
Managed by UT-Battelle for the
U. S. Department of Energy

OpenSHMEM Tools Eco-system

1990s

•SHMEM library introduced by Cray Research Inc. (T3D
systems)

•Adapted by SGI for products based on the Numa-Link
architecture and included in the Message Passing Toolkit
(MPT).

•Vendor specific SHMEM libraries emerge (Quadrics, HP, IBM,
gpSHMEM, SiCortex etc.).

2011

•Extreme Scale Systems Center (funded by DOD), located at
Oak Ridge National Laboratory, along with the University of
Houston come together to address the differences between
various SHMEM implementations.

•OpenSHMEM is born.
•OpenSHMEM Specification 1.0 finalized.

2012

•Development of OpenSHMEM Reference Library, Validation
and Verification Suite.

•OpenSHMEM Specification 1.0d released to community.
•Specification supported by some Vendors.
•Compiler based (OpenSHMEM Analyzer), debuggers (DDT)
and performance tools (TAU, SHMEM Tracer) support
OpenSHMEM.

2013

•Development of the OpenSHMEM programming environment
gains momentum.

•Tracing Tools support OpenSHMEM (Vampir / Vampir Trace)
•UCCS lower level communication library integration into
OpenSHMEM Reference implementation.

•OpenSHMEM Specification 1.0e released to community.
•OpenSHMEM Specification 1.1 will be released in March
2013

OpenSHMEM Programming Environment

OpenSHMEM
Reference
Library

ANALYZER

• OpenSHMEM is a community driven effort.
• Website: www.oprnshmem.org

Vampir

Managed by UT-Battelle for the
U. S. Department of Energy

Introduction

• State-of-the-art tools for OpenSHMEM

• Tools are part of the OpenSHMEM
programming environment

• We will present tools for:
– Program Development
– Error Checking
– Performance Analysis
– Performance Modeling
– Debugging

Managed by UT-Battelle for the
U. S. Department of Energy

Introduction (cont)

We will cover the following tools:

• TAU performance system

• Vampir / Score-P

• DDT debugger

• OpenSHMEM Analyzer

Managed by UT-Battelle for the
U. S. Department of Energy

Why use OpenSHMEM tools?

• Help understanding your application

• Fast prototyping to OpenSHMEM

• Increases productivity

• Improves performance and quality of
software

• Facilitates the maintenance of the code

• Use leading technologies in the field

Managed by UT-Battelle for the
U. S. Department of Energy

Software Development Cycle

• Tools are part a the programming environment
for OpenSHMEM

Compilers /
Validation

Suite

Static
Analyzers

for QA

Performance
& Simulation Debuggers

GNU
Intel Compiler
IBM
LLVM

OpenSHMEM
Analyzer
(Program
Understanding,
Error Checking)

TAU (Profile)
Vampir (Tracing)
SHMEM Tracer

(Simulation)

DDT
Debugger

Managed by UT-Battelle for the
U. S. Department of Energy

Static Analyzers: OpenSHMEM Analyzer

• Understanding of an OpenSHMEM
application
– Callgraph, Control flow graphs, Def-Use info

• Helps to produce high quality code:
– Prevents common errors in OpenSHMEM

• Type checks, out-of-bounds, pointer and alias analysis

– Provides information for optimization

• Provides Feedback to the user
– Command based, User Based

• We will cover this tool in the lab session

Managed by UT-Battelle for the
U. S. Department of Energy

The OpenSHMEM Analyzer
• Analysis that the tool can provide:

– SHMEM-aware callgraphs, callsites
• Visualization of synchronizations, atomics, memory I/O,

– Mappings to the source code, source code browser.

• Errors and Semantic Checks:
– Initialization / finalization calls are present in the

code
• PEs are initialized
• Redundant PE initializations

– Correct type information of OpenSHMEM calls
• Data types and sizes check in put/get operations
• Enforcing accesses to symmetric data structures

– Data/Memory Management, advanced analysis
• Buffer allocations / de-allocations
• Check the memory allocation library used.

Managed by UT-Battelle for the
U. S. Department of Energy

Implementation
• Based on a state-of-the-art compiler, that

work on large applications.
– Open64 AMD 4.2.5.2 compiler release.
– Handles C/C++/Fortran + OpenSHMEM 1.0a Spec

• Relies heavily on Inter-procedural analysis.

• OpenSHMEM library is recognized by
compiler and its semantics is used to
perform checks
– Analysis is exported to different formants:

• Command line messages
• Hyper-texted graphs/images that can be visualized with a

web browser.

• Can be easily integrated to application
Makefiles.

Managed by UT-Battelle for the
U. S. Department of Energy

Evaluation of the OpenSHMEM

• We validated the tool with the OpenSHMEM
validation suite 1.0 provided by
openshmem.org

• This includes the validation tests that comes
with 1.0a

• We were able to reproduce the bugs intended
for the validation suite.

• In one case we found an unintended bug in
one of the cases.

Managed by UT-Battelle for the
U. S. Department of Energy

OpenSHMEM Analyzer Implementation
Compile
shmemcc –ipa -c

Link:
shmemcc –ipa *.o

Compilers:
• Summarization

& local analysis

• Analysis
• Detection /

Optimization

Results:
a.out.html /
command line

• Visualization of results:

Source Code

Annotated
Callgraph

Managed by UT-Battelle for the
U. S. Department of Energy

OpenSHMEM analysis

• Callgraph generated: I/O: put/get

Synchronization

Atomics

Init & RTL

Reductions

Broadcast

Callsites Legend:

Node Legend:
Calls OpenSHMEM

OpenSHMEM

Other

Managed by UT-Battelle for the
U. S. Department of Energy

OpenSHMEM analysis

• Hypertexted OpenSHMEM callgraph

Callsite

Procedure

Managed by UT-Battelle for the
U. S. Department of Energy

SHMEM Callgraph Analysis

• Is start_pes() / shmem_init present in the
application?

• If yes, is it present before other OpenSHMEM
calls?

• start_pes should be a dominator of other
OpenSHMEM calls.

• What about inter-procedural files?
– Flow insensitive analysis
– Traverse callgraph nodes in pre-order

Managed by UT-Battelle for the
U. S. Department of Energy

OpenSHMEM Initializations checks

• main (..) {

…

sub();

…

}

• sub (..) {

sub1();

sub2();

}

sub1 (..) {

shmem_finalize();

}

sub2(..) {

shmem_init()

}
• Tool will detect out of order calls inter-

procedural

• Multiple instances of calls

• OpenSHMEM called outside

Managed by UT-Battelle for the
U. S. Department of Energy

How-to-use: multi-init.c

int main (int argc, char **argv)

{

start_pes (0);

start_pes (0);

printf ("Hello from multi-init test\n");

return 0;

}

•Multiple start_pes()
•No shmem_finalize()

Managed by UT-Battelle for the
U. S. Department of Energy

How-to-use:

$cd startpes-ipa

$ shmemcc -ipa test-startpes-ipa.c

*** OpenSHMEM Warning: more than one
OpenSHMEM initialization call found ***

Managed by UT-Battelle for the
U. S. Department of Energy

Examples: Symmetric Errors
• Storage checking:

#ifdef N 64

int main () {

long dest[N], src[N]; //error: dest non-
symetric

<….>

shmem_long_put(dest, src, 64, 1);

• Check if variables are symmetric.
• Check within storage tables of compiler
• Differentiate if variables are pointers or arrays

– Querying compiler’s symbol tables.

Managed by UT-Battelle for the
U. S. Department of Energy

SHMEM storage/type checks

• A variable is represented in a compiler this
way:

General
Types

Global Symbol Table
Local Symbol Table

Program Scopes:

Storage Class

Machine
Types

Auxiliary
Information
(Analysis
Properties)

Managed by UT-Battelle for the
U. S. Department of Energy

Example: badget.c

Int main (int argc, char **argv) {

long dest, src;

int me, npes;

start_pes (0);

me = _my_pe ();

npes = _nu_pes ();

src = 42;

shmem_barrier_all ();

if (me == 0) {

shmem_long_get (&dest, &src, 1, 1);

}

shmem_barrier_all ();

return 0;

}

Managed by UT-Battelle for the
U. S. Department of Energy

Evaluation

$ cd badget

$ shmemcc -ipa badget.c

*** OpenSHMEM Warning: non-symetric
variable in arg2 of shmem_long_get (line=65,
file=badget.o) ***

Managed by UT-Battelle for the
U. S. Department of Energy

Example: Out of bounds checking
#ifdef N 64

int main () {

long dest[N], src[N]; //error: dest non-
symetric

<….>

shmem_long_put(dest, src, N+2, 1);

• Check if variables are accessed within
bounds.

• Works for array accesses for both dest and src
• Depends if constant propagation is known for length of

accesses

Managed by UT-Battelle for the
U. S. Department of Energy

Evaluation: test-bounds.c
int main(void) {

int i, src[N];

long lget[N];

static int targ_static[N];

start_pes(0);

for(i=0; i< N; i++) {

src[i] = my_pe() + i;

froml[i] = my_pe() + i*i;

}

shmem_int_put(targg, srcg, N+M, 2);

shmem_int_put(targ_static, src, N+M, 3);

shmem_long_get(lget,froml,N+M,4);

shmem_barrier_all(); /* sync sender and receiver */

return 1;

}

Out of bounds accesses
of arrays of size N

Managed by UT-Battelle for the
U. S. Department of Energy

Evaluation

• %cd bounds

• %shmemcc -ipa test-bounds.c

*** OpenSHMEM Warning: out of bounds access of
shmem_int_put arg1 of 8 elements with access of 18 elements
(line=20, file=test-bounds.o) ***

*** OpenSHMEM Warning: out of bounds access of
shmem_int_put arg2 of 8 elements with access of 18 elements
(line=20, file=test-bounds.o) ***

• …..

Managed by UT-Battelle for the
U. S. Department of Energy

Example: Out of bounds checking with
constant propagation

• Since out of bounds checks relies on
constants being propagated correctly.

• The OpenSHMEM analyzer can perform:
– Constant Folding
– Inter-procedural constant propagation
– Common expression elimination that evaluate to

constants

Managed by UT-Battelle for the
U. S. Department of Energy

Evaluation: test-bounds-const.c

int main(void) {

int i, src[N], targ[N], len=N;

long lget[N];

static int targ_static[N];

start_pes(0);

for(i=0; i< N; i++) {

src[i] = my_pe() + i;

froml[i] = my_pe() + i*i;

len++;

}

len++;

shmem_int_put(targg, srcg, len, 2);

shmem_int_put(targ_static, src, len, 3);

shmem_long_get(lget,froml,len,4);

…..

}

• len is a variable that is initialized to N
• len is increased by N
• len is increased by 1

Out of bounds access with len= 2N+1

Managed by UT-Battelle for the
U. S. Department of Energy

Evaluation: test-bounds-const.c

• %cd bounds-constprog

• %shmemcc –ipa test-bounds-const.c

*** OpenSHMEM Warning: out of bounds access of shmem_int_put arg1
of 16 elements with access of 33 elements (line=23, file=test-bounds-
constprog.o) ***

*** OpenSHMEM Warning: out of bounds access of shmem_int_put arg2
of 16 elements with access of 33 elements (line=23, file=test-bounds-
constprog.o) ***

*** OpenSHMEM Warning: out of bounds access of shmem_int_put arg1
of 16 elements with access of 33 elements (line=24, file=test-bounds-
constprog.o) ***

Managed by UT-Battelle for the
U. S. Department of Energy

Examples: Out of bounds in strided data
accesses

#ifdef N 10

int main () {

static long dest[N],

long src[N];

shmem_long_iput(dest, src, 100, 2, 5 1);

• Check if variables are within range
• Check if access to variables are out of range
• Perform Constant propagation and check if len is constant

Managed by UT-Battelle for the
U. S. Department of Energy

Evaluation

#define N 7

short src1[N];

int src2[N];

long src3[N];

…

Int main () {

….

shmem_barrier_all();

shmem_iget32(dest2, src2, 1, 2, N, npes-1);

shmem_iget64(dest3, src3, 1, 2, N, npes-1);

shmem_iget128(dest4, src4, 1, 2, N, npes-1);

….

Out of bounds accesses of
for strided accesses

Managed by UT-Battelle for the
U. S. Department of Energy

Evaluation (Bug in Validation Suite)

• %cd iget-global

• %shmemcc -ipa test_shmem_get_globals.c

*** OpenSHMEM Warning: out of bounds access of shmem_iget32 arg2 of 7 elements with
access of 14 elements (line=297, file=test_shmem_get_globals.o) ***

*** OpenSHMEM Warning: out of bounds access of shmem_iget64 arg2 of 7 elements with
access of 14 elements (line=298, file=test_shmem_get_globals.o) ***

*** OpenSHMEM Warning: out of bounds access of shmem_iget128 arg2 of 7 elements with
access of 14 elements (line=299, file=test_shmem_get_globals.o) ***

*** OpenSHMEM Warning: out of bounds access of shmem_short_iget arg2 of 7 elements with
access of 14 elements (line=395, file=test_shmem_get_globals.o) ***

……..

Managed by UT-Battelle for the
U. S. Department of Energy

OpenSHMEM Data Flow problems
• The tool will provides static analysis to

respond questions:
– How data is being used and initialized?
– Framework for data flow information.

• Intra and inter-procedural data flow

– How to construct use-def chains that are
OpenSHMEM aware?

• For example locate uninitialized variables in
OpenSHMEM calls

• Pointers that get propagated to constants or invalid
addresses (i.e. Null)

• How to bind use-define of variables with correct memory
allocators?

– How to make the analysis accurate to be flow
sensitive, process sensitive, etc.

Managed by UT-Battelle for the
U. S. Department of Energy

Check for Allocation of Data
int main () {

src = (long *) shmalloc (N * sizeof (long));

<…>

shmem_long_get(targ, src, N, 1);

<…>

}

• Have data been allocated?

• Have data been initialized?

• Static vs. Dynamic testing

Managed by UT-Battelle for the
U. S. Department of Energy

IPA Dataflow analysis

• Traverse intermediate representations of
each compilation unit

• Mark variables accessed via OpenSHMEM
calls with extra field in symbol tables

• Aggregate global tables and symbols
procedures at “ipa_link” time

• Perform Constant Propagation

• Check for allocation calls of variables and
mark them

• Use data flow analysis to check use-def
chains

Managed by UT-Battelle for the
U. S. Department of Energy

Constructing Use-Def Chains for
OpenSHMEM calls

long *a = shmalloc(..)

shmem_long_get(...,a)

shemem_long_put(a,..)

shfree(a)
a = shmalloc(..)

• Each use must be defined by 1
and only 1 def

• Straight-line code trivially
single-assignment

• Uses-to-defs: many-to-1
mapping

• Each def dominates all its uses

shemem_long_put(a,..)

Pointer becomes undefined

Managed by UT-Battelle for the
U. S. Department of Energy

Challenges for Pointer Analysis

• Pointers are represented by scalars in
compilers

• Accesses in OpenSHMEM calls for pointers
can be complex expressions with address
calculations

• Common expression elimination might be
needed to simplify analysis
– This is sometimes used for re-computation of

addresses

• Pure scalars variables can affect the address
calculation and might be uninitialized

Managed by UT-Battelle for the
U. S. Department of Energy

Example: Complex pointer usage
….

float *x, *y;

static float xs[100],ys[100];

x = (float*)shmalloc((n_local1 - n_local0 + 2)*sizeof(float));

y = (float*)malloc((n_local1 - n_local0 + 2)*sizeof(float));

x -= (n_local0 - 1);

y -= (n_local0 - 1);

shmem_barrier_all();

//... // fill x, y

// fill ghost zone

if (_my_pe() > 0)

shmem_float_get(ys,xs,n1,1); // extra code

…..

if (/*_my_pe() < _num_pes()-1 */(int)y[2])

shmem_float_put(&y[n_local0-1], &y[n_local1-1], 1, _my_pe()+1);

shmem_barrier_all();

Initialization of pointers
*Wrong initialization of y

Address calculation, address is
substracted by n_local0 -1

Address accessed by adding
n_local0 -1

We need to check also if
n_local0 has been initialized
and if it is part of
a pointer expression.

Managed by UT-Battelle for the
U. S. Department of Energy

How pointer is represented in IR

• shmem_float_put(&y[n_local0-1], …);

• IR representation:

INTCONST(-1)

LOAD n_local

SUB

LOAD y

ADD

PARAM 0

CALL shmem_float_put

Need to check if this
Variable is of type pointer

Need to check:
If variable is part of a pointer address calculation
If variable has been properly initialized

Managed by UT-Battelle for the
U. S. Department of Energy

Example: Complex pointer usage
….

float *x, *y;

static float xs[100],ys[100];

y = (float*)malloc((n_local1 - n_local0 + 2)*sizeof(float));

x -= (n_local0 - 1);

y -= (n_local0 - 1);

shmem_barrier_all();

//... // fill x, y

// fill ghost zone

if (_my_pe() > 0)

shmem_float_get(ys,xs,n1,1);

…..

if (/*_my_pe() < _num_pes()-1 */(int)y[2])

shmem_float_put(&y[n_local0-1], &y[n_local1-1], 1, _my_pe()+1);

shmem_barrier_all();

UD y2 (SSA)

UD n_local0

UD y1 (SSA)
UD n_local0

UD n_local1
UD n_local0

Managed by UT-Battelle for the
U. S. Department of Energy

Evaluation:

• %cd heap

• %shmemcc –ipa test-shmem_heap.c

*** OpenSHMEM Warning: Local pointer in arg2
of OpenSHMEM call (line=24, file=test-
shmem_heap.c) initialized with malloc ***

*** OpenSHMEM Warning: Local pointer in arg1
of OpenSHMEM call (line=26, file=test-
shmem_heap.c) initialized with malloc ***

Managed by UT-Battelle for the
U. S. Department of Energy

Global pointers

• For the case of global pointers, we keep
track of all global pointer intializations per
procedures

• We summarize their local access in a table
and mark them initialized.

• If global pointer is not in the table and
accessed in an OpenSHMEM call a warning
is generated.

Managed by UT-Battelle for the
U. S. Department of Energy

Evaluation:
#include <shmem.h>

#include <stdlib.h>

int n1=101;

float *x, *y;

void variable_allocation(int n) {

int nn = (n-1) / _num_pes();

int n_local0 = 1 + _my_pe() * nn;

int n_local1 = 1 + (_my_pe()+1) * nn;

// y = (float*) shmalloc((n_local1 - n_local0 + 2)*sizeof(float)); // forgot to initialize pointer

}

int main(….) {

m = ..

variable_allocation(m)

shmem_float_put(y,x, 1, _my_pe()-1);

}

Managed by UT-Battelle for the
U. S. Department of Energy

Evaluation:

• %cd heap-global

• %shmemcc –ipa test-shmem_heap-global.c

*** OpenSHMEM Warning: global variable arg1
of call shmem_float_put is uninitialized
line=20, file=shmem_heap-global.0) ***

Managed by UT-Battelle for the
U. S. Department of Energy

Other Data Flow problems: going beyond
scalars or array single accesses

• How can we summarize data accesses at
different granularity levels:
– Loop data accesses
– Basic Block Level at the Control Flow
– Procedure level

• Alias analysis information: The tool is able to
check if a symmetric variable is aliased.

Managed by UT-Battelle for the
U. S. Department of Energy

How to use OpenSHMEM Analyzer

• Text-Based Analysis:
– Use like another compiler with the option –ipa

• If more aggressive analysis is require use –ipa –O3

– shmemcc –ipa mytest.c
– Use the default shmem.h provided by the

Analyzer

• Callgraph Analysis
– shmemcc –ipa mytest.c -o test
– firefox test.html

Managed by UT-Battelle for the
U. S. Department of Energy

Makefile Example:

%cat Makefile

CC = shmemcc

CXX = shmemCC

CFLAGS = -ipa

LDFLAGS = $(CFLAGS)

TARGET = ra_shmem

OBJECTS = RandomAccess.o SHMEMRandomAccess.o verification.o

.SUFFIXES: .c

.c.o:

$(CC) $(INCDIR) $(CFLAGS) -c $<

code2html -l C -n -N $< $*.html

all: RASHMEM

RASHMEM: $(OBJECTS)

$(CC) $(INCDIR) $(CFLAGS) $(OBJECTS) -o $(TARGET) $(LDFLAGS)

callgraph ra_shmem &> index.html

firefox index.html

•Makefile modifications
•Use the tool as a regular compiler
•It includes OpenSHMEM (shmem.h)
•Uses a special version of SHMEM library
that can used for IPA.
•It will not generate executables

•Driver: shmemcc

•Converts sources to HTLM format

•Builds graphical callgrph

•Provides error analysis

Managed by UT-Battelle for the
U. S. Department of Energy

How to Install
• Installation instructions:

• Install code2html 0.9.1

• http://www.palfrader.org/code2html/

• Use current .tar.gz file)

• Note: Make sure to add the path to 'code2html' to your $PATH

• Install graphviz 2.28.0

• http://www.graphviz.org/

• Use current .tar.gz file

• Recommended Configuration: ./configure --prefix=<install directory> --enable-python=no

• Note: Make sure to add the path to 'dot' to your $PATH

Managed by UT-Battelle for the
U. S. Department of Energy

How to Install (2)
• Go to www.openshmem.org/OSA

• tar -xzvf openshmem-analyzer-1.0.tar.gz

• cd openshmem-analyzer-1.0/build

• ../configure --prefix=<openshmem analyzer
install directory> --disable-host_bdver1-
support --with-build-optimize=DEBUG

• gmake

• gmake install

• Add <openshmem analyzer install
directory>/bin to your $PATH

Managed by UT-Battelle for the
U. S. Department of Energy

Supported Environments

• Processors: IA32, X86_64 with

• Supports 32/64-bits builds

• SLES 11 SP1, RHEL 6 (GLIBC 2.11 and
above) [Development]

• SLES 10 SP2, SLES 10 SP3, RHEL 5.5

Managed by UT-Battelle for the
U. S. Department of Energy

Acknowledgements

This work was supported by the United States
Department of Defense & used resources of
the Extreme Scale Systems Center at Oak
Ridge National Laboratory.

