OPENSHMEM TUTORIAL

Presenters: Aaron Welch, Swaroop Pophale, Tony Curtis
Material: Aaron Welch, Pengfei Hao, Deepak Eachempati, Swaroop Pophale, Tony Curtis
University of Houston, Texas

http://www.uh.edu/

OpenSHMEM UH Team

Dr. Barbara Chapman Tony Curtis Pengfei Hao

Tutorial Outline

OpenSHMEM

Background
PGAS

= Languages vs. Libraries

OpenSHMEM History
OpenSHMEM Effort
OpenSHMEM Library API
OpenSHMEM and Hardware
OpenSHMEM Implementations

= Reference Implementation overview

Developming OpenSHMEM Applications

- UCCS

We assume ...

Knowledge of C
Familiarity with parallel computing

Linux /UNIX command-line

Background (1)

Concurrent
Multiple things logically happen at once
May be emulated
E.g. time slicing on shared machine

Parallel

= Concurrent +
Things really happen independently
On separate processors

Work is partitioned in some way across resources

u

HOUSTON

Background (2)

Large applications require lots of compute power

Various approaches to providing this
Mainframe
SMP
Cluster

All involve
Multiple things happening at once
... Which need:s...
Programming methods to
Express this
Take advantage of systems

u

HOUSTON

Background (3)

2 main software paradigms
Threaded
OpenMP
Message-passing
MPI

2 main hardware paradigms
Single-image multiprocessor (SMP)
Distributed

Multiple machines with separate OS
Connected together

Programming environments provide abstraction

Background (4)

Address Spaces
Global vs. distributed
OpenMP has global (shared) space

MPI has partitioned space
Private data exchanged via messages

OpenSHMEM is “partitioned global address space” library
PGAS

HOUSTON

Background (5)

SPMD

Program launches many processes
Each starts with same code (SP)
And then typically operates on some specific part of the data (MD)
Processes may then communicate with each other
Share common data

Broadcast work
Collect results

The PGAS family
Libraries include...
GASNet, ARMCI / Global Arrays, UCCS, CCl, GASPI/GPI, OpenSHMEM

Languages include...
Chapel, Titanium, X10, UPC, CAF

A language or library can be used on many machine types,
their implementation hides differences & leverages features

Y of

HOUSTON

PGAS Languages vs Libraries
o

4 N

Some Compiler @

\ J

HOUSTON

PGAS Languages vs Libraries
o

Often more concise More information redundancy in program

Generally not dependent on a particular

R ir mpiler r .
equires compiler support compiler

Library calls are a "black box" to compiler,

More compiler optimization opportunities typically inhibiting optimization

User may have less control over Often usable from many different
performance languages through bindings

Examples: UPC, CAF, Titanium, Chapel, Examples: OpenSHMEM, Global Arrays,
X10 MPI-3

IVERSITY of

HOUSTON

PGAS Language
UPC

12

A number of threads working independently in a SPMD fashion

Number of threads specified at compile-time or run-time;program variable
THREADS

MYTHREAD specifies thread index (0. . THREADS-1)
upc barrier is a global synchronization: all wait
upc forall is the work sharing construct

There are two compilation modes
Static Threads mode:

THREADS is specified at compile time by the user
The program may use THREADS as a compile-time constant

Dynamic threads mode:
Compiled code may be run with varying numbers of threads

13

Hello World in UPC

Any legal C program is also a legal UPC program

If you compile and run it as UPC with P threads, it will run P copies of the
program.

Example of a parallel hello world using UPC.:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {

printf ("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS) ;

PGAS Language
Coarray Fortran (CAF)

multiple executing images

explicit data decomposition and movement across images achieved
by declaring and accessing coarrays

image control statements
subdivide program into execution segments

determine partial ordering of segments among images

define scope for compiler optimization

part of Fortran 2008 standard

other languages enhancements (teams, expanded collectives and
atomics, semaphore synchronization, resilience) are being considered
for next revision

PGAS Library
OpenSHMEM

An SPMD parallel programming library

Library of functions similar in feel to MPI (e.g. shmem_get())
Available for C / Fortran

Used for programs that
perform computations in separate address spaces and
explicitly pass data to and from different processes in the program.

The processes participating in shared memory applications are
referred to as processing elements (PEs).

SHMEM routines supply remote data transfer, work-shared broadcast
and reduction, barrier synchronization, and atomic memory
operations.

OpenSHMEM

An OpenSHMEM “Hello World”

#Hinclude <stdio.h>
#include <mpp/shmem.h>

int main (int arge, char **argv){
int me, npes;
start_pes (0); /*Library Initialization* /
me = _my_pe ();
npes = _num_pes ();
printf ("Hello World from node %4d of %4d\n", me, npes);

return O;

OpenSHMEM History

Cray

SHMEM first introduced by Cray Research Inc. in 1993 for Cray T3D

Platforms: Cray T3D, T3E, PVP, XT series
SGl

Owns the “rights” for SHMEM

Baseline for OpenSHMEM development (Altix)
Quadrics (company out of business)

Optimized API for QsNet

Platform: Linux cluster with QsNet interconnect
Others

HP SHMEM, IBM SHMEM

GPSHMEM (cluster with ARMCI & MPI support, old)

Note: SHMEM was not defined by any one standard.

OpenSHMEM
Concepts (1)

Symmetric Variables

Arrays or variables that exist with the same size, type, and relative address
on all PEs.

The following kinds of data objects are symmetric:

Fortran data objects in common blocks
or with the SAVE attribute.

Non-stack C and C++ variables.

Fortran arrays allocated with shpalloc
C and C++ data allocated by shmalloc

OpenSHMEM
Concepts (2)

int main (void)

{

int *x;

start pes(0);

X = (int¥)
shmalloc (sizeof (x));

shmem barrier all();

shfree (x) ;
return O;

OpenSHMEM Effort
Divergent Implementations (1)

o Many forms of initialization

Include header shmem.h to access the library

® E.g. #include <shmem.h> , #include <mpp /shmem.h>

start_pes, shmem_init: Initializes the calling PE

my_pe: Get the PE ID of local processor

num_pes: Get the total number of PEs in the system

SGI Quadrics Cray

Fortran C/C++ C/C++ Fortran C/C++

start_pes start_pes(0) shmem_init start_pes start_pes
shmem_ init shmem_ init

shmem_my_ pe shmem_my_ pe shmem_my_ pe shmem_my_ pe
shmem_n_pes shmem_n_pes shmem_n_pes shmem_n_pes
NUM_PES num pes num_pes NUM_PES
MY _PE my pe my_pe

UNIVERSITY of

HOUSTON

OpenSHMEM Effort

Divergent Imﬁlementations (2)
]

Hello World (SGI on Altix) Hello World (Cray)

#include <stdio.h> #include <stdio.h>
#include <mpp/shmem.h> #include <shmem.h>
int main(void) int main (void)
{ {
int me, npes; int me, npes;
start pes(0); shmem init();
npes = num pes|(); npes = num pes();
me = my pe(); me = my pe();
printf ("Hello from %d of %d\n", me, printf ("Hello from %d of %d\n", me,
npes) ; npes) ;
return 0; return 0;

OpenSHMEM Effort
The Project

Standardized specification

OpenSHMEM Library Reference Implementation
Validation and Verification Suite

Tutorials & other educational material

Vendor products & information

Community involvement, talk to each other!

Tool-chain ecosystem

OpenSHMEM

Routines
N

0 Initialization and Program Query
0 Symmetric Data Management

0 Data transfers

O Synchronization mechanisms

O Collective communication

0 Atomic Memory Operations

0O Data Cache control

2 Not supported by all OpenSHMEM implementations

OpenSHMEM
Initialization & Query

void start_pes(int n)
® Initialize the OpenSHMEM program
® “n” means “number of PEs” but now ignored, set to O

® Number of PEs taken from invoking environment
E.g. from MPI or job scheduler

® PEs numbered O .. (N — 1) in flat space

int _num_pes(void)

int shmem_n_pes(void)

m return number of PEs in this program
int _my_pe(void)

int shmem_my_pe(void)

m return “rank” of calling PE

OpenSHMEM

I\/Iemorx I\/Ianaﬁement Oﬁeration (1)
25 |

0 void *shmalloc(size t size);
o Allocate symmetric memory on all PEs.
0 void *shfree(void *ptr);
o Deallocate symmetric memory.
0 void *shrealloc(void *ptr, size_t size);
o1 Resize the symmetric memory
O void *shmemalign(size_t alignment, size_t size);

o Allocate symmetric memory with alignment

OpenSHMEM
Memory Management Operation (2)

/* shmalloc() & shfree() */
#include <stdio.h>
#include <shmem.h>
int main (int argc, char **argv)
{
int *v;
start _pes (0);
v=(int*)shmalloc(sizeof(int));
shfree(v);

return 0;

HOUSTON

OpenSHMEM

Data Transfer (1)

1 Put

Single variable

m void shmem_TYPE_p(TYPE *target, TYPE value, int pe)
= TYPE = double, float, int, long, short

Contiguous object
® void shmem_TYPE_put(TYPE *target, const TYPE *source,
size_t nelems, int pe)
w For C: TYPE = double, float, int, long, longdouble, longlong, short
W For Fortran: TYPE=complex, integer, real, character, logical
® void shmem_putSS(void *target, const void *source, size_t
nelems, int pe)
u Storage Size (SS, bits) = 32, 64, 128, mem (any size)

Target must be symmetric

OpenSHMEM

Data Transfer (2)
25 |

] Example: Cyclic communication via puts

/*Initializations*/
int src;

int *dest;

start_pes(0);

Automatic data element

_ Symmetric data element
src = me;

7

target = (int *) shmalloc (sizeof (*target));

nextpe = (me + 1) % npes; /*wrap around */

shmem_int_put (target, &src, 1, nextpe);

cee wation before use
shmem_barrier_all();

x = dest ¥ 0.995 + 45 * y;

HOUSTON

K Points To Remember\

¢ ‘Destination’ has to be
symmetric

» Consecutive puts are not
guaranteed to finish in
order

e Put returns after the data
has been copied out of the
source

+ Completion guaranteed

\ only after synchronization/

OpenSHMEM
Data Transfer (3)

Excuse me while | overwrite your
target with my copy of source

Y- PEO Output $. PET

targeton PE O is 3
targeton PE 1is 0

target on PE 2 is 1
Shared Address Space target on PE 3 is 2

. targeton PE 4 is 3

Private Address Space

OpenSHMEM
Data Transfer (4)

1 Get

Single variable

H TYPE shmem_TYPE_g(TYPE *target, TYPE value, int pe)

For C: TYPE = double, float, int, long, longdouble, longlong, short
For Fortran: TYPE=complex, integer, real, character, logical

Contiguous object
® void shmem_TYPE_get(TYPE *target, const TYPE *source,
size_t nelems, int pe)
For C: TYPE = double, float, int, long, longdouble, longlong, short
For Fortran: TYPE=complex, integer, real, character, logical
® void shmem_getSS(void *target, const void *source, size t
nelems, int peg
Storage Size (SS, bits) = 32, 64,128, mem (any size)

Source must be symmetric

OpenSHMEM
Data Transfer (5)

i Example: Summation at PE O

/*Initializations*/

Automatic data element

int *src;

int target, sum;

start_pes(0);

Symmetric data element

src = (int *) shmalloc (sizeof (*src));
src = me;

sum=me;

if(me == 0){

No synchronization before use
for(int i = 1,i<num_pes();i++){ y

7

shmem_int_get(&target, src, 1, i)
sum = sum + target;

UNIVERSITY of

HOUSTON

/ Points To Remember \

+ ‘Source’ has to be remotely
accessible

+ Consecutive gets finish in
order

* The routines return after the
data has been delivered to

\ the ‘target’ on the local PE /

OpenSHMEM
Data Transfer (6)

0 Strided put/get

m void shmem_TYPE_iput(TYPE *target, const TYPE *source,
ptrdiff_t tst, ptrdiff _t sst,
size_t nelems, int pe)
For C: TYPE = double, float, int, long, longdouble, longlong, short
For Fortran: TYPE=complex, integer, real, character, logical

tst and sst indicate stride between accesses of target and source
resp.

= And the sized variants as for put/get

OpenSHMEM

Data Transfer (7)

#include <stdio.h>
#include <shmem.h>
int main()

{

static short source[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

short target[10];

int i,me;

for (1 =0; 1< 10; i += 1){
target[i] = 666;

}

start_pes (0);

me = _my_pe ();

if (me == 1){

shmem_short_iget (target, source, 2, 1, 4, 0); /* source[0,1,2,3] -> target[0,2,4,6] */

}

shmem_barrier_all ();
if (me == 1){

/* sync sender and receiver */

for (1 =0; 1< 10; i += 1){

printf ("PE %d: target[%d] = %hd, source[%d] = %hd\n",

}
}

shmem_barrier _all ();
return 0;

HOUSTON

me, i, target[i], i, source[i]);

/* sync before exiting */

Outp

PE
PE
PE
PE
PE
PE
PE
PE
PE
PE

1:

R RRPRRRRRRR

u

t:

target[0]

: target[1]
: target[2]
: target[3]
: target[4]
: target[5]
: target[6]
: target[7]
: target[8]
: target[9]

1, source[0@] =
666, source[1]
2, source[2] =
666, source[3]
3, source[4] =
666, source[5]
4, source[6] =
666, source[7]
666, source[8]
666, source[9]

N 1 vl wil =

10

OpenSHMEM
Data Transfer (8)

Put vs. Get

Put call completes when data is “being sent”
Get call completes when data is “stored locally”

Cannot assume put has written until later synchronization
Data still in transit
Partially written at target
Put order changed by e.g. network

Puts allow overlap
Communicate
Compute
Synchronize

OpenSHMEM
Synchronization (1)

o Active Sets
Way to specify a subset of PEs
A triple:
m Start PE

m Stride (log,)
m Size of set

Limitations
m Stride must be powers of 2
® Only define ‘regular’ PE sub-groups

OpenSHMEM
Synchronization (2)

Quick look at Active Sets

Example 1

PE_start = 0, logPE_stride = 0, PE_size = 4
ACTIVE SET? PEO,PE1,PE2,PE3
Example 2

PE_start = 0, logPE_stride = 1, PE_size = 4
ACTIVE SET? PEO0,PE2,PE4,PE6
Example 3

PE_start = 2, logPE_stride = 2, PE_size = 3
ACTIVE SET? PE 2, PE 6, PE 10

HOUSTON

OpenSHMEM
Synchronization (3)

o1 Barrier (Group synchronization)
void shmem_barrier_all()
m Suspend PE execution until all PEs call this function
void shmem_barrier(int PE_start, int PE_stride, int PE_size, long *pSync)
m Barrier operation on subset of PEs

pSync is a symmetric work array that allows different barriers to operate
simultaneously

OpenSHMEM
Synchronization (4)

PEO CODE :
N\ -
‘X shmem_int_put(dest=x,src =x, len=1 Ensures Completlon Of a”
Symmetric T

menory * local memory stores
) y
‘ - * remote memory updates

shmem_int_get (dest=y, src=y, len= 1,&

shmem_barrier_all();

PEO PE1

X X Symimetric
5 o =
Symmetric

shmem_barrier_all() synchronizes all executing PEs

OpenSHMEM
Synchronization (5)

#include <stdio.h>
#include <shmem.h>
#include <stdlib.h>
#tdefine GREEN 1 Output:

#define RED © me:0. Stop on Red Light

int 1ight=RED; me:1. I've turned light to green

int main(int argc, char **argv) me:@. Now I may pr‘oceed
{

int me;

start_pes(0);

me= _my_pe();

if(me==0){

printf("me:%d. Stop on Red Light\n", me);
shmem_int_wait(&light, RED); /* Is the light still red? */
printf("me:%d. Now I may proceed\n", me);

}
if(me==1){
sleep(1l);
light=GREEN;
printf("me:%d. I've turn light to green.\n", me);
shmem_int_put(&light, &light, 1, 0);
}
return 0;

HOUSTON

OpenSHMEM
Synchronization (6)

o Conditional wait (P2P synchronization)
Suspend until local symmetric variable NOT equal to the value specified
void shmem_wait(long *var, long value)
void shmem_TYPE_wait(TYPE *var, TYPE value)

m For C: TYPE = int, long, longdouble, longlong, short
® For Fortran: TYPE = complex, integer, real, character, logical

Specific conditional wait

w Similar to the generic wait except the comparison can now be
>= > = I=, <, <=

® void shmem_wait_until(long *var, int cond, long value)

m void shmem_TYPE_wait_until(TYPE *var, int cond, TYPE
value)

TYPE = int, long, longlong, short

OpenSHMEM
Synchronization (7)

Fence
Ensures ordering of outgoing write (put) operations on a per-PE basis.
void shmem_fence()

Quiet

Waits for completion of all outstanding remote writes and stores to symmetric data
objects initiated from the calling PE.

void shmem_quiet()

OpenSHMEM

anch ronization (8)
]

Example Fence Example Quiet

if (_my pe() == 0) { shmem long put(target, source, 3, 1); /*putl*/
shmem long put(target, source, 3, 1); /*putl*/ shmem int_ put(&targ, &src, 1, 2); /*putd*/
shmem long put(target, source, 3, 2); /*put2*/ shmem quiet();
shmem fence() ; shmem long get(target, source, 3, 1);
shmem int put(&targ, &src, 1, 1); /*put3*/ shmem int get(&targ, &src, 1, 2);
shmem int put(&targ, &src, 1, 2); /*putd*/ printf ("target: {%d, %d, %d}

} \n",target[0], target[1l], target[2]) ;

printf ("targ: %d\n", targ); /*targ: 90*/
} shmem int put(&targ, &src, 1, 1); /*put3x*/
put1 will be ordered to be delivered berfore put3 shmem_int put(&targ, &src, 1, 2); /*putd*/

put2 will be ordered to be delivered berfore put4
}

putl & put2 will be delivered when quiet returns

UNIVERSITY of

HOUSTON

OpenSHMEM
Collective Communication (1)

1 Broadcast

One-to-all symmetric communication
No update on root

void shmem_broadcastSS(void *target, void *source, size_t nelems, int
PE_root, int PE_start, int PE_stride, int PE_size, long *pSync)

Storage Size (SS, bits) = 32, 64

OpenSHMEM
Collective Communication (2)

————————————————————————————————————

Shared Address Space

Private Address Space

HOUSTON

OpenSHMEM
Collective Communication (3)

int *target, *source; Output

target= (int *) shmalloc(sizeof (int)); targeton PEOis O

source= (int *) shmalloc(sizeof (int)); target on PE 1 is 222

*target= 0; target on PE 2 is 222

if (me == 0) { target on PE 3 is 222
*source = 222;

}

else
*source= 101;

shmem barrier all();

shmem broadcast32(target, source, 1, 0, 0, 0, 4,

pSync) ;

printf ("target on PE %d is %d\n", my pe(),

*target) ;

ORI, Code snippet showing working of shmem_broadcast

OpenSHMEM
Collective Communication (4)

1 Collection

Concatenates blocks of symmetric data from multiple PEs to an array in
every PE
Each PE can contribute different amounts storage size (S8, bits) = 32, 64

void shmem_collectSS(void *target, void *source, size_t nelems, int PE_start,
int PE_stride, int PE_size, long *pSync)

Concatenation written on all participating PEs

shmem_fcollect variant
® When all PEs contribute exactly same amount of data

m PEs know exactly where to write data, so no offset lookup overhead

OpenSHMEM
Collective Communication (5)

L. PEO

Shared Address Space

Private Address Space

HOUSTON

OpenSHMEM
Collective Communication (6)

#include
#include
#include
int sum;
int me,n
int main

{

HOUSTON

<stdio.h>
<shmem.h>

<assert.h>

pe;

(int argc, char **argv)

int i;

long *pSync;

int *pWrk;

int pWrk_size;

start_pes (0);

me=_my_pe();

npe=_num_pes();

pWrk = (int *) shmalloc (npe);

pSync = (long *) shmalloc (SHMEM_REDUCE_SYNC_SIZE);

for (i = @; i < SHMEM_REDUCE_SYNC_SIZE; i += 1){
pSync[i] = _SHMEM_SYNC_VALUE;

}

shmem_barrier_all();

shmem_int_sum_to_all(&sum, &me, 1, @, 0, npe, pWrk, pSync);

shmem_barrier_all();

printf("me:%d. Total sum of 'me' is %d\n", me, sum);

return 0;

Output:

me:1. Total
me:2. Total
me:3. Total
me:4. Total
me:5. Total
me:6. Total
me:7. Total
me:8. Total
me:9. Total
me:0. Total

sum
sum
sum
sum
sum
sum
sum
sum
sum
sum

of
of
of
of
of
of
of
of
of
of

is
is
is
is
is
is
is
is
is
is

45
45
45
45
45
45
45
45
45
45

OpenSHMEM
Collective Communication (7)

1 Reductions

Perform commutative operation across symmetric data set

® void shmem_TYPE_OP_to_all(TYPE *target, TYPE *source,
int nreduce, int PE_start, int PE_stride, int PE_size, TYPE
*pWrk, long *pSync)
Logical OP = and, or, xor
Extrema OP = max, min
Arithmetic OP = prod(uct), sum
TYPE = int, long, longlong, longdouble, short, complex

Reduction performed and stored on all participating PEs

pWrk and pSync allow interleaving

E.g. compute arithmetic mean across set of PEs

= sum_to_all / PE_size

OpenSHMEM
Collective Communication (8)

A A A B A A A B A A A B
PE 1 PE 2 PE 3
A A A B +++
tizsazasas PEO
Shared Address Space

Private Address Space

HOUSTON

OpenSHMEM
Atomic Operations (1)

What does “atomic” mean anyway?

Indivisible operation on symmetric variable

No other operation can interpose during update

But “no other operation” actually means...?2

No other atomic operation

Can’t do anything about other mechanisms interfering
E.g. thread outside of OpenSHMEM program
Non-atomic OpenSHMEM operation

Why this restriction?

Implementation in hardware

OpenSHMEM
Atomic Operations (2)

Atomic Swap

Unconditional
long shmem_swap(long *target, long value, int pe)

TYPE shmem_TYPE_swap(TYPE *target, TYPE value, int pe)
TYPE = double, float, int, long, longlong

Return old value from symmetric target

Conditional

TYPE shmem_TYPE_cswap(TYPE *target, TYPE cond, TYPE
value, int pe)
TYPE = int, long, longlong

Only if “cond” matches value on target

u

HOUSTON

OpenSHMEM
Atomic Operations (3)

1 Arithmetic

increment (= add 1) & add value
void shmem_TYPE_inc(TYPE *target, int pe)
void shmem_TYPE_add(TYPE *target, TYPE value, int pe)

= TYPE = int, long, longlong

Fetch-and-increment & fetch-and-add value
TYPE shmem_TYPE_finc(TYPE *target, int pe)
TYPE shmem_TYPE_fadd(TYPE *target, TYPE value, int pe)

®m TYPE = int, long, longlong

Return previous value at target on PE

OpenSHMEM

Atomic Operations (4)
e

long *dest;

dest = (long *) shmalloc(sizeof (*dest));
*dest= me;
shmem barrier all();

new val = me;
1f (me== 1) {
swapped val = shmem long swap (target, new val, 0);

printf ("%d: target = %d, swapped = %d\n", me, *target,
swapped val) ;

}

shmem barrier all();

OpenSHMEM
Atomic Operations (5)

1 Locks

Symmetric variables

Acquired and released to define mutual-exclusion execution regions

® Only 1 PE can enter at a time

void shmem_set_lock(long *lock)
void shmem_clear_lock(long *lock)

int shmem_test_lock(long *lock)

® Acquire lock if possible, return whether or not acquired

® But don’t block...

Initialize lock to 0. After that managed by above API

Can be used for updating distributed data structures

OpenSHMEM
Accessibility

O

O

O

O

int shmem_pe_accessible(int pe)
Can this PE talk to the given PE?

int shmem_addr_accessible(void *addr, int pe)

Can this PE address the named memory location on the given PE?

In SGI SHMEM used for mixed-mode MPI/SHMEM programs
In “pure” OpenSHMEM, could just return “1”

Could in future be adapted for fault-tolerance

OpenSHMEM
Addresses & Cache

1 Cache control

shmem_clear _cache_inv - Disables automatic cache coherency mode
shmem_set cache_inv - Enables automatic cache coherency mode

shmem_set cache line _inv - Enables automatic line cache coherency
mode

shmem udcflush - Makes the entire user data cache coherent

shmem udcflush line - Makes coherent a cache line

OpenSHMEM
Hardware (1)

. Infiniband

Where is OpenSHMEM used? Myrinet
Mainly clusters these days Quadrics
SeaStar
Infiniband and similar networks RoCE

Why?

Remote direct memory access (RDMA)

Network hardware writes directly into registered region
of process memory

Without interrupting remote process(or)

Put symmetric memory areas here

OpenSHMEM
Hardware (2)

Offload
Infinilband HCAs can do
Atomics
Collectives
Memory pinning
Meaning CPU free to do other things
Reduced software footprint (QPs)

OpenSHMEM library issues offload instructions rather than
doing atomics etc.

HOUSTON

OpenSHMEM
Summary

SPMD Library for C and Fortran programs
Point-to-point data transfer

Broadcast /collective transfer operations
Synchronization

Atomic operations

OpenSHMEM
Implementations

Reference Library: University of Houston

On top of GASNet for portability

ScalableSHMEM: Mellanox

For Mellanox Infiniband solutions

Portals-SHMEM: open-source

For Portals clusters

OpenSHMEM
Future Work

01 Library side
1 Extended API

= Fault tolerance

1 Compiler side
o OpenSHMEM-aware compilers

= Tools to analyze source code

o Larger ecosystem of tools o Suggest e.g.

® code-motion to provide better
communication /computation
overlaps, transfer coalescing...

63

Developing OpenSHMEM Applications

OpenSHMEM
Looking for Overlaps (1)

How to identify overlap opportunities

Put is not an indivisible operation
Send local, reuse local, on-wire, stored

Can do useful work on other data in between

HOUSTON

OpenSHMEM
Looking for Overlaps (2)

How to identify overlap opportunities

General principle:
|dentify independent tasks/data

Initiate action as early as possible

Put/barrier/collective
Interpose independent work

Synchronize as late as possible

HOUSTON

OpenSHMEM
Looking for Overlaps (3)

How to identify overlap opportunities

How could we change OpenSHMEM to get even more
overlap?

Divide application into distinct communication and computation
phases to minimize synchronization points

Use of point-to-point synchronization as opposed to collective
synchronization

OpenSHMEM
Looking for Overlaps (4)

How to identify overlap opportunities

Shmalloc

Size check, allocate, barrier_all

Opportunities to do other work after local allocation
Then wait in barrier later

Return handle for synch.

OpenSHMEM
Looking for Overlaps (5)

How to identify overlap opportunities
“ nb“ put/get calls

Local data not free for reuse on return

Return handle for later synch.

HOUSTON

OAK
RIDGE

National Laboratory

UCCS Overview

Abstract communication and networking implementation
details

Support multiple transport layers/programming models
Provide single consistent interface

Communication decoupled from run-time environment

.
Code analyser] [Tracer] [Debuger
f 1\)
, ~
: Open SHMEM] UPC [Co-Array Fortran] MPI || Compilers
L

= |, \

Hardware Direct

VERBs UGN PAMI Snared [T

(Driver)

Hardware

OAK
RIDGE

National Laboratory

Motivation

o Efficient communication expected to become
increasingly important

« What underlying technologies will prevail is unclear

« Provide general but low-level interface capable of
supporting current or future models

HOUSTON 71

National Laboratory

Usability Goals

o Increase code reuse, decrease complexity of
network backend

o Support for multiple communication libraries

« Tightintegration to foster support for languages and
tools

72

HOUSTON

National Laboratory

UCCS Design

Designed for low overhead, scalability, and resiliency

Maintain minimal footprint with emphasis on
reducing the critical path by operating very close to
the hardware

Three different sizes for puts and gets (short,
medium, and large) using different methods for
handling network requests

Emphasis on non-blocking calls using request handles

Support for atomic operations and low-level

73

OAK
RIDGE

UCCS Design

o Capabilities interface allows for querying of
hardware support details

« Connectivity maps allow for heterogeneous network
systems

o Dynamic memory registration for multiple remotely
accessible regions

« Support for active messages

HOUSTON 74

OAK
RIDGE

National Laboratory

Active Message API
— e —
Fetch and Add Beast A
Large . Large Gather SWAP | Scatter . ,
Medium Generc CSWAP m hoduk and

LOCE_S0n_ COntpuous_shortnty..) OCS_OUE CONBguous_shor nx(.) LOCS_ OMIC_ e ind04_re(...) wocs_barrier nd..) rio ()

VICH_Sred_CONbuons_nty) CS_QO_COnEgrcs_shar ntX) LOOS_Alomic,_ (] WOCS_bCast (.) e Qo my. o)

wocs_sond nd(..) Vo0, OUt_pathor_neY) ri0_575_O0C ONN)
SO0 SCer nlx() OOt Framoncrk Colectivos rie_srs_sol_dats
— _

OAK
RIDGE

National Laboratory

UCCS Concepts

* Contexts provide
communication scope and .
isolation .

UCCS Context J

Endpoint
Process 0

* Resources represent available
. o UCCS Resource
communication channels for a —'[Cray Gemin

nEtWO rk ~(UCCS Resource

'L Cray Gemini 2

* Endpoints are the destinations
reachable over a particular
resource

UCCS Resource
InfiniBand

—

HOUSTON 76

OAK
RIDGE

RTE Design

o Handles bootstrapping and other dynamic
aspects of the run-time environment

o Provides out-of-band support

o Abstracted under a single interface to support
multiple RTE backends including ORTE, STCI,

SLURM, and ALPS

77

OAK
RIDGE

Modular Component Architecture

o Allows for multiple components to be plugged
in or swapped out

o Interface allows for easy creation of custom
components

o Licensing support extends to development of
proprietary components

HOUSTON 78

OAK
RIDGE

Transport Layers

o Multiple options including InfiniBand, uGNl,
and support for intra-node communication

o Can be dynamically selected, mixed, and
matched

o Allows support for hybrid network systems,
multi-rail

o Integrates with capabilities for transport
priority when multiple routes available

79

OAK
RIDGE

What UCCS allows

o Library implementers can easily support a
wide array of network technologies and
configurations

o Consistent interface across multiple
interconnects and communication libraries

o Hybrid development

« Heterogeneous systems

80

OAK
RIDGE

User Environment

o« Communication Library

« UCCS

o lIbRTE

o RTE backend (ORTE, STCI, etc)

81

OAK
RIDGE

National Laboratory

Example: shmem_int_add()

shmem int add(void *target, void *value, size_t nbytes, int pe) {
uccs_request handle t desc;
uccs_status_t status;
resource = select highest priority resource (pe) ;
dest = translate_ target to_ remote_ address(target) ;
find memory registration for dest on pe(dest, pe, &rem regq);
uccs_atomic _add int64 nb(resource, endpoint, dest, &rem regq,

value, 255, &desc);

uccs_wait (desc, &uccs_status);

HOUSTON 82

OAK
RIDGE

National Laboratory

Example: shmem_int_p()
=

void shmem int p(int *target, int value, int pe) {
uccs request handle t desc;
dest = translate target to remote address(target);
uccs_put contiguous_short nb(resource, endpoint, dest,
&value, &remote reg, sizeof(int), 0, &desc);

uccs wait(desc, &status);

HOUSTON 83

OAK
RIDGE

National Laboratory

Example: shmem_int_put()
—

void shmem int put(int *target, const int *source, size t len, int pe) ({
uccs_request handle t desc;
dest = translate_ target to remote_ address(target);
if (len <= comms[pe].short put size)
uccs_put contiguous_short nb(resource, endpoint, dest,
source, remote reg, len, 0, desc);
else if (len <= comms|[pe] .medium put size)
uccs_put contiguous _medium nb (resource, endpoint, dest, source,
remote reg, NULL, len, 0, desc);
else
uccs_put contiguous_large nb (resource, endpoint, dest, source,
remote reg, NULL, len, 0, desc);

uccs _wait(desc, é&status);

HOUSTON 84

OAK
RIDGE

Testing Environment

e« OpenSHMEM reference implementation 1.0e

e GASNetv1.20.2

e Pre-production version of UCCS based on v0.2 of
UCCS specification

o SGI Altix XE1300 system with 12 nodes with two
Intel Xeon X5660 CPUs

« InfiniBand interconnect using Mellanox ConnectX-2
QDR HCA

e SGI MPT v2.03

85

OAK
RIDGE

Testing Environment

« Results obtained from “Designing a High
Performance OpenSHMEM Implementation Using
Universal Common Communication Substrate as a
Communication Middleware”, First OpenSHMEM

Workshop

86

Latency (usec)

10000 ¢

1000 [

100 ¢

10

Put Latency

OpenSHMEM-UCCS —— 1
OpenSHMEM-GASNet —+—]
SHMEM SGI

Verbs —+— .

128

256

a12

1KE 2KB J4KBE BKEB 1E6KE 32ZKBE
Message Size

64KB 126KE256KES12KE TME 2ME 4MEB

OAK
RIDGE

National Laboratory

87

Latency (usec)

10000

1000 }

100 £

10

Get Latency

OpenSHMEM-UCCS —+— |
OpenSHMEM-GASNet —+—]
SHMEM SGI

Verbs —+— |

128

256

sz

1KE 2KE 4KB 8KB 16KE 32KE G4KB 12BKE256KES12ZKE 1ME 2ZME 4MB

Message Size

OAK
RIDGE

National Laboratory

88

OAK
RIDGE

Long Long Fetch-and-Add Latency
4

T
3.99657

w
3

296358 3.06426

N
N 1 W

Latency (usec)
o

oS5 @ @

OpenSHMEM-UCCS OpenSHMEM-GASNet SHMEM SGI Verbs

89

OAK
RIDGE

Development Status

« Supported interconnects: IB, uGNI/Cray

o mailto:uccs-info@ornl.gov

90

Acknowledgements

// |,"\&"
AW OAK
(B \1 //* “] I
2, 4
Py 2

National Laboratory

This work was supported by the United States
Department of Defense & used resources of the

Extreme Scale Systems Center at Oak Ridge
National Laboratory.

