test_lock(long *lock);

FORTRAN:
INTEGER lock, SHMEM_TEST_LOCK

CALL SHMEM_CLEAR_LOCK(lock)

CALL SHMEM_SET_LOCK(lock)

I = SHMEM_TEST_LOCK(lock)

DESCRIPTION

Arguments
IN lock A symmetric data object that is a scalar variable or an array of length 1.

This data object must be set to 0 on all PEs prior to the first use. lock
must be of type long. If you are using Fortran, it must be of default
kind.

API description
The shmem_set_lock routine sets a mutual exclusion lock after waiting for the lock to be freed by any other
PE currently holding the lock. Waiting PEs are assured of getting the lock in a first-come, first-served man-
ner. The shmem_clear_lock routine releases a lock previously set by shmem_set_lock after ensuring that
all local and remote stores initiated in the critical region are complete. The shmem_test_lock function sets
a mutual exclusion lock only if it is currently cleared. By using this function, a PE can avoid blocking on
a set lock. If the lock is currently set, the function returns without waiting. These routines are appropriate
for protecting a critical region from simultaneous update by multiple PEs.

Return Values
The shmem_test_lock function returns 0 if the lock was originally cleared and this call was able to set the
lock. A value of 1 is returned if the lock had been set and the call returned without waiting to set the lock.

Notes
The term symmetric data object is defined in Introduction. The lock variable should always be initialized
to zero and accessed only by the OpenSHMEM locking API. Changing the value of the lock variable by
other means without using the OpenSHMEM API, can lead to undefined behavior.

EXAMPLES
The following simple example uses shmem_lock in a C program.

#include <stdio.h>
#include <shmem.h>
long L = 0;

int main(int argc, char **argv)
{

int me, slp;
start_pes(0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

8. OPENSHMEM LIBRARY API 55

me = _my_pe();
slp = 1;
shmem_barrier_all();
if (me == 1)

sleep (3);
shmem_set_lock(&L);
printf("%d: sleeping %d second%s...\n", me, slp, slp == 1 ? "" : "s");
sleep(slp);
printf("%d: sleeping...done\n", me);
shmem_clear_lock(&L);
shmem_barrier_all();
return 0;

}

8.9 Deprecated API

All of these operations are deprecated and are provided for backwards compatibility. Implementations must include
all items in this section and the operations should function properly, while notifying the user about deprecation of the
functionality.

8.9.1 SHMEM_CACHE

Controls data cache utilities.

SYNOPSIS

C/C++:
void shmem_clear_cache_inv(void);

void shmem_set_cache_inv(void);

void shmem_clear_cache_line_inv(void *target);

void shmem_set_cache_line_inv(void *target);

void shmem_udcflush(void);

void shmem_udcflush_line(void *target);

FORTRAN:
CALL SHMEM_CLEAR_CACHE_INV

CALL SHMEM_SET_CACHE_INV

CALL SHMEM_SET_CACHE_LINE_INV(target)

CALL SHMEM_UDCFLUSH

CALL SHMEM_UDCFLUSH_LINE(target)

DESCRIPTION

Arguments
IN target A data object that is local to the PE. target can be of any noncharacter

type. If you are using Fortran, it can be of any kind.

API description
shmem_set_cache_inv enables automatic cache coherency mode.
shmem_set_cache_line_inv enables automatic cache coherency mode for the cache line associated with
the address of target only.
shmem_clear_cache_inv disables automatic cache coherency mode previously enabled by shmem_set_cache_inv
or shmem_set_cache_line_inv.
shmem_udcflush makes the entire user data cache coherent.
shmem_udcflush_line makes coherent the cache line that corresponds with the address specified by target.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

56 CONTENTS

Return Values
None.

Notes
These routines have been retained for improved backward compatibility with legacy architectures. They
are not required to be supported by implementing them as no-ops and where used, they may have no effect
on cache line states.

EXAMPLES
None.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex A

Writing OpenSHMEM Programs

Incorporating OpenSHMEM into Programs

In this section we describe how to write a “Hello World” OpenSHMEM program. To write a “Hello World” OpenSHMEM
program we need to

• Add the include file shmem.h (for C) or shmem.fh (for Fortran).

• Add the initialization call start_pes, (line 9) use single integer argument, 0, which is ignored 1.

• Use OpenSHMEM calls to query the the total number of PEs (line 10) and PE id (line 11).

• There is no explicit finalize call, either a return from main() (line 13) or an explicit exit() acts as an implicit
OpenSHMEM finalization.

• In OpenSHMEM the order in which lines appear in the output is not fixed as PEs execute asynchronously in
parallel.

1 #include <stdio.h>
2 #include <shmem.h> /* The shmem header file */
3
4 int
5 main (int argc, char *argv[])
6 {
7 int nprocs, me;
8
9 start_pes (0);

10 nprocs = shmem_n_pes ();
11 me = shmem_my_pe ();
12 printf ("Hello from %d of %d\n", me, nprocs);
13 return 0;
14 }

Listing A.1: Expected Output (4 processors)
1 Hello from 0 of 4
2 Hello from 2 of 4
3 Hello from 3 of 4
4 Hello from 1 of 4

OpenSHMEM also has a Fortran API, so for completeness we will now give the same program written in Fortran,
in listing A:

1The unused argument is for compatibility with older SHMEM implementations.

57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

58 ANNEX A. WRITING OPENSHMEM PROGRAMS

1 program hello
2
3 include ’shmem.fh’
4 integer :: shmem_my_pe, shmem_n_pes
5
6 integer :: npes, me
7
8 call start_pes (0)
9 npes = shmem_n_pes ()

10 me = shmem_my_pe ()
11
12 write (*, 1000) me, npes
13
14 1000 format (’Hello from’, 1X, I4, 1X, ’of’, 1X, I4)
15
16 end program hello

Listing A.2: Expected Output (4 processors)
1 Hello from 0 of 4
2 Hello from 2 of 4
3 Hello from 3 of 4
4 Hello from 1 of 4

The following example shows a more complex OpenSHMEM program that illustrates the use of symmetric data
objects. Note the declaration of the static short target array and its use as the remote destination in OpenSHMEM short
Put. The use of the static keyword results in the target array being symmetric on PE 0 and PE 1. Each PE is able to
transfer data to the target array by simply specifying the local address of the symmetric data object which is to receive
the data. This aids programmability, as the address of the target need not be exchanged with the active side (PE 0) prior
to the RMA (Remote Memory Access) operation. Conversely, the declaration of the short source array is asymmetric.
Because the Put handles the references to the source array only on the active (local) side, the asymmetric source object
is handled correctly.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT

59

1 #include <shmem.h>
2 #define SIZE 16
3 int
4 main(int argc, char* argv[])
5 {
6 short source[SIZE];
7 static short target[SIZE];
8 int i;
9 int num_pe = _num_pes();

10 start_pes(0);
11 if (_my_pe() == 0) {
12 /* initialize array */
13 for(i = 0; i < SIZE; i++)
14 source[i] = i;
15 /* local, not symmetric */
16 /* static makes it symmetric */
17 /* put "size" words into target on each PE */
18 for(i = 1; i < num_pe; i++)
19 shmem_short_put(target, source, SIZE, i);
20 }
21 shmem_barrier_all(); /* sync sender and receiver */
22 if (_my_pe() != 0) {
23 printf("target on PE %d is \t", _my_pe());
24 for(i = 0; i < SIZE; i++)
25 printf("%hd \t", target[i]);
26 printf("\n");
27 }
28 shmem_barrier_all(); /* sync before exiting */
29 return 0;
30 }

Listing A.3: Expected Output (4 processors)
1 target on PE 1 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 target on PE 2 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 target on PE 3 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex B

Compiling and Running Applications

As of now the OpenSHMEM specification is silent regarding how OpenSHMEM programs are compiled, linked and
run. This section shows some examples of how wrapper programs are utilized in the OpenSHMEM Reference Imple-
mentation to compile and launch applications.

1 Compilation

Applications written in C

The OpenSHMEM Reference Implementation provides a wrapper program named oshcc, to aid in the compilation of
C applications, the wrapper could be called as follows:
oshcc <compiler options> -o myprogram myprogram.c

Where the 〈compiler options〉 are options understood by the underlying C compiler.

Applications written in C++

The OpenSHMEM Reference Implementation provides a wrapper program named oshCC, to aid in the compilation of
C++ applications, the wrapper could be called as follows:
oshCC <compiler options> -o myprogram myprogram.cpp

Where the 〈compiler options〉 are options understood by the underlying C++ compiler called by oshCC.

Applications written in Fortran

The OpenSHMEM Reference Implementation provides a wrapper program named oshfort, to aid in the compilation
of Fortran applications, the wrapper could be called as follows:
oshfort <compiler options> -o myprogram myprogram.f

Where the 〈compiler options〉 are options understood by the underlying Fortran compiler called by oshfort.

2 Running Applications

The OpenSHMEM Reference Implementation provides a wrapper program named oshrun, to launch OpenSHMEM
applications, the wrapper could be called as follows:
oshrun <additional options> -np <#> <program> <program arguments>

The program arguments for oshrun are:
〈additional options〉 Options passed to the underlying launcher.
-np 〈#〉 The number of PEs to be used in the execution.
〈program〉 The program executable to be launched.
〈program arguments〉 Flags and other parameters to pass to the program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

60

DRAFT
Annex C

Undefined Behavior in OpenSHMEM

The specification provides guidelines to the expected behavior of various library routines. In cases where routines
are improperly used or the input is not in accordance with the specification, undefined behavior may be observed.
Depending on the implementation there are many interpretations of undefined behavior.

Inappropriate Usage Undefined Behavior
Uninitialized library If OpenSHMEM is not initialized through a call to start_pes,

subsequent accesses to OpenSHMEM routines have undefined results.
An implementation may choose, for example, to try to continue or
abort immediately upon the first call to an uninitialized routine.
Calling start_pes more than once has no subsequent effect.

Accessing non-existent PEs If a communications routine accesses a non-existent PE then the
OpenSHMEM library can choose to handle this situation in an
implementation-defined way. For example, the library may issue an
error message saying that the PE accessed is outside the range of
accessible PEs, or may exit without a warning.

Use of non-symmetric variables Some routines require remotely accessible variables to perform their
function. A Put to a non-symmetric variable can be trapped where
possible and the library can abort the program. Another
implementation may choose to continue either with a warning or
silently.

Non-symmetric variables The symmetric memory management routines are collectives, which
means that all PEs in the program must issue the same shmalloc call
with the same size request. OpenSHMEM implementations should
detect the size mismatch and return error information to the caller.
Implementations may also produce an error message. Program
behavior after a mismatched shmalloc call is undefined.

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex D

Interoperability with other Programming
Models

1 MPI Interoperability

OpenSHMEM functions can be used in conjunction with MPI functions in the same application. For example, on SGI
systems, programs that use both MPI and OpenSHMEM functions call MPI_Init and MPI_Finalize but omit the call
to the start_pes function. OpenSHMEM PE numbers are equal to the MPI rank within the MPI_COMM_WORLD
environment variable. Note that this precludes use of OpenSHMEM functions between processes in different
MPI_COMM_WORLDs. MPI processes started using the MPI_Comm_spawn function, for example, cannot use
OpenSHMEM functions to communicate with their parent MPI processes.

On SGI systems MPI jobs that use TCP/sockets for inter-host communication, OpenSHMEM functions can be used
to communicate with processes running on the same host. The shmem_pe_accessible function can be used to determine
if a remote PE is accessible via OpenSHMEM communication from the local PE. When running an MPI application
involving multiple executable files, OpenSHMEM functions can be used to communicate with processes running from
the same or different executable files, provided that the communication is limited to symmetric data objects. On these
systems, static memory, such as a Fortran common block or C global variable, is symmetric between processes running
from the same executable file, but is not symmetric between processes running from different executable files. Data
allocated from the symmetric heap (shmalloc or shpalloc) is symmetric across the same or different executable files.
The function shmem_addr_accessible can be used to determine if a local address is accessible via OpenSHMEM
communication from a remote PE.

Another important feature of these systems is that the shmem_pe_accessible function returns TRUE only if the
remote PE is a process running from the same executable file as the local PE, indicating that full OpenSHMEM support
(static memory and symmetric heap) is available. When using OpenSHMEM functions within an MPI program, the
use of MPI memory placement environment variables is required when using non-default memory placement options.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

62

DRAFT
Annex E

History of OpenSHMEM

SHMEM has a long history as a parallel programming model, having been used extensively on a number of products
since 1993, including Cray T3D, Cray X1E, the Cray XT3/4, SGI Origin, SGI Altix, clusters based on the Quadrics
interconnect, and to a very limited extent, Infiniband based clusters.

• A SHMEM Timeline

– Cray SHMEM

* SHMEM first introduced by Cray Research Inc. in 1993 for Cray T3D

* Cray is acquired by SGI in 1996

* Cray is acquired by Tera in 2000 (MTA)

* Platforms: Cray T3D, T3E, C90, J90, SV1, SV2, X1, X2, XE, XMT, XT
– SGI SHMEM

* SGI purchases Cray Research Inc. and SHMEM was integrated into SGI’s Message Passing Toolkit
(MPT)

* SGI currently owns the rights to SHMEM and OpenSHMEM

* Platforms: Origin, Altix 4700, Altix XE, Altix ICE, Altix UV

* SGI was purchased by Rackable Systems in 2009

* SGI and Open Source Software Solutions, Inc. (OSSS) signed a SHMEM trademark licensing agree-
ment, in 2010

– Other Implementations

* Quadrics (Vega UK, Ltd.)

* Hewlett Packard

* GPSHMEM

* IBM

* QLogic

* Mellanox

* University of Florida

• OpenSHMEM Implementations

– SGI OpenSHMEM
– University of Houston - OpenSHMEM Reference Implementation
– Mellanox ScalableSHMEM
– Portals-SHMEM

• Implementations that support OpenSHMEM- Pending verification

– IBM OpenSHMEM

63

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

DRAFT
Annex F

Changes to this Document

1 Version 1.1

This section summarizes the changes from the OpenSHMEM specification Version 1.0 to the Version 1.1. A major
change in this version is that it provides an accurate description of OpenSHMEM interfaces so that they are in agree-
ment with the SGI specification. This version also explains OpenSHMEM ’s programming, memory, and execution
model. The document was throughly changed to improve the readability of specification and usability of interfaces. The
code examples were added to demonstrate the usability of API. Additionally, diagrams were added to help understand
the subtle semantic differences of various operations.

The following list describes the specific changes in 1.1:

• Clarifications on the completion semantics of memory synchronization interfaces.
See Section 8.7.

• Clarification about completion semantics of memory load and store operations in context of shmem_barrier_all
and shmem_barrier routines.
See Section 8.5 and 8.5.1.

• Clarification about the completion and ordering semantics of shmem_quiet and shmem_fence.
See Section 8.7.1 and 8.7.

• Clarifications about completion semantics of RMA and AMO routines.
See Sections 8.3 and 8.4

• Clarifications on the memory model and the memory alignment requirements for symmetric data objects.
See Section 3.

• Clarification on the execution model and the definition of a PE.
See Section 4

• Clarifications of the semantics of shmem_pe_accessible and shmem_addr_accessible.
See Section 8.1.3 and 8.1.4.

• Added an annex on interoperability with MPI.
See Annex D.

• Added examples to the different interfaces.

• Clarification on the naming conventions for constant in C and Fortran.
See Section 6 and 8.6.1.

• Added API calls: shmem_char_p, shmem_char_g.

• Removed API calls: shmem_char_put, shmem_char_get.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

64

DRAFT

1. VERSION 1.1 65

• The usage of ptrdiff_t, size_t, and int in the interface signature was made consistent with the description in
Sections 8.5 8.3.3 8.3.6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	The OpenSHMEM Effort
	Programming Model Overview
	Memory Model
	Execution Model
	Progress of OpenSHMEM operations
	Atomicity Guarantees

	Language Bindings and Conformance
	Library Constants
	Environment Variables
	OpenSHMEM Library API
	Library Setup and Query Operations
	START_PES
	SHMEM_MY_PE
	SHMEM_N_PES
	SHMEM_PE_ACCESSIBLE
	SHMEM_ADDR_ACCESSIBLE
	SHMEM_PTR

	Memory Management Operations
	SHMALLOC, SHFREE, SHREALLOC, SHMEMALIGN
	SHPALLOC
	SHPCLMOVE
	SHPDEALLC

	Remote Memory Access Operations
	SHMEM_PUT
	SHMEM_P
	SHMEM_IPUT
	SHMEM_GET
	SHMEM_G
	SHMEM_IGET

	Atomic Memory Operations
	SHMEM_ADD
	SHMEM_CSWAP
	SHMEM_SWAP
	SHMEM_FINC
	SHMEM_INC
	SHMEM_FADD

	Collective Operations
	SHMEM_BARRIER_ALL
	SHMEM_BARRIER
	SHMEM_BROADCAST
	SHMEM_COLLECT, SHMEM_FCOLLECT
	SHMEM_REDUCTIONS

	Point-to-point synchronization functions
	SHMEM_WAIT

	Memory Ordering Operations
	SHMEM_FENCE
	SHMEM_QUIET
	Synchronization and Communication Ordering in OpenSHMEM

	Distributed Locking Operations
	SHMEM_LOCK

	Deprecated API
	SHMEM_CACHE

	Writing OpenSHMEM Programs
	Compiling and Running Applications
	Compilation
	Running Applications

	Undefined Behavior in OpenSHMEM
	Interoperability with other Programming Models
	MPI Interoperability

	History of OpenSHMEM
	Changes to this Document
	Version 1.1

