
Dotan Barak

OpenSHMEM, 2014

Verbs programming tutorial

© 2014 Mellanox Technologies 2

 A Senior Software Manager at Mellanox Technologies. I have more than 10 years
experience in various roles such as:
• a manager
• a developer

 Was involved in several documentation projects in verbs programming

• Man pages of libibverbs
• Wrote the “RDMA Aware Networks Programming User Manual”
• Wrote the chapter “InfiniBand” in the “Linux Kernel Networking – Implementation and Theory”

book by Rami Rosen, 2013

 Wrote tens of applications over verbs
• Over several verb(s) generations
• In different OS’s

 Author of “RDMAmojo” - a blog on the RDMA technology

About me

© 2014 Mellanox Technologies 3

 Features:
• Remote Direct Memory Access (RDMA) – zero copy
• Kernel bypass
• Highly scalable (10K’s of nodes)
• Message based transactions
• Credit based flow control

 Performance
• High BW (56 Gb/sec)
• Low latency (700 nsec)
• High message rate (137 Mpps)
• The lower 4 OSI layers implemented in HW

 Other
• Industry Standard
• Developed as Open Source (in *NIX)
• Inbox in several OS’s

InfiniBand Advantages

© 2014 Mellanox Technologies 4

InfiniBand Hardware Components

© 2014 Mellanox Technologies 5

 Channel Adapters (CAs) are the end nodes in the subnet.
• They create/consume packets

 There are two types of CAs:
• HCA – CA which supports the verbs interface
• TCA – “weak” CA, does not have to support many features

 xCAs are located in hosts/systems and they have a DMA engine that allows to initiate

local and remote DMA operations.

 xCA has at least one port

Channel Adapters

© 2014 Mellanox Technologies 6

 Switches allow routing of a packet in a subnet according to the packet’s local
destination addressing
• Very fast routing (140-200 nsec)
• Only Unicast packets are routed
• Multicast packets may be duplicated across some/all ports

 A switch has at least three ports

Switch

© 2014 Mellanox Technologies 7

 Routers allow routing of packets between different subnets according to the packet’s
destination Global address

 Gateways allow encapsulation/de-capsulation of InfiniBand packets in other protocol

packets

 Routers and Gateways have at least one port per subnet

Router and Gateway

© 2014 Mellanox Technologies 8

 Links connect xCAs, switches, routers, gateways together to create a subnet
• Every link is full duplex

- Lines(s) for TX
- Lines(s) for RX

• Link can be:
- Copper cable
- Optical cable
- Printed circuit

 Repeaters are transparent physical entities that extend the range of a link

Links are Repeaters

© 2014 Mellanox Technologies 9

InfiniBand subnet

End node

End node

End node End node

End node End node End node

Switch
Switch

Switch

Switch

© 2014 Mellanox Technologies 10

InfiniBand connected subnets

© 2014 Mellanox Technologies 11

RDMA Data Model

© 2014 Mellanox Technologies 12

 Every node in InfiniBand has a Global Unique Identifier (GUID) – Node GUID
• Persistent
• World-wide unique 64 bits value (node GUID)

 Every port in a node has a port GUID
• Ports can be identified using the port GUID
• Every port can be configured with multiple additional GID (Global IDentifier) addresses in the

port’s GID table
 A system, which contains several nodes, may have a System GUID configured in each

node

InfiniBand Addressing

© 2014 Mellanox Technologies 13

InfiniBand Layers

End node

Application

Upper Layer
protocols

Transport
Layer

Network
Layer (GRH)

Link
Layer (LRH)

Physical
Layer

IB Router

Packet relay
PH

Y
Li

nk

PH
Y

Link

Packet relay

PH
Y

Li
nk

PH
Y

Link

Legacy Router End node

Application

Upper Layer
protocols

Transport
Layer

Network
Layer

Link
Layer

Physical
Layer

IB Switch

Packet relay

PH
Y

PH
Y

InfiniBand

© 2014 Mellanox Technologies 14

 A subnet is configured and managed by a Subnet Manager (SM)
• One centralized entity which configures and manages the subnet

- Fills various tables in the node’s ports
- Fills the forwarding tables and more switch tables

• The SM assigns each port in an end-node a Local Identifier (LID)
- 16 bits value
- Unique in a specific subnet
- Port may has one or range of LIDs
- All switch ports have the same LID

• One is active and the other if exists is in standby state
- One of them becomes active if the active one cannot function

Subnet Manager

© 2014 Mellanox Technologies 15

 The receiver prepares the receive buffer(s)
 The sender prepares the send buffer(s)

 Points :

• Network software stack involved
- Usually part of the OS’s kernel
- Consumes CPU
- If needed, provides reliability
- Caches the data

• Order of operations does matter
- Receive buffer(s) should be available before data is received

The Classic Data Transfer Model (Sockets)

© 2014 Mellanox Technologies 16

 Send
• Just like the classic model
• Data is read in local side

- Can be gathered from multiple buffers
• Sent over the wire as a message
• Remote side specify where the message will be stored

- Can be scattered to multiple buffers

 RDMA
• Local side can write data directly to remote side memory

- Can be gathered locally from multiple buffers
• Local side can read data directly from remote side memory

- Can be scattered locally to multiple buffers
• Remote side isn’t aware to any activity

- No CPU involvement at remote side

RDMA Data Transfer Model

© 2014 Mellanox Technologies 17

 Work Request (WR)
• Work items that the HW should perform

 Work Completion (completion)

• When a WR is completed, it may create a Work Completion which provides information about
the ended WR
- Type, opcode, amount of data send/received, more

 Work Queue (WQ)

• A queue which contains WRs
• Scheduled by the HW

- WR execution ordering is guaranteed within the same WQ – FIFO
- There is no guarantee about the order between different Work Queues

• Can be either Send or Receive Queue
• Adding a WR to a WQ is called “posting a WR”
• Every WR that was posted is considered “outstanding” until it ends with Work completion. While

outstanding:
- One cannot know if it was scheduled by the HW or not
- Send buffer(s) cannot be (re)used/freed
- Receive buffer(s) content is undetermined

RDMA Data Transfer Model – Work Queues

© 2014 Mellanox Technologies 18

RDMA data transfer model – Work Queues (cont.)

© 2014 Mellanox Technologies 19

 Send Queue (SQ)
• A Work Queue that handles sending messages
• Every entry is called a Send Request (SR). It specifies:

- How data is used
- What memory buffers to use
 To send or receive data – depends on the opcode

- How much data is sent
- More attributes

• Adding a SR to an SQ is called “posting a Send Request”
• SR may end with a Work Completion

 Receive Queue (RQ)

• A Work Queue that handles incoming messages
• Every entry is called a Receive Request (RR). It specifies:

- Memory buffers to be used (If RR is consumed – depends on opcode)
• Adding a RR is to the RQ called “posting a Receive Request”
• An RR always ends with a Work Completion
• This queue may send data as a response – depends on opcode

 Queue Pair (QP)

• An object which unifies both Send and Receive Queues
• Every Queue is independent
• Every QP is associated with a Partition Key (P_Key)

RDMA Data Transfer Model – Work Queues (cont.)

© 2014 Mellanox Technologies 20

 Requester
• The active side

- It initiates the data transfer
• Post SR(s)

 Responder

• The passive side
- It sends or receives data – depend on the used opcode

• May Post RR(s)
• Send ACK/NACK for reliable transport types

RDMA Data Transfer Model - Roles

© 2014 Mellanox Technologies 21

 The responder Post Receive Requests (before data is received)
 The requester Post Send Request

• Only data is sent over the wire
 ACK is sent only in reliable transport types

RDMA opcodes: Send

Requester Responde
r

Post RR
Post SR data

ACK Poll CQ

Poll CQ

sync

© 2014 Mellanox Technologies 22

 The requester Post Send Request
• Data and remote memory attributes are sent
• Responder is passive
• Immediate data can be used to consume RRs at the responder side

 ACK is sent only in reliable transport types

RDMA opcodes: RDMA Write

Requester Responde
r

Post SR data + addr +
rkey

ACK

Poll CQ

© 2014 Mellanox Technologies 23

 The requester Post Send Request
• Data and remote memory attributes are sent
• Responder is passive

 Data is sent from the responder
• Available only in reliable transport types

RDMA opcodes: RDMA Read

Requester Responde
r

Post SR addr + rkey

data

Poll CQ

© 2014 Mellanox Technologies 24

 The requester Post Send Request
• Data and remote memory attributes are sent
• Responder is passive

 Original data is sent from the responder
• Read-modify-write is performed in responder’s memory
• Available only in reliable transport types

RDMA opcodes: Atomic

Requester Responde
r

Post SR data + addr +
rkey

data

Poll CQ

© 2014 Mellanox Technologies 25

 Fetch and Add
• The following is done in atomic way for 64-bits numbers at responder’s memory:

- Fetch data from memory
- Add a value
- Store the new number

• Send the original value to the requester
 Compare and Swap

• The following is done in atomic way for 64-bits numbers at responder’s memory :
- Fetch data from memory
- Compare the data with number1
 If they are equal - store number2 in memory

• Send the original value to the requester

RDMA opcodes: Atomic (cont.)

© 2014 Mellanox Technologies 26

Atomic RDMA Read RDMA Write Send

requester <->
responder

requester <-
responder

requester ->
responder

requester ->
responder

Data
direction

No No Only in case of
RDMA Write with
immediate

Yes Require RR
at
responder

Scatter data
(multiple buffers)

Scatter data
(multiple buffers)

Gather data
(multiple buffers)

Gather data
(multiple buffers)

Requester
memory
operations

Write data
(contiguous block)

Write data
(contiguous
block)

Write data
(contiguous
block)

Scatter data
(multiple buffers)

Responder
memory
operation

Yes No No No Atomicity

RDMA opcodes summary

© 2014 Mellanox Technologies 27

Verbs

© 2014 Mellanox Technologies 28

 Software
• Linux distribution
• RDMA stack installed

- MLNX-OFED
- Community's OFED
- Native RDMA stack within the Linux distribution
- Download manually the needed libraries and compile the Linux kernel

 Hardware
• RDMA device

- InfiniBand/RoCE is preferred
- Connected in loopback or back-to-back/switch

Prerequisites

© 2014 Mellanox Technologies 29

 Verbs is an abstract description of the functionality that is provided for applications for
using RDMA.
• Verbs is not an API
• There are several implementations for it

 Verbs can be divided into two major groups
• Control path – manage the resources and usually requires context switch

- Create
- Destroy
- Modify
- Query
- Work with events

• Data path – Use the resources to send/receive data and doesn’t require context switch
- Post Send
- Post Receive
- Poll CQ
- Request for completion event

What is the “verbs”?

© 2014 Mellanox Technologies 30

 Verbs is a low level description for RDMA programming
• Verbs are close to the “bear-metal” and provide best performance

- Latency
- BW
- Message rate

• Verbs can be used as building blocks for many applications
- Sockets
- Storage
- Parallel computing

 Any other level of abstraction over verbs may harm the performance

 Once you know it, verbs are not so mysterious …

Why use verbs?

© 2014 Mellanox Technologies 31

 libibverbs, developed and maintained by Roland Dreier since 2006, are de-facto the
verbs API standard in *nix
• Developed as an Open source
• The kernel part of the verbs is integrated in the Linux kernel since 2005 – Kernel 2.6.11
• Inbox in several *nix distributions
• There are level low-level libraries from several HW vendors

 Same API for all RDMA-enabled transport protocols
• InfiniBand – Networking architecture which supports RDMA

- requires both NICs and switches that supports it.
• RDMA Over Converged Ethernet (RoCE) – encapsulation of RDMA packets over Ethernet/IP

frames
- requires NICs which supports it and standard Ethernet switches

• Internet Wide Area RDMA Protocol (iWARP) – provides RDMA over Stream Control
Transmission Protocol (SCTP) and Transmission Control Protocol (TCP)
- requires NICs which supports it and standard Ethernet switches

libibverbs

© 2014 Mellanox Technologies 32

 libibverbs is completely thread safe
• libibverbs itself is thread safe
• The userspace low-level driver libraries are thread safe as well
• Application can use RDMA resources in multiple threads

 Warning: libibverbs will not prevent you from getting into troubles

• Destroying a resource in one thread and using it in another thread will end up with segmentation
fault
- This happens in non-thread code as well

libibverbs: Thread Support

© 2014 Mellanox Technologies 33

 When possible, avoid using fork()
• fork() or other system calls that call fork(), for example: system(), popen(), etc.

 If fork() must be used, the next rules should be followed:
• Prepare libibverbs to work with fork():

- Call the verb ibv_fork_init()
 or
 Setting the environment variables RDMAV_FORK_SAFE or IBV_FORK_SAFE
- This will allocate internal structures in way which is more “fork()”-friendly

• RDMA should be used only in the parent process
• Child process should call immediately exec*() or exit()
• If huge pages are used, set the environment variable RDMAV_HUGEPAGES_SAFE as well

 Warning: Not following those rules may lead to data corruption or segmentation fault!

libibverbs: fork() support

© 2014 Mellanox Technologies 34

 Source code that uses libibverbs should include the header:
• #include <infiniband/verbs.h>

 Executables/libraries that work with libibverbs should be linked with:
• -libverbs

 All input structures should be zeroed
• Using memset() or structure initialization
• If the structure will be extended in the future, the value zero will keep the legacy behavior

 Most resource handles are pointers, so using bad handles may cause segmentation
fault
 Verbs that return a pointer – return a valid value in case of a success and NULL incase

of a failure
 Verbs that return an integer – return zero in case of a success and -1 or errno incase of

a failure
• For more information, read the documentation of each verb

General tips on libibverbs

© 2014 Mellanox Technologies 35

RDMA resource creation hierarchy

struct

ibv_device

struct

context

struct

ibv_comp_chann
el

struct ibv_cq

struct ibv_qp

struct

ibv_srq

struct ibv_ah

struct ibv_mr

struct ibv_pd

Mandatory

Optional

© 2014 Mellanox Technologies 36

 In every machine, there can be one or more RDMA devices
• Each RDMA device is a PCI device
• Multiple devices can be:

- From the same or different vendors
- From the same or different models

 One should check which devices are available, and open the requested device(s)
• Every device has a unique name (at specific point in time) and a node GUID which is unique and

persistent
• GUID should be used to identify the device

 Every RDMA device is independent
• Every resource exists in the scope of the RDMA device it was created in
• Resources cannot be shared between different devices

Working with RDMA devices

© 2014 Mellanox Technologies 37

 struct ibv_device **ibv_get_device_list(int *num_devices);
• Return a NULL-terminated list of RDMA device that exist in the local host
• num_devices is optional. NULL can be provided instead of a valid pointer.

• Notice the following fields in struct ibv_device:

- node_type - The node type of this device (xCA, switch, etc.)
- transport_type – The transport type used by this device (IB, iWARP, etc.)

 void ibv_free_device_list(struct ibv_device **list);
• Free the list of RDMA devices that was retuned from ibv_get_device_list()

- This verb should be called after the required RDMA device was opened

 const char *ibv_get_device_name(struct ibv_device *device);
• Return a string that describe the name of the RDMA device

 uint64_t ibv_get_device_guid(struct ibv_device *device);
• Return the GUID of the RDMA device

- This verb should be used to identify a device since the GUID is both unique and persistent

Working with RDMA devices: API

© 2014 Mellanox Technologies 38

 struct ibv_context *ibv_open_device(struct ibv_device *device);
• Return a context from an RDMA device

- This context will be used to create resources in this device

• Notice the following fields in struct ibv_context:
- num_comp_vectors – Number of completions vectors that this device supports
- async_fd – File descriptor that will be used to report about asynchronic events from kernel

 int ibv_close_device(struct ibv_context *context);
• Close the context of the RDMA device

- This verb should be called after destroying all the resources that were created using this context
 Not doing so will cause a memory leak

Working with RDMA devices: API (cont.)

© 2014 Mellanox Technologies 39

struct ibv_device **device_list;
int num_devices;
int i;

device_list = ibv_get_device_list(&num_devices);
if (!device_list) {
 fprintf(stderr, "Error, ibv_get_device_list() failed\n");
 exit(1);
}

for (i = 0; i < num_devices; ++ i)
 printf("RDMA device[%d]: name=%s\n", i, ibv_get_device_name(device_list[i]));

ibv_free_device_list(device_list);

Working with RDMA devices: example

© 2014 Mellanox Technologies 40

Write a program that go over all the RDMA devices and print for every device its node
type.

Tip: use ibv_node_type_str() to get a string from a node type enumerated value.

Exercise 1:

© 2014 Mellanox Technologies 41

 Every context supports several queries
• Queries about the device attributes
• Queries about a specific port properties

- Or about tables within a port, such as GID and P_Key tables

 Some attributes are constant
• Most of the device attributes are constant

 Some attributes are dynamic
• Most of the port attributes are dynamic (LID, MTU, etc.)

Context queries

© 2014 Mellanox Technologies 42

 int ibv_query_device(struct ibv_context *context, struct ibv_device_attr *device_attr);
• Query for the device attributes

- For number of objects, the mentioned values are the higher limit
- Important properties: supported number of objects, number of physical ports

 int ibv_query_port(struct ibv_context *context, uint8_t port_num, struct ibv_port_attr
*port_attr);
• Query for specific port properties

- First port number is: 1
- Important properties: LID, MTU, supported VL, number of P_Keys, number of GIDs

 int ibv_query_pkey(struct ibv_context *context, uint8_t port_num, int index, uint16_t
*pkey);
• Query for the value in a specific index in a port’s P_Key table

- First index is: 0
- Index 0 contains the default P_Key value (0xffff)

 int ibv_query_gid(struct ibv_context *context, uint8_t port_num, int index, union ibv_gid
*gid);
• Query for the value in a specific index in a port’s GID table

- First index is: 0
- Index 0 is a special (constant) value – it contains the port GUID

Context queries: API

© 2014 Mellanox Technologies 43

struct ibv_port_attr port_attr;
int port_num = 1;

rc = ibv_query_port(ctx, port_num, &port_attr);
if (rc) {
 fprintf(stderr, "Error, failed to query port %d attributes in device '%s'\n“,
 port_num, ibv_get_device_name(ctx->device));
 return -1;
}

Context queries: example

© 2014 Mellanox Technologies 44

Write a program that go over all the RDMA devices and print for every port in each device
the GID in entry 0 (i.e. Port GUID)

Exercise 2:

© 2014 Mellanox Technologies 45

 Protection Domain is a mechanism for associating Queue Pairs with other RDMA
resources
• Such as Memory Regions and Address Handles

 Not all resources have a PD
• For example: Completion Queues

 Protection Domain as its name state is a mean of protection
• Mixing resources that were associated with different PDs will result a Work Completion with error

 Every Protection Domain can be imagined as a different color

• Resources that are associated with a Protection Domain get its color
• Resources from different colors can’t work together

Protection Domain (PD)

© 2014 Mellanox Technologies 46

 struct ibv_pd *ibv_alloc_pd(struct ibv_context *context);
• Create a Protection Domain

 int ibv_dealloc_pd(struct ibv_pd *pd);
• Destroy a Protection Domain

• This verb should be called after destroying all the resources that are associated with it

Protection Domain (PD): API

© 2014 Mellanox Technologies 47

struct ibv_context *context;
struct ibv_pd *pd;

pd = ibv_alloc_pd(context);
if (!pd) {
 fprintf(stderr, "Error, ibv_alloc_pd() failed\n");
 return -1;
}

…

if (ibv_dealloc_pd(pd)) {
 fprintf(stderr, "Error, ibv_dealloc_pd() failed\n");
 return -1;
}

Protection Domain (PD): example

© 2014 Mellanox Technologies 48

 Memory Region is a virtually contiguous memory block that was registered, i.e.
prepared for work with RDMA.
• Any memory buffer in the process’ virtual space can be registered
• Available permissions. One or more of the following permissions (Or’ed):

- Local operations (Local Read is always supported)
 IBV_ACCESS_LOCAL_WRITE
 IBV_ACCESS_MW_BIND

- Remote operations
 IBV_ACCESS_REMOTE_WRITE
 IBV_ACCESS_REMOTE_READ
 IBV_ACCESS_REMOTE_ATOMIC

• If Remote Write or Remote Atomic is enabled, local Write should be enabled too
• The same memory buffer can be registered multiple times

- even with different permissions
• After a successful memory registration, two keys are being generated:

- Local Key (lkey)
- Remote Key (rkey)
Those keys are used when referring to this MR in a Work Request

Memory Region (MR)

© 2014 Mellanox Technologies 49

 Memory pages pinning has advantages
• Memory pages are always present in RAM

- Never swapped out
- Low latency

• Address translation can be cached
 But Memory pages pinning decreases the available memory for the kernel

• Only the process that registered it can use this memory
• This may cause high use of the swap file
• When too much memory is pinned, the kernel may start killing processes

- Or machine may work very slow

 Creating the various queues register memory as well..

Memory Region (MR) (cont.)

© 2014 Mellanox Technologies 50

 struct ibv_mr *ibv_reg_mr(struct ibv_pd *pd,
 void *addr, size_t length,
 enum ibv_access_flags access);

• Register a memory buffer with specific permissions

• Notice the following fields in struct ibv_mr:
- lkey - The local key of this MR
- rkey - The remote key of this MR
- addr – The start address of the memory buffer that this MR registered
- length – The size of the memory buffer that was registered

 int ibv_dereg_mr(struct ibv_mr *mr);
• Deregister a Memory Region

• This verb should be called if there is no outstanding Send Request or Receive Request that

points to it

Memory Region (MR): API

© 2014 Mellanox Technologies 51

struct ibv_pd *pd;
struct ibv_mr *mr;

mr = ibv_reg_mr(pd, buf, buf_size, IBV_ACCESS_LOCAL_WRITE);
if (!mr) {
 fprintf(stderr, "Error, ibv_reg_mr() failed\n");
 return -1;
}

…

if (ibv_dereg_mr(mr)) {
 fprintf(stderr, "Error, ibv_dereg_mr() failed\n");
 return -1;
}

Memory Region (MR): example

© 2014 Mellanox Technologies 52

Write a program that open a device, allocate a PD and register 3 MRs:
1) One that allow local read
2) One that allow local write
3) One that allow remote write

Exercise 3:

© 2014 Mellanox Technologies 53

 Completion Event channel is a mechanism for delivering notification about the creation
of Work Completions in CQs that is attached to it.
• Useful to reduce the CPU consumption

 This object will be used when creating new CQs
 One Completion Event channel can be used with multiple CQs

Completion Event Channel

© 2014 Mellanox Technologies 54

 struct ibv_comp_channel *ibv_create_comp_channel(struct ibv_context *context);
• Create a new Completion Event channel

• Notice the following fields in struct ibv_comp_channel:

- fd – File descriptor that will be used to report about completion events from kernel

 int ibv_destroy_comp_channel(struct ibv_comp_channel *channel);
• Destroy a Completion Event channel

• This verb should be called after destroying all the CQs that are associated with it

Completion Event channel: API

© 2014 Mellanox Technologies 55

struct ibv_context *context;
struct ibv_comp_channel *channel;

channel = ibv_create_comp_channel(context);
if (!channel) {
 fprintf(stderr, "Error, ibv_create_comp_channel() failed\n");
 return -1;
}

…

if (ibv_destroy_comp_channel(channel)) {
 fprintf(stderr, "Error, ibv_destroy_comp_channel() failed\n");
 return -1;
}

Completion Event channel: example

© 2014 Mellanox Technologies 56

 Completion Queue is a Queue that holds information about completed Work Requests
• Every Work Completion contains information about the corresponding completed Work Request

 A Completion Queue size is limited
• If more Work Completions than its size are added, the CQ is overruled and all associated Work

Queues are moved to the Error state
- It is up to the user to make sure that the CQ size is enough
- It is up to the user to empty the CQ in order to prevent CQ overrun

 One CQ can be shared with multiple queues
• Several Queue Paris
• Only Send Queues
• Only Receive Queues
• Mix of the above

Completion Queue (CQ)

© 2014 Mellanox Technologies 57

 struct ibv_cq *ibv_create_cq(struct ibv_context *context, int cqe, void *cq_context,
 struct ibv_comp_channel *channel, int comp_vector);

• Create a new Completion Queue

• Notice the following fields in struct ibv_cq:
- cqe – The actual number of Work Completions that the CQ can hold
- cq_context – The private context that the CQ is associated with

 int ibv_destroy_cq(struct ibv_cq *cq);
• Destroy a Completion Queue

• This verb should be called after destroying all the QPs that are associated with it

 int ibv_resize_cq(struct ibv_cq *cq, int cqe);
• Resize an existing Completion Queue

• The new size should be able to contain the Work Completions that currently populate the CQ

Completion Queue (CQ): API

© 2014 Mellanox Technologies 58

struct ibv_context *context;
struct ibv_comp_channel *channel;
struct ibv_cq *cq;

cq = ibv_create_cq(context, cq_size, NULL, channel, 0);
 or
cq = ibv_create_cq(context, cq_size, NULL, NULL, 0);
if (!cq) {
 fprintf(stderr, "Error, ibv_create_cq() failed\n");
 return -1;
}

…

if (ibv_destroy_cq(cq)) {
 fprintf(stderr, "Error, ibv_destroy_cq() failed\n");
 return -1;
}

Completion Queue (CQ): example

© 2014 Mellanox Technologies 59

Write a program that open a device, create a Completion Event channel and create 2
CQs:

1) One without any associated Completion Event channel
2) One with associated Completion Event channel

Exercise 4:

© 2014 Mellanox Technologies 60

 Queue Pair is the actual object that transfers data
• It encapsulates both Send and Receive Queue

- Each of them is completely independent
- Send Queue can generate Work Completion for every Send Request or for specific Send Requests
- Receive queue generates Work Completion for every completed Receive Request

• Full duplex
• A QP represent a real HW resource

 There are three major transport types
• Reliable Connected (RC)

- An RC QP is connected to a single RC QP
- Reliability is guaranteed (ordering, integrity and arrival of all packets)
- Supports operations that need ACK

• Unreliable Connected (UC)
- An UC QP connected to a single UC QP
- Reliability is not guaranteed

• Unreliable Datagram (UD)
- An UD QP can send/receive messages to/from any UD QP
- Reliability is not guaranteed
- Multicast is supported
- Each message is limited to one packet

Queue Pair (QP)

© 2014 Mellanox Technologies 61

RC UC UD Metric

☺ Reliability

☺ ☺ ☺ Send (with immediate)

☺ ☺ RDMA Write (with immediate)

☺ RDMA Read

☺ Atomic operations

☺ Multicast
2GB 2GB MTU Max message size

☺ ☺ ☺ CRC

Queue Pair (QP) (cont.)

© 2014 Mellanox Technologies 62

QP state machine

© 2014 Mellanox Technologies 63

Error SQE SQD RTS RTR Init Reset

Allowed Allowed Allowed Allowed Allowed Allowed Disallowed Post RR

Allowed Allowed Allowed Allowed Disallowed Disallowed Disallowed Post SR

Flushed
with error

Processed

Processed

Processed

Processed

Not
processed

Not
processed

RR
processing

Flushed
with error

Flushed
with error

New WRs
aren’t
processed

Processed Not
processed

Not
processed

Not
processed

SR
processing

Silently
dropped

Handled Handled Handled Handled Silently
dropped

Silently
dropped

Incoming
packets

None None Initiated Initiated None None None Outgoing
packets

QP state machine (cont.)

© 2014 Mellanox Technologies 64

 Communication should be established between the connected QPs
• Each side needs to know who is the other side
• Each side needs to have information about the other side and the path to it
• Each side needs to configure attributes that describe the send attributes

 Problem: How to connect QP X with QP Y?

• We cannot transfer the needed information to establish the connection until the connection has
already been established between them …

 Solutions:
1. Exchange information Out Of Band

• For example: over sockets
2. Use Communication Manager (CM)  this is the right way to connect QPs

Connecting QPs

© 2014 Mellanox Technologies 65

 The following information needs to be exchanged when connecting QPs
• QP number
• LID number
• RQ Packet Serial Number (PSN)
• GID (if GRH is used)

 Path MTU must be equal on both sides
 If RDMA opcodes are used, the permissions of QP and MR should be configured to

support them

 In each QP state transition, the relevant attributes to enable the state functionality

needs to be configured
• There are different attributes for every transport type

- For RC QPs: retransmission count and timers
- For RC/UC QPs: Primary path and alternate path (optional)

Connecting QPs (cont.)

© 2014 Mellanox Technologies 66

 struct ibv_qp *ibv_create_qp(struct ibv_pd *pd,
 struct ibv_qp_init_attr *qp_init_attr);

• Create a new Queue Pair

• Notice the following fields in struct ibv_qp:
- qp_num – The physical QP number
- qp_context – The private context that the QP is associated with

 int ibv_destroy_qp(struct ibv_qp *qp);
• Destroy a Queue Pair

• This verb should be called after detach is from all multicast groups

 int ibv_modify_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr,
 enum ibv_qp_attr_mask attr_mask);

• Modify the QP attributes

 int ibv_query_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr,
 enum ibv_qp_attr_mask attr_mask,
 struct ibv_qp_init_attr *init_attr);

• Query the attributes of a QP

Queue Pair (QP): API

© 2014 Mellanox Technologies 67

struct ibv_qp_cap {
 uint32_t max_send_wr; - The number of Send Requests that can be outstanding in the QP
 uint32_t max_recv_wr; - The number of Receive Requests that can be outstanding in the QP
 uint32_t max_send_sge; - The number of S/G entries that each Send Request may hold
 uint32_t max_recv_sge; - The number of S/G entries that each Receive Request may hold
 uint32_t max_inline_data; - The requested inline data (in bytes) to be sent
};

struct ibv_qp_init_attr {
 void *qp_context; - A private context that the QP will be associated with
 struct ibv_cq *send_cq; - The CQ to be associated with the QP’s Send Queue
 struct ibv_cq *recv_cq; - The CQ to be associated with the QP’s Receive Queue
 struct ibv_srq *srq; - Optional: if not NULL, the SRQ to be associated with
 struct ibv_qp_cap cap; - The QP attributes to be created
 enum ibv_qp_type qp_type; - The QP transport type
 int sq_sig_all; - Indication if every completed Send Request will generate a Work

Completion
};

Queue Pair (QP): API (cont.)

© 2014 Mellanox Technologies 68

struct ibv_pd *pd;
struct ibv_cq *cq;
struct ibv_qp *qp;
struct ibv_qp_init_attr init_attr = {
 send_cq = cq,
 .recv_cq = cq,
 .cap = {
 .max_send_wr = 1,
 .max_recv_wr = rx_depth,
 .max_send_sge = 1,
 .max_recv_sge = 1
 },
 .qp_type = IBV_QPT_RC
 };

qp = ibv_create_qp(pd, &init_attr);
if (!qp) {
 fprintf(stderr, "Error, ibv_create_qp() failed\n");
 return -1;
}

…

if (ibv_destroy_qp(qp)) {
 fprintf(stderr, "Error, ibv_destroy_qp() failed\n");
 return -1;
}

Queue Pair (QP): example

© 2014 Mellanox Technologies 69

Data Transfer verbs

© 2014 Mellanox Technologies 70

 Every Work Request contains usually one or more S/G entries
• Every S/G entry refers to a Memory Region or part of it
• No S/G entries means zero-byte message
• Gather – when local data is read and sent over the wire
• Scatter – when data is received and written locally

struct ibv_sge {
 uint64_t addr; - Start address of the memory buffer (usually registered memory)
 uint32_t length; - Size (in bytes) of the memory buffer
 uint32_t lkey; - lkey of Memory Region that is associated with this

memory buffer
};
 Warning: The value zero in ‘length’ is special – it means 2 GB

Scatter/Gather (S/G) elements

© 2014 Mellanox Technologies 71

 Add a Send Request to the Send Queue
• No context switch will occur
• The HW will process it according to its scheduling algorithm

 Specify the attributes of the data transfer
• How data will be sent (opcode, attributes)
• How much data will be sent
• Which local memory buffer(s) to read/write to

- Depends on the opcode
• If RDMA: the remote memory buffer attributes
• If atomic: the remote memory buffer attributes and needed operands
• If UD QP: information on how to reach to remote side

 Every Send Request is considered outstanding until a work Completion was generated
for it or for other Send Request that followed it
• While a Send Request is outstanding, the resources that this Send Request use must not be

destroyed/(re)used
- The content of memory buffers that their content will be filled is undefined
- The memory buffers that their content is sent must be available
- For UD QPs: Address Handles must be available

Post Send Request

© 2014 Mellanox Technologies 72

 int ibv_post_send(struct ibv_qp *qp, struct ibv_send_wr *wr,
 struct ibv_send_wr **bad_wr);

• Add a linked list of Send Requests to the Send Queue

• Warning: bad_wr is mandatory; It will be assigned with the address of the Send Request that its posting
failed

struct ibv_send_wr {
 uint64_t wr_id; - Private context that will be available in the corresponding Work

Completion
 struct ibv_send_wr *next; - Address of the next Send Request. Should be NULL in the last Send

Request
 struct ibv_sge *sg_list; - Array of scatter/gather elements
 int num_sge; - Number of elements in sg_list
 enum ibv_wr_opcode opcode; - The opcode to be used
 int send_flags; - Send flags. Or of the following flags:
 IBV_SEND_FENCE – Prevent process this Send Request until the processing of

previous RDMA
 Read and Atomic operations were completed.
 IBV_SEND_SIGNALED – Generate a Work Completion after processing of this

Send Request ends
 IBV_SEND_SOLICITED – Generate Solicited event for this message in remote

side
 IBV_SEND_INLINE - allow the low-level driver to read the gather buffers

 uint32_t imm_data; - Send message with immediate data (for supported opcodes); extra 32

bits, in network
 order, that will be available in remote’s Work Completion

Post Send Request: API

© 2014 Mellanox Technologies 73

 union {
 struct { - Attributes for RDMA Read and write opcodes
 uint64_t remote_addr; - Remote start address (the message size is

according to the S/G entries)
 uint32_t rkey; - rkey of Memory Region that is associated with

remote memory buffer
 } rdma;
 struct { - Attributes for Atomic opcodes
 uint64_t remote_addr; - Remote start address (the message size is

according to the S/G entries)
 uint64_t compare_add; - Value to compare/add (depends on opcode)
 uint64_t swap; - Value to swap if the comparison passed
 uint32_t rkey; - rkey of Memory Region that is associated with

remote memory buffer
 } atomic;
 struct { - Attributes for UD QP
 struct ibv_ah *ah; - Address Handle to get to remote side
 uint32_t remote_qpn; - Remote QP number (of 0xffffff for multicast

message)
 uint32_t remote_qkey; - Remote Q_Key value
 } ud;
 } wr;
};

Post Send Request: API (cont.)

© 2014 Mellanox Technologies 74

struct ibv_qp *qp;

struct ibv_sge sg_list = {
 .addr = (uintptr_t)buf,
 .length = buf_size,
 .lkey = mr->lkey
};
struct ibv_send_wr wr = {
 .next = NULL,
 .sg_list = &sg_list,
 .num_sge = 1,
 .opcode = IBV_WR_SEND
};
struct ibv_send_wr *bad_wr;

If (ibv_post_send(qp, &wr, &bad_wr)) {
 fprintf(stderr, "Error, ibv_post_send() failed\n");
 return -1;
}

Post Send Request: example (for RC/UC QPs)

© 2014 Mellanox Technologies 75

 Add a Receive Request to the Receive Queue
• No context switch will occur
• The HW will process it according to its scheduling algorithm

 Specify where incoming message that needs Receive Request will be saved
• The local memory buffer(s) to write to
• Each incoming message will consume one Receive Request
• The S/G list must be able to hold the incoming message
• If the message was received on a UD QP

- Extra 40 bytes should be added to the scatter list (for the Global Routing Header (GRH))
- The message data will start at offset 40

 Every Receive Request is considered outstanding until a work Completion was
generated to it
• While a Receive Request is outstanding, the resources that this Receive Request use mustn't be

destroyed/(re)used
- The content of memory buffers that their content will be filled is undefined

Post Receive Request

© 2014 Mellanox Technologies 76

 int ibv_post_recv(struct ibv_qp *qp, struct ibv_recv_wr *wr,
 struct ibv_recv_wr **bad_wr);

• Add a linked list of Receive Requests to the Receive Queue

• Warning: bad_wr is mandatory; It will be assigned with the address of the Receive Request that
its posting failed

struct ibv_recv_wr {
 uint64_t wr_id; - Private context that will be available in the corresponding Work

Completion
 struct ibv_recv_wr *next; - Address of the next Receive Request. Should be NULL in the last

Receive Request
 struct ibv_sge *sg_list; - Array of scatter elements
 int num_sge; - Number of elements in sg_list
};

Post Receive Request: API

© 2014 Mellanox Technologies 77

struct ibv_qp *qp;

struct ibv_sge sg_list = {
 .addr = (uintptr_t)buf,
 .length = buf_size,
 .lkey = mr->lkey
};
struct ibv_recv_wr wr = {
 .next = NULL,
 .sg_list = &sg_list,
 .num_sge = 1
};
struct ibv_recv_wr *bad_wr;

If (ibv_post_recv(qp, &wr, &bad_wr)) {
 fprintf(stderr, "Error, ibv_post_recv() failed\n");
 return -1;
}

Post Receive Request: example

© 2014 Mellanox Technologies 78

 Polling for Work Completion checks if the processing of a Work Request has ended
 A Work Completion holds information about a completed Work Request

• Every Work Completion contains information about the corresponding completed Work Request
 Every Work Completion contain several attributes

• The following fields are always valid (even if the Work Completion was ended with error)
- wr_id
- status
- qp_num
- vendor_err

• The rest of the fields depend on the QP’s transport type, opcode and status
 Work Completion of Send Requests:

• Mark that a Send Request was performed and its memory buffers can be (re)used
- For reliable transport QP: this means that the message was written in the buffers (if status is successful)
- For unreliable transport QP: this means that the message was sent from the local port

 Work Completion of Receive Requests:
• Mark that an incoming message was completed and its memory buffers can be (re)used
• Contains some attributes about the incoming message, such as size, origin, etc.

Polling for Work Completion

© 2014 Mellanox Technologies 79

 int ibv_poll_cq(struct ibv_cq *cq, int num_entries, struct ibv_wc *wc);
• Read one or more Work Completions from a CQ and remove them from the CQ

• If the return value is non-negative – this is the number of polled Work Completions
• If the return value is negative – error occurred

struct ibv_wc {
 uint64_t wr_id; - Private context that was posted in the corresponding Work Request
 enum ibv_wc_status status; - The status of the Work Completion
 enum ibv_wc_opcode opcode; - The opcode of the Work Completion
 uint32_t vendor_err; - Vendor specific error syndrome
 uint32_t byte_len; - Number of bytes that were received
 uint32_t imm_data; - Immediate data, in network order, if the flags indicate that such exists
 uint32_t qp_num; - The local QP number that this Work Completion ended in
 uint32_t src_qp; - The remote QP number
 int wc_flags; - Work Completion flags. Or of the following flags:
 IBV_WC_GRH – Indicator that the first 40 bytes of the receive buffer(s) contain a valid

GRH
 IBV_WC_WITH_IMM – Indicator that the received message contains immediate data
 uint16_t pkey_index;
 uint16_t slid; - For UD QP: the source LID
 uint8_t sl; - For UD QP: the source Service Level
 uint8_t dlid_path_bits; - For UD QP: the destination LID path bits
};

Polling for Work Completion: API

© 2014 Mellanox Technologies 80

 Typical Work Completion status:
• IBV_WC_SUCCESS – Operation completed successfully
• IBV_WC_LOC_LEN_ERR – Local length error when processing SR or RR
• IBV_WC_LOC_PROT_ERR – Local Protection error; S/G entries doesn’t point to a valid MR
• IBV_WC_WR_FLUSH_ERR – Work Request flush error; it was processed when the QP was in

Error state
• IBV_WC_RETRY_EXC_ERR – Retry exceeded; the remote QP didn’t send any ACK/NACK,

even after
 message retransmission
• IBV_WC_RNR_RETRY_EXC_ERR – Receiver Not Ready; a message that requires a Receive

Request
 was sent, but isn’t any RR in the remote QP, even after

message
 retransmission

Polling for Work Completion: API (cont.)

© 2014 Mellanox Technologies 81

struct ibv_cq *cq;
struct ibv_wc wc;
int num_comp;

do {
 num_comp = ibv_poll_cq(cq, 1, &wc);
} while (num_comp == 0);

if (num_comp < 0) {
 fprintf(stderr, "ibv_poll_cq() failed\n");
 return -1;
}

if (wc.status != IBV_WC_SUCCESS) {
 fprintf(stderr, "Failed status %s (%d) for wr_id %d\n", ibv_wc_status_str(wc.status),

wc.status, (int)wc.wr_id);
 return -1;
}

Polling for Work Completion: example

© 2014 Mellanox Technologies 82

Full data flow

Requester

Open device
Allocate PD
Register MR
Create CQ
Create QP
Connect QPs

Post SR
Poll CQ
Check completion status

Responder

Open device
Allocate PD
Register MR
Create CQ
Create QP
Connect QPs + post RR

Post Send Request
Poll CQ
Check completion status

CM

© 2014 Mellanox Technologies 83

Write a program that will open all the needed resources and transfer data for RC QP for
every Send opcode.

Optional:
1. Extend it to support RDMA Write operation.
2. Change the QP transport type to UC.

Exercise 5:

© 2014 Mellanox Technologies 84

Additional Control Operations

© 2014 Mellanox Technologies 85

 Asynchronous event is a mechanism to report about an event that occurred to a
specific process’ resource (CQ, QP, SRQ) or for global resource (port, device)
• Sometimes there is no other way to update about this scenario

 It is advised to create a dedicated threat that will handle the asynchronous events

Asynchronous events

© 2014 Mellanox Technologies 86

 int ibv_get_async_event(struct ibv_context *context,
 struct ibv_async_event *event);

• Read an asynchronous event for this context

• Default behavior: Blocking. Can be changed to be non-blocking

 void ibv_ack_async_event(struct ibv_async_event *event);

• Acknowledge an incoming asynchronous event

• Every asynchronous event must be acknowledged. Not doing this may cause destruction of RDMA
resources to be blocked forever.

struct ibv_async_event {
 union { - The element that got the asynchronous event;

depends on the event type
 struct ibv_cq *cq;
 struct ibv_qp *qp;
 struct ibv_srq *srq;
 int port_num;
 } element;
 enum ibv_event_type event_type; - The asynchronous event type
};

Asynchronous events: API

© 2014 Mellanox Technologies 87

 CQ events
• IBV_EVENT_CQ_ERR – Error occurred to the CQ

 QP events

• IBV_EVENT_COMM_EST – incoming message received while the QP in RTR state
• IBV_EVENT_SQ_DRAINED – The processing of all Send Requests was ended
• IBV_EVENT_PATH_MIG – The alternative path of the QP was loaded (for connected QPs)
• IBV_EVENT_QP_LAST_WQE_REACHED – Receive Request won’t be read from SRQ anymore
• IBV_EVENT_QP_FATAL - Error occurred to the CQ
• IBV_EVENT_QP_REQ_ERR – Transport errors detected in responder side
• IBV_EVENT_QP_ACCESS_ERR – Violation detected in responder side
• IBV_EVENT_PATH_MIG_ERR – Failed to load the alternative path of the QP (for connected

QPs)

 SRQ events
• IBV_EVENT_SRQ_LIMIT_REACHED – SRQ limit was reached
• IBV_EVENT_SRQ_ERR – Error occurred to the SRQ

Asynchronous events: API (cont.)

© 2014 Mellanox Technologies 88

 Port events
• IBV_EVENT_PORT_ACTIVE – Port’s logical state become active
• IBV_EVENT_LID_CHANGE – Port’s LID changed
• IBV_EVENT_PKEY_CHANGE – Port’s P_Key table was changed
• IBV_EVENT_GID_CHANGE - Port’s GID table was changed
• IBV_EVENT_SM_CHANGE – New SM started to manage the subnet
• IBV_EVENT_CLIENT_REREGISTER - New SM started to manage the subnet
• IBV_EVENT_PORT_ERR – Port’s logical state is not active anymore

 Device events

• IBV_EVENT_DEVICE_FATAL – Something really bad happened to the device

Asynchronous events: API (cont.)

© 2014 Mellanox Technologies 89

struct ibv_context *context;
struct ibv_async_event event;

if (ibv_get_async_event(context, &event)) {
 fprintf(stderr, "Error, ibv_get_async_event() failed\n");
 return -1;
}

…

ibv_ack_async_event(&event);

Asynchronous events: example

© 2014 Mellanox Technologies 90

Write a program that open a device, and listen for asynchronous events in a loop and
print them.

Exercise 6:

© 2014 Mellanox Technologies 91

 Working with completion events help reducing the CPU usage
 Once the application requests to get a notification on a specific CQ, it can be block until

the next Work Completion be enqueued to this CQ

 The following pseudo-code example demonstrates one possible way to work with
completion events. It performs the following steps:

 Stage I: Preparation

1. Creates a CQ
2. Request for notification upon a new (first) completion event
 Stage II: Completion Handling Routine

3. Wait for the completion event and ack it
4. Request for notification upon the next completion event
5. Empty the CQ

 Note that an extra event may be triggered without having a corresponding completion

entry in the CQ. This occurs if a completion entry is added to the CQ between Step 4
and Step 5, and the CQ is then emptied (polled) in Step 5.

Completion Events

© 2014 Mellanox Technologies 92

 int ibv_req_notify_cq(struct ibv_cq *cq, int solicited_only);
• Request for a notification about the next Work Completion to be added to the Completion Queue

event for this context

• Request for any Work Completion or only for Work Completion of completed Receive Requests
that their requester send them with the solicited event indicator on

 int ibv_get_cq_event(struct ibv_comp_channel *channel,
 struct ibv_cq **cq, void **cq_context);

• Read a Completion event

• Default behavior: Blocking. Can be changed to be non-blocking

 void ibv_ack_cq_events(struct ibv_cq *cq, unsigned int nevents);

• Acknowledge Completion event(s)

• Multiple completion events can be acknowledge in one time

Completion Events: API

© 2014 Mellanox Technologies 93

struct ibv_cq *cq, *en_cq;
ibv_comp_channel *channel;
void *ev_ctx;

if (ibv_req_notify_cq(cq, 0)) {
 fprintf(stderr, "Error, ibv_req_notify_cq() failed\n");
 return -1;
}
 . . .
if (ibv_get_cq_event(channel, &ev_cq, &ev_ctx)) {
 fprintf(stderr, "Error, ibv_get_cq_event() failed\n");
 return -1;
}

ibv_ack_cq_events(ev_cq, 1);

if (ibv_req_notify_cq(ev_cq, 0)) {
 fprintf(stderr, "Error, ibv_req_notify_cq() failed\n");
 return -1;
}
TODO - Need to empty the CQ here …

Completion Events: example

© 2014 Mellanox Technologies 94

 Shared Receive Queue is an object that provides better scalability
• One Receive Queue to multiple QPs

- When there is a need for a Receive Request, it is being fetched, in atomic way, from the SRQ
• If there are N QPs, each of them may get M incoming messages at any random time

- Without SRQ: there is a need to post N * M RRs
- With SRQ: we can post K * M RRs (where K << N)

 SRQ provides mechanism for the application to be notified when a number of RRs is
dropped bellow a limit
• Using the SRQ limit event

 RRs will be posted to the SRQ
• And not to the QP

Shared Receive Queue (SRQ)

© 2014 Mellanox Technologies 95

 struct ibv_srq *ibv_create_srq(struct ibv_pd *pd,
 struct ibv_srq_init_attr *srq_init_attr);

• Create a new Shared Receive Queue

 int ibv_destroy_srq(struct ibv_srq *srq);
• Destroy a Shared Receive Queue

• This verb should be called after destroying all the QPs that are associated with it

 int ibv_modify_srq(struct ibv_srq *srq,
 struct ibv_srq_attr *srq_attr,
 enum ibv_srq_attr_mask srq_attr_mask);

• Resize or modify the Shared Receive Queue attributes
 int ibv_query_srq(struct ibv_srq *srq, struct ibv_srq_attr *srq_attr);

• Query the attributes of a Shared Receive Queue

• The limit value may change
 int ibv_post_srq_recv(struct ibv_srq *srq, struct ibv_recv_wr *recv_wr,
 struct ibv_recv_wr **bad_recv_wr);

• Add a linked list of Receive Requests to a Shared Receive Queue

Shared Receive Queue (SRQ): API

© 2014 Mellanox Technologies 96

struct ibv_srq_attr {
 uint32_t max_wr; - The number of Receive Requests that can be outstanding in the SRQ
 uint32_t max_sge; - The number of scatter entries that each Receive Request may hold
 uint32_t srq_limit; - The SRQ watermark value (only relevant in modify_srq)
};

struct ibv_srq_init_attr {
 void *srq_context; - A private context that the SRQ will be associated with
 struct ibv_srq_attr attr; - The SRQ attributes to be created
};

Shared Receive Queue (SRQ): API (cont.)

© 2014 Mellanox Technologies 97

struct ibv_pd *pd;
struct ibv_srq *srq;
struct ibv_srq_init_attr attr = {
 .attr = {
 .max_wr = rx_depth,
 .max_sge = 1
 }
};

srq = ibv_create_srq(pd, &attr);
if (!srq) {
 fprintf(stderr, "Error, ibv_create_srq() failed\n");
 return -1;
}

…

if (ibv_destroy_srq(srq)) {
 fprintf(stderr, "Error, ibv_destroy_srq() failed\n");
 return -1;
}

Shared Receive Queue (SRQ): example

© 2014 Mellanox Technologies 98

struct ibv_srq *srq;
struct ibv_srq_attr srq_attr;

memset(&srq_attr, 0, sizeof(srq_attr));

srq_attr.srq_limit = 10;

if (ibv_modify_srq(srq, &srq_attr, IBV_SRQ_LIMIT)) {
 fprintf(stderr, "Error, ibv_modify_srq() failed when arming an SRQ\n");
 return -1;
}

Shared Receive Queue (SRQ): example2

© 2014 Mellanox Technologies 99

Use the program from exercise 5 and add an SRQ support.

Tips:
 Add the SRQ handle when creating the QP
 Post the RR to the SRQ and not to the QP

Exercise 7:

© 2014 Mellanox Technologies 100

 Every UD QP can send message to any other UD QP
 Address Handle describes the path from local to remote ports

• Same AH can be used by multiple QPs
 The Address Handle will be used when posting a Send Request to an UD QP

Address Handle (AH)

© 2014 Mellanox Technologies 101

 struct ibv_ah *ibv_create_ah(struct ibv_pd *pd, struct ibv_ah_attr *attr);
• Create a new Address Handle

 int ibv_init_ah_from_wc(struct ibv_context *context, uint8_t port_num,
 struct ibv_wc *wc, struct ibv_grh *grh,
 struct ibv_ah_attr *ah_attr);

• Initialize an ibv_ah_attr structure according to a Work Completion and a GRH buffer
 struct ibv_ah *ibv_create_ah_from_wc(struct ibv_pd *pd, struct ibv_wc *wc,
 struct ibv_grh *grh, uint8_t port_num);

• Create an Address Handle according to a Work Completion and a GRH buffer
 int ibv_destroy_ah(struct ibv_ah *ah);

• Destroy an Address Handle

• This verb should be called if there isn’t any outstanding Send Request that points to it

Address Handle (AH): API

© 2014 Mellanox Technologies 102

struct ibv_global_route {
 union ibv_gid dgid; - Destination GID address
 uint32_t flow_label; - Flow label which is a hint for switches and routers which path to

take
 uint8_t sgid_index; - The index in the port’s GID table of the source GID
 uint8_t hop_limit; - The number of hops to take before dropping the message
 uint8_t traffic_class; - Traffic class of the message (priority)
};

struct ibv_ah_attr {
 struct ibv_global_route grh; - Description of the Global Routing Header
 uint16_t dlid; - The Destination LID (can be unicast or multicast)
 uint8_t sl; - The Service Level value of the message
 uint8_t src_path_bits; - The source path bits used when the port has a range of LIDs
 uint8_t static_rate; - The static rate between local and remote port speeds
 uint8_t is_global; - Indication that the message will be sent with GRH
 uint8_t port_num; - The local port number to send the message from
};

Address Handle (AH): API (cont.)

© 2014 Mellanox Technologies 103

struct ibv_pd *pd;
struct ibv_ah *ah;
struct ibv_ah_attr ah_attr = {
 .is_global = 0,
 .dlid = dlid,
 .sl = sl,
 .src_path_bits = 0,
 .port_num = port
};

ah = ibv_create_ah(pd, &ah_attr);
if (!ah) {
 fprintf(stderr, "Error, ibv_create_ah() failed\n");
 return -1;
}
…

if (ibv_destroy_ah(ah)) {
 fprintf(stderr, "Error, ibv_destroy_ah() failed\n");
 return -1;
}

Address Handle (AH): example

© 2014 Mellanox Technologies 104

Use the program from exercise 5 and add an UD support.

Tips:
 AH should be used when posting in the SR
 Remote side attributes should be added to the SR as well
 The data in the receive buffer starts at address 40

Exercise 8:

© 2014 Mellanox Technologies 105

Tips and Tricks

© 2014 Mellanox Technologies 106

 General tips
• Avoid using control operations in data path

- They will perform context switch
- They may allocate/free dynamic resources

• Set affinity for process/task
• Work with local NUMA node
• Use MTU which provide best performance
• Register physical contiguous memory
• UD is more scalable than RC

 Posting

• Post multiple Work Request in one call
• Avoid using many scatter/gather elements
• Atomic operations are performance killers
• Work with big messages
• Use selective signaling to reduce number of Work Completions
• Inline data will provide better latency

 Polling

• Read multiple Work Completion in one call
• Use polling to get low latency and Completion events to get lower CPU usage
• When working with events: acknowledge multiple events at once

Performance tips

© 2014 Mellanox Technologies 107

 /sys/class/infiniband/<device name>/diag_counters

 rq_num_lle - Responder - number of local length errors
 rq_num_lqpoe - Responder - number local QP operation error
 rq_num_leeoe - Responder - number local EE operation error
 rq_num_lpe - Responder - number of local protection errors
 rq_num_wrfe - Responder - number of WR flushed errors
 rq_num_lae - Responder - number of local access errors
 rq_num_rire - Responder - number of remote invalid request errors
 rq_num_rae - Responder - number of remote access errors
 rq_num_roe - Responder - number of remote operation errors
 rq_num_rnr - Responder - number of RNR Naks sends
 rq_num_oos - Responder - number of out of sequence requests received
 rq_num_dup - Responder - number of duplicate requests received
 rq_num_rirdre - Responder - number of remote invalid RD request errors
 rq_num_mce - Responder - number of bad multicast packets received
 rq_num_rsync - Responder - number of RESYNC operations
 num_cqovf - Number of CQ overflows
 num_eqovf - Number of EQ overflows

When packets are “lost” – check the counters

© 2014 Mellanox Technologies 108

 sq_num_lle - Requester - number of local length errors
 sq_num_lqpoe - Requester - number local QP operation error
 sq_num_leeoe - Requester - number local EE operation error
 sq_num_lpe - Requester - number of local protection errors
 sq_num_wrfe - Requester - number of WR flushed errors
 sq_num_mwbe - Requester - number of memory window bind errors
 sq_num_bre - Requester - number of bad response errors
 sq_num_rire - Requester - number of remote invalid request errors
 sq_num_rae - Requester - number of remote access errors
 sq_num_roe - Requester - number of remote operation errors
 sq_num_rnr - Responder - number of RNR Naks received
 sq_num_oos - Requester - number of out of sequence Naks received
 sq_num_to - Requester - number of time out received
 sq_num_tree - Requester - number of transport retries exceeded errors
 sq_num_rree - Requester - number of RNR Nak retries exceeded errors
 sq_num_lrdve - Requester - number of local RDD violation errors
 sq_num_rabrte - Requester - number of remote aborted errors
 sq_num_ieecne - Requester - number of invalid EE context number errors
 sq_num_ieecse - Requester - invalid EE context state errors
 sq_num_rsync - Requester - number of RESYNC operations

When packets are “lost” – check the counters (cont.)

© 2014 Mellanox Technologies 109

 InfiniBand specifications
 RDMAmojo (my blog) 
 The document “RDMA Aware Networks Programming User Manual”
 The man pages
 Code samples that comes with libibverbs and librdmacm

More Information is Available

© 2014 Mellanox Technologies 110

Advanced Features and Enhancements

© 2014 Mellanox Technologies 111

 Each two nodes can use the same XRC QP
• No matter how many cores they have

 Provide reliable transport type
• Like RC

 Increase the scalability
• Reduce the number of QPs between each two nodes
• Reduce the memory usage

eXtended Reliable Connection (XRC)

© 2014 Mellanox Technologies 112

 Allow dynamically (re)connect QPs when needed
 Provide reliable transport type

• Like RC
 Provide very high scalability

• Reduce the number of opened QPs in each node
- One QP per core

• Reduce the memory usage

Dynamically Connected Transport (DCT)

© 2014 Mellanox Technologies 113

 Allow registration of GPU memory
 Data can be send and received using RDMA devices directly to the GPU memory

• Avoiding unnecessary memory copy
 Working with NVIDIA’s CUDA toolkit

GPUDirect RDMA

© 2014 Mellanox Technologies 114

 Provide offload for collective operations
• Perform collective operations in wire speed
• Floating point operation
• Support blocking and non-blocking operations

 Increase the scalability
 Decrease the CPU usage

CORE-direct (Collective Offload Resource Engine)

Thank You

	Verbs programming tutorial
	About me
	InfiniBand Advantages
	InfiniBand Hardware Components
	Channel Adapters
	Switch
	Router and Gateway
	Links are Repeaters
	InfiniBand subnet
	InfiniBand connected subnets
	RDMA Data Model
	InfiniBand Addressing
	InfiniBand Layers
	Subnet Manager
	The Classic Data Transfer Model (Sockets)
	RDMA Data Transfer Model
	RDMA Data Transfer Model – Work Queues
	RDMA data transfer model – Work Queues (cont.)
	RDMA Data Transfer Model – Work Queues (cont.)
	RDMA Data Transfer Model - Roles
	RDMA opcodes: Send
	RDMA opcodes: RDMA Write
	RDMA opcodes: RDMA Read
	RDMA opcodes: Atomic
	RDMA opcodes: Atomic (cont.)
	RDMA opcodes summary
	Verbs
	Prerequisites
	What is the “verbs”?
	Why use verbs?
	libibverbs
	libibverbs: Thread Support
	libibverbs: fork() support
	General tips on libibverbs
	RDMA resource creation hierarchy
	Working with RDMA devices
	Working with RDMA devices: API
	Working with RDMA devices: API (cont.)
	Working with RDMA devices: example
	Exercise 1:
	Context queries
	Context queries: API
	Context queries: example
	Exercise 2:
	Protection Domain (PD)
	Protection Domain (PD): API
	Protection Domain (PD): example
	Memory Region (MR)
	Memory Region (MR) (cont.)
	Memory Region (MR): API
	Memory Region (MR): example
	Exercise 3:
	Completion Event Channel
	Completion Event channel: API
	Completion Event channel: example
	Completion Queue (CQ)
	Completion Queue (CQ): API
	Completion Queue (CQ): example
	Exercise 4:
	Queue Pair (QP)
	Queue Pair (QP) (cont.)
	QP state machine
	QP state machine (cont.)
	Connecting QPs
	Connecting QPs (cont.)
	Queue Pair (QP): API
	Queue Pair (QP): API (cont.)
	Queue Pair (QP): example
	Data Transfer verbs
	Scatter/Gather (S/G) elements
	Post Send Request
	Post Send Request: API
	Post Send Request: API (cont.)
	Post Send Request: example (for RC/UC QPs)
	Post Receive Request
	Post Receive Request: API
	Post Receive Request: example
	Polling for Work Completion
	Polling for Work Completion: API
	Polling for Work Completion: API (cont.)
	Polling for Work Completion: example
	Full data flow
	Exercise 5:
	Additional Control Operations
	Asynchronous events
	Asynchronous events: API
	Asynchronous events: API (cont.)
	Asynchronous events: API (cont.)
	Asynchronous events: example
	Exercise 6:
	Completion Events
	Completion Events: API
	Completion Events: example
	Shared Receive Queue (SRQ)
	Shared Receive Queue (SRQ): API
	Shared Receive Queue (SRQ): API (cont.)
	Shared Receive Queue (SRQ): example
	Shared Receive Queue (SRQ): example2
	Exercise 7:
	Address Handle (AH)
	Address Handle (AH): API
	Address Handle (AH): API (cont.)
	Address Handle (AH): example
	Exercise 8:
	Tips and Tricks
	Performance tips
	When packets are “lost” – check the counters
	When packets are “lost” – check the counters (cont.)
	More Information is Available
	Advanced Features and Enhancements
	eXtended Reliable Connection (XRC)
	Dynamically Connected Transport (DCT)
	GPUDirect RDMA
	CORE-direct (Collective Offload Resource Engine)
	Slide Number 115

