
OpenSHMEM* on Portals

Keith D Underwood

March, 2014

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

2

OpenSHMEM* and the
Impact of System Evolution

3

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenSHMEM* vs MPI-3 RMA

shmem_int_put(

 char *target,

 const char *source,
 size_t nelems,

 int pe
);

shmem_int_p(
 char *target,
 const char *source,
 int pe
);

MPI_Put(
 MPI_Datatype origin_dtype,
 MPI_Datatype target_dtype,
 MPI_Aint target_disp,
 MPI_Win win,
 const void *origin,
 int origin_count,
 int target_count,
 int target_rank,
);

4

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenSHMEM* : Thin and Light

OpenSHMEM* API is very thin
• As small as target PE,

target address, and
immediate data

• Also has source pointer and
length version

Smallest implementations used
3 flit (8B flit) Put Request

• Limited node space
• Limited framing
• Depended on link level

reliability
• As little as 1 flit response

T3D* /T3E* used more bits of
overhead

Element Size
Target Node 15 bits
Source Node 15 bits
Framing 34 bits
Target Address 64 bits
8B Payload 64 bits
Total# 24 B
Total# w/ Resp. 32 B

5

#These totals are not indicative of
any specific implementation

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Early SHMEM* System Environment
Systems were small(er)

• No more than 2048 nodes
• Two cores per node

Memory was symmetric
• Simplifies programming

and implementation

Round-trip bandwidth delay
product was small

• Hundreds of megabytes
per second

• 1.5 µs of round-trip
latency

Applications were simple
• Written in a single

API/language
• Written by a single author

(effectively)

MPI was new
• Could be layered on SHMEM*

at small scale

Systems were single user (sort of)
• At a minimum, partitioned
• Limited need for protection

Filesystems were (almost) an
afterthought

 6

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

System Characteristics: Then and Now

7

Characteristic Then Now
Maximum Scale (Nodes) 2048 128K
Cores per Node 2 16-60

(and growing)
Memory per Node Hundreds of MB Tens of GB
OS Microkernel “Standard” Linux*
Protection need “Hard” Partitioned Multi-user
Network Ordering Deterministic Request /

Adaptive Response
Adaptive

Bandwidth 150 MB/s 10 GB/s
Round-trip delay 1.5 µs 1.5 µs
Message Rate 18 Mmsgs/s 120 Mmsgs/s
Messaging API None Established MPI dominant,

PGAS emerging
Applications (relatively) simple Tens of Libraries

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What do those changes bring?(1)

More bits! Lots more bits…
• Bigger LID space
• Many more packets in

flight (transaction tracking
bits)

• Protection
– Pkey
– Other protection bits

• End-to-end reliability

Item Bits Impacts
LID +4 Both
transactions +3 Both
PKey +16 Both
End-to-End +32 Both
Sequence # +16

(or more)
Both

RKey +32 Request

8

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What do those changes bring? (2)
Harder translation

• Local to the target node, and process context specific
• Hard to do at system level
• Deeper page table hierarchies

Symmetric addresses are harder to guarantee
• Can be done (if you turn off some options in Linux*)…
• …most of the time

Fence is not free
• Fence is typically quiet

More process contexts
• Wire must ID context at initiator/target
• Allow more processes than cores (resource allocation issue)

 9

OpenSHMEM* over Portals 4
http://code.google.com/p/portals-shmem/

10

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Portals Philosophy
Use building blocks…

• Use composable pieces
• Maintain API symmetry where reasonable
• If done properly, one functionality serves many needs

…to capture application semantics for many APIs…
• Portals does not implement fence(), quiet(), or barrier(),

but has the tools to build them
• Portals is not MPI_Isend()/MPI_Irecv(), but does handle:

– Matching
– Unexpected messages

…in a way that is friendly to offload.
• Blocks are “simple”

11

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Attempt #1: Initial Extensions to
Portals 4

Added several general purpose building blocks
• Nonmatching interface
• Counting events for lightweight completion
• Breadth of atomic operations

– MPI sets a high bar for this one

• Triggered operations for collectives

Achieved fundamental goal: building blocks were
reusable

• Counting events + Atomic operations + triggered
operations == collectives

12

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What We Learned

Nonmatching interface must be very limited to get it right
• Wanted something that could be fully pipelined
• Multiple substantial revisions to achieve that

Needed a path for blocking puts
• SHMEM* puts expected to be locally complete on return
• Portals puts were fully nonblocking

– Added query for size below which Portals could locally
complete

Ordering is… hard…
• Many, many assumptions about ordering, atomicity,

operation interactions in various PGAS implementations
• Completely rewrote the ordering definition

13

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Memory Layout

stack

heap

data

text

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Memory Layout

stack

heap

data

text

Sym.
heap

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Memory Layout

stack

heap

data

text

Sym.
heap

Put MD Get MD

Heap
LE

Data LE

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Portals Data Structures

NI

Err EQ

Heap LE

Data LE

Target CT
Data PT

Heap PT

Put MD

Get MD

Put CT

Get CT

portal table

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Put Operations

void shmem_long_p(long *addr, long value, int pe) {
 ptl_process_t peer;
 ptl_pt_index_t pt;
 long offset;
 peer.rank = pe;
 GET_REMOTE_ACCESS(addr, pt, offset);

 PtlPut(shmem_internal_put_md_h,
 (ptl_size_t) &value,
 sizeof(value),
 PTL_CT_ACK_REQ,
 peer,
 pt,
 0,
 offset,
 NULL,
 0);

 shmem_transport_portals4_pending_put_counter++;

}

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

GET_REMOTE_ACCESS()

19

#ifdef ENABLE_REMOTE_VIRTUAL_ADDRESSING
#define PORTALS4_GET_REMOTE_ACCESS_ONEPT(target, pt, offset) \
 do { \
 pt = (one_pt); \
 offset = (uintptr_t) target; \
 } while (0)
#else
#define PORTALS4_GET_REMOTE_ACCESS_TWOPT(target, pt, offset) \
 do { \
 if ((void*) target < shmem_internal_heap_base) { \
 pt = (data_pt); \
 offset = (char*) target - (char*) shmem_internal_data_base; \
 } else { \
 pt = (heap_pt); \
 offset = (char*) target - (char*) shmem_internal_heap_base; \
 } \
 } while (0)
#endif

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Memory Layout

stack

heap

data

text

Sym.
heap

Put MD Get MD One LE

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Variant: Portals Data Structures

NI

Err EQ

One LE

Target CT
One PT

Put MD

Get MD

Put CT

Get CT

portal table

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Get Operations
void shmem_double_get(double *target, const double *source,

 size_t len, int pe) {
 …

 ptl_ct_event_t ct;
 peer.rank = pe;
 GET_REMOTE_ACCESS(source, pt, offset);

 PtlGet(shmem_internal_get_md_h,
 (ptl_size_t) target,
 len * sizeof(double),
 peer,
 pt,
 0,
 offset,
 0);
 shmem_internal_pending_get_counter++;
 PtlCTWait(shmem_internal_get_ct_h,
 shmem_internal_pending_get_counter,
 &ct);

}

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Fence & Quiet

void shmem_quiet(void) {
 ptl_ct_event_t ct;

 /* wait for remote completion (acks) of all pending events*/
 PtlCTWait(shmem_internal_put_ct_h,
 shmem_internal_pending_put_counter, &ct);

}

void shmem_fence(void) {
 if (shmem_internal_total_data_ordering == 0) {
 shmem_quiet();
 }
}

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Address Wait

void shmem_int_wait(int *var, int value) {
 ptl_ct_event_t ct;

 while (*var == value) {
 PtlCTGet(target_ct_h, &ct);
 if (*var != value) return;
 PtlCTWait(target_ct_h, ct.success + 1, &ct);
 }
}

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Lock

Implements MCS locks

Encodes last/next/signal into one 64 bit field

Uses masked swap to change individual bits

25

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Strided Operations: Still Open…

Portals 4 team has evaluated strided operations
multiple times

Strided operation definitions are not very consistent
across APIs

• SHMEM*
• MPI
• GASNet*
• ARMCI*

26

Impacts on Hardware

27

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Some Challenges
Remote completions: is a quiet really quiet?

• PCI* Express uses a posted write model
• Hard to know when it is “really done” without a lot of

overhead

Atomics have implementation challenges
• Caches on a PCI* Express device would require a way to

flush that cache to re-enter a “safe” state. When would
you do that?

• No caches on a PCI* Express device mean repeated
atomics (e.g. lock contention) would be slow

Hardware collective engines require setup
• Would be nice to have an allocated descriptor of PEs

that will be in a collective

 28

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

System Scale Challenges

End-to-end reliability and blocking puts are
incompatible

• Old way:
– TCP: we will copy your data into the kernel and do end-

to-end retransmit
– RDMA: we will retransmit from user space
– Custom networks: we will send your data once and work

really hard on getting it there
• End-to-end (user space to user space) retransmits is

one of the few tools left in the reliability toolbox

Where did I put that PE ?
• At 10 million PEs, there is a table lookup that is bad
• Hardware can help – if you can help us help you

29

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Longer Term

How can we make OpenSHMEM* better?
• SHMEM* has always been focused on being a thin

layer
• Let’s keep it that way

– Perform hardware / software co-design
– Only add the things that hardware can reasonably

support

30

Thoughts on the Future

31

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Evolution
Threading: we need a definition of how threading works

• This will impact hardware
• This will take time to get right…

– …for the API/users
– …for the hardware

Learn from MPI: Communicators are probably too heavyweight,
but…

• Collectives could use a place to attach a fixed set of nodes
• It would be nice to support layered libraries

– Collective isolation
– Completion semantics
– Library relative addressing / protection

Consider fault tolerance: what trade-offs belong in hardware vs
software?

• Portals can tell you when individual messages fail:
– Can you use that information?
– How would OpenSHMEM* tell the user?

32

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Think about the ecosystem

Transparency is good
• Set objectives for releases
• Set target dates for releases
• Discuss everything before changing it: the crowd can be

wiser than you think
• Prototype everything in open source before adding it

Don’t move randomly
• Document motivations
• Be transparent

Don’t break compatibility (often)
• Extensions are good, changing existing semantics is bad

Don’t require weird OS hooks or configurations
• “Most of the time” is not good enough

33

Copyright© 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Call for Participation: OFA WG

https://www.openfabrics.org/downloads/OFWG/

http://lists.openfabrics.org/cgi-
bin/mailman/listinfo/openframeworkwg

https://www.openfabrics.org/component/content/arti
cle/167-sept-18-2013-openfabrics-alliance-
announces-formation-of-openframework-working-
group.html

34

https://www.openfabrics.org/downloads/OFWG/
http://lists.openfabrics.org/cgi-bin/mailman/listinfo/openframeworkwg
http://lists.openfabrics.org/cgi-bin/mailman/listinfo/openframeworkwg
https://www.openfabrics.org/component/content/article/167-sept-18-2013-openfabrics-alliance-announces-formation-of-openframework-working-group.html
https://www.openfabrics.org/component/content/article/167-sept-18-2013-openfabrics-alliance-announces-formation-of-openframework-working-group.html
https://www.openfabrics.org/component/content/article/167-sept-18-2013-openfabrics-alliance-announces-formation-of-openframework-working-group.html
https://www.openfabrics.org/component/content/article/167-sept-18-2013-openfabrics-alliance-announces-formation-of-openframework-working-group.html

	OpenSHMEM* on Portals
	Slide Number 2
	OpenSHMEM* and the �Impact of System Evolution
	OpenSHMEM* vs MPI-3 RMA
	OpenSHMEM* : Thin and Light
	Early SHMEM* System Environment
	System Characteristics: Then and Now
	What do those changes bring?(1)
	What do those changes bring? (2)
	OpenSHMEM* over Portals 4�http://code.google.com/p/portals-shmem/
	Portals Philosophy
	Attempt #1: Initial Extensions to Portals 4
	What We Learned
	Memory Layout
	Memory Layout
	Memory Layout
	Portals Data Structures
	Put Operations
	GET_REMOTE_ACCESS()
	Memory Layout
	Variant: Portals Data Structures
	Get Operations
	Fence & Quiet
	Address Wait
	Lock
	Strided Operations: Still Open…
	Impacts on Hardware
	Some Challenges
	System Scale Challenges
	Longer Term
	Thoughts on the Future
	Evolution
	Think about the ecosystem
	Call for Participation: OFA WG
	Slide Number 35

