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OpenSHMEM* and the  
Impact of System Evolution 
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OpenSHMEM* vs MPI-3 RMA 

shmem_int_put( 
 
 
 char *target, 
 
 const char *source, 
 size_t nelems, 
 
 int pe 
); 
 
shmem_int_p( 
 char *target, 
 const char *source, 
 int pe 
); 
 

MPI_Put( 
 MPI_Datatype origin_dtype, 
 MPI_Datatype target_dtype, 
 MPI_Aint target_disp, 
 MPI_Win win, 
 const void *origin, 
 int origin_count, 
 int target_count, 
 int target_rank, 
); 
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OpenSHMEM* :  Thin and Light 

OpenSHMEM* API is very thin 
• As small as target PE, 

target address, and 
immediate data 

• Also has source pointer and 
length version 

Smallest implementations used 
3 flit (8B flit) Put Request 

• Limited node space 
• Limited framing 
• Depended on link level 

reliability 
• As little as 1 flit response 

T3D* /T3E* used more bits of 
overhead 

 

Element Size 
Target Node 15 bits 
Source Node 15 bits 
Framing 34 bits 
Target Address 64 bits 
8B Payload 64 bits 
Total# 24 B 
Total# w/ Resp. 32 B 
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#These totals are not indicative of 
any specific implementation 
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Early SHMEM* System Environment 
Systems were small(er) 

• No more than 2048 nodes 
• Two cores per node 

Memory was symmetric 
• Simplifies programming 

and implementation 

Round-trip bandwidth delay 
product was small 

• Hundreds of megabytes 
per second 

• 1.5 µs of round-trip 
latency 

Applications were simple 
• Written in a single 

API/language 
• Written by a single author 

(effectively) 

MPI was new 
• Could be layered on SHMEM* 

at small scale 

Systems were single user (sort of) 
• At a minimum, partitioned 
• Limited need for protection 

Filesystems were (almost) an 
afterthought 
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System Characteristics:  Then and Now 
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Characteristic Then Now 
Maximum Scale (Nodes) 2048 128K  
Cores per Node 2 16-60 

(and growing) 
Memory per Node Hundreds of MB Tens of GB 
OS Microkernel “Standard” Linux* 
Protection need “Hard” Partitioned Multi-user 
Network Ordering Deterministic Request / 

Adaptive Response 
Adaptive 

Bandwidth 150 MB/s 10 GB/s 
Round-trip delay 1.5 µs 1.5 µs 
Message Rate 18 Mmsgs/s 120 Mmsgs/s 
Messaging API None Established MPI dominant, 

PGAS emerging 
Applications (relatively) simple Tens of Libraries 
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What do those changes bring?(1) 

More bits!  Lots more bits… 
• Bigger LID space  
• Many more packets in 

flight (transaction tracking 
bits) 

• Protection 
– Pkey 
– Other protection bits 

• End-to-end reliability 

Item Bits Impacts 
LID +4 Both 
transactions +3 Both 
PKey +16 Both 
End-to-End +32 Both 
Sequence # +16 

(or more) 
Both 

RKey +32 Request 
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What do those changes bring? (2) 
Harder translation 

• Local to the target node, and process context specific 
• Hard to do at system level 
• Deeper page table hierarchies 

Symmetric addresses are harder to guarantee 
• Can be done (if you turn off some options in Linux*)…  
• …most of the time 

Fence is not free 
• Fence is typically quiet 

More process contexts  
• Wire must ID context at initiator/target 
• Allow more processes than cores (resource allocation issue) 
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OpenSHMEM* over Portals 4 
http://code.google.com/p/portals-shmem/ 
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Portals Philosophy 
Use building blocks… 

• Use composable pieces 
• Maintain API symmetry where reasonable 
• If done properly, one functionality serves many needs 

…to capture application semantics for many APIs… 
• Portals does not implement fence(), quiet(), or barrier(), 

but has the tools to build them 
• Portals is not MPI_Isend()/MPI_Irecv(), but does handle: 

– Matching 
– Unexpected messages 

…in a way that is friendly to offload. 
• Blocks are “simple” 
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Attempt #1: Initial Extensions to 
Portals 4 

Added several general purpose building blocks 
• Nonmatching interface 
• Counting events for lightweight completion 
• Breadth of atomic operations 

– MPI sets a high bar for this one 

• Triggered operations for collectives 

Achieved fundamental goal:  building blocks were 
reusable 

• Counting events + Atomic operations + triggered 
operations == collectives 
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What We Learned 

Nonmatching interface must be very limited to get it right 
• Wanted something that could be fully pipelined 
• Multiple substantial revisions to achieve that 

Needed a path for blocking puts 
• SHMEM* puts expected to be locally complete on return 
• Portals puts were fully nonblocking 

– Added query for size below which Portals could locally 
complete 

Ordering is… hard… 
• Many, many assumptions about ordering, atomicity, 

operation interactions in various PGAS implementations 
• Completely rewrote the ordering definition 
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Memory Layout 
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Memory Layout 

stack 

heap 

data 

text 

Sym. 
heap 
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LE 
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Portals Data Structures 

NI 

Err EQ 

Heap LE 

Data LE 

Target CT 
Data PT 

Heap PT 

Put MD 

Get MD 

Put CT 

Get CT 

portal table 
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Put Operations 

void shmem_long_p(long *addr, long value, int pe) { 
    ptl_process_t peer; 
    ptl_pt_index_t pt; 
    long offset; 
    peer.rank = pe; 
    GET_REMOTE_ACCESS(addr, pt, offset); 
  
    PtlPut(shmem_internal_put_md_h, 
           (ptl_size_t) &value, 
           sizeof(value), 
           PTL_CT_ACK_REQ, 
           peer, 
           pt, 
           0, 
           offset, 
           NULL, 
           0); 

    shmem_transport_portals4_pending_put_counter++; 

} 
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GET_REMOTE_ACCESS() 
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#ifdef ENABLE_REMOTE_VIRTUAL_ADDRESSING 
#define PORTALS4_GET_REMOTE_ACCESS_ONEPT(target, pt, offset)            \ 
  do {                                                                  \ 
    pt = (one_pt);                                                      \ 
    offset = (uintptr_t) target;                                        \ 
  } while (0) 
#else 
#define PORTALS4_GET_REMOTE_ACCESS_TWOPT(target, pt, offset)            \ 
  do {                                                                  \ 
    if ((void*) target < shmem_internal_heap_base) {                    \ 
      pt = (data_pt);                                                   \ 
      offset = (char*) target - (char*) shmem_internal_data_base;       \ 
    } else {                                                            \ 
      pt = (heap_pt);                                                   \ 
      offset = (char*) target - (char*) shmem_internal_heap_base;       \ 
    }                                                                   \ 
  } while (0) 
#endif 
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Memory Layout 

stack 

heap 

data 

text 

Sym. 
heap 

Put MD Get MD One LE 
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Variant: Portals Data Structures 

NI 

Err EQ 

One LE 

Target CT 
One PT 

Put MD 

Get MD 

Put CT 

Get CT 

portal table 
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Get Operations 
void shmem_double_get(double *target, const double *source,  

                      size_t len, int pe) { 
    … 

    ptl_ct_event_t ct; 
    peer.rank = pe; 
    GET_REMOTE_ACCESS(source, pt, offset); 
  
    PtlGet(shmem_internal_get_md_h, 
                 (ptl_size_t) target, 
                 len * sizeof(double), 
                 peer, 
                 pt, 
                 0, 
                 offset, 
                 0); 
    shmem_internal_pending_get_counter++; 
    PtlCTWait(shmem_internal_get_ct_h,  
              shmem_internal_pending_get_counter, 
              &ct); 

} 
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Fence & Quiet 

void shmem_quiet(void) { 
    ptl_ct_event_t ct; 
  
    /* wait for remote completion (acks) of all pending events*/ 
    PtlCTWait(shmem_internal_put_ct_h, 
              shmem_internal_pending_put_counter, &ct); 

} 
  
  
void shmem_fence(void) { 
   if (shmem_internal_total_data_ordering == 0) { 
        shmem_quiet(); 
    } 
} 
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Address Wait 

void shmem_int_wait(int *var, int value) { 
   ptl_ct_event_t ct; 
  
   while (*var == value) { 
      PtlCTGet(target_ct_h, &ct); 
      if (*var != value) return; 
      PtlCTWait(target_ct_h, ct.success + 1, &ct); 
   } 
} 
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Lock 

Implements MCS locks 

Encodes last/next/signal into one 64 bit field 

Uses masked swap to change individual bits 
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Strided Operations:  Still Open… 

Portals 4 team has evaluated strided operations 
multiple times 

Strided operation definitions are not very consistent 
across APIs 

• SHMEM* 
• MPI 
• GASNet* 
• ARMCI* 
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Impacts on Hardware 
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Some Challenges 
Remote completions:  is a quiet really quiet?  

• PCI* Express uses a posted write model 
• Hard to know when it is “really done” without a lot of 

overhead 

Atomics have implementation challenges 
• Caches on a PCI* Express device would require a way to 

flush that cache to re-enter a “safe” state. When would 
you do that? 

• No caches on a PCI* Express device mean repeated 
atomics (e.g. lock contention) would be slow 

Hardware collective engines require setup 
• Would be nice to have an allocated descriptor of PEs 

that will be in a collective 
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System Scale Challenges 

End-to-end reliability and blocking puts are 
incompatible 

• Old way: 
– TCP: we will copy your data into the kernel and do end-

to-end retransmit 
– RDMA: we will retransmit from user space 
– Custom networks:  we will send your data once and work 

really hard on getting it there 
• End-to-end (user space to user space) retransmits is 

one of the few tools left in the reliability toolbox 

Where did I put that PE ? 
• At 10 million PEs, there is a table lookup that is bad 
• Hardware can help – if you can help us help you 

 
29 



Copyright© 2014, Intel Corporation. All rights reserved.  
*Other brands and names are the property of their respective owners. 

Longer Term 

How can we make OpenSHMEM* better? 
• SHMEM* has always been focused on being a thin 

layer 
• Let’s keep it that way 

– Perform hardware / software co-design 
– Only add the things that hardware can reasonably 

support 
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Thoughts on the Future 
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Evolution 
Threading: we need a definition of how threading works 

• This will impact hardware  
• This will take time to get right… 

– …for the API/users 
– …for the hardware 

Learn from MPI: Communicators are probably too heavyweight, 
but… 

• Collectives could use a place to attach a fixed set of nodes 
• It would be nice to support layered libraries 

– Collective isolation 
– Completion semantics 
– Library relative addressing / protection 

Consider fault tolerance: what trade-offs belong in hardware vs 
software? 

• Portals can tell you when individual messages fail:  
– Can you use that information?   
– How would OpenSHMEM* tell the user?   
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Think about the ecosystem 

Transparency is good 
• Set objectives for releases 
• Set target dates for releases 
• Discuss everything before changing it:  the crowd can be 

wiser than you think 
• Prototype everything in open source before adding it 

Don’t move randomly  
• Document motivations 
• Be transparent 

Don’t break compatibility (often) 
• Extensions are good, changing existing semantics is bad 

Don’t require weird OS hooks or configurations 
• “Most of the time” is not good enough 
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Call for Participation: OFA WG 

https://www.openfabrics.org/downloads/OFWG/ 

http://lists.openfabrics.org/cgi-
bin/mailman/listinfo/openframeworkwg 

https://www.openfabrics.org/component/content/arti
cle/167-sept-18-2013-openfabrics-alliance-
announces-formation-of-openframework-working-
group.html 
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