V' / 4
CAPS”?

How to add OpenACC in an
OpenSHMEM appllcatlon? >

OpenSHMEM Workshop

March 4th 2014

OpenACC Overview and Compilers
o Lab Session 1: Using CAPS Compilers

Programming Model

o Lab Session 2: Offloading Computations
Managing Data

o Lab Session 3: Optimizing Data Transfers

Specifying Parallelization
o Lab Session 4: Optimizing Compute Kernels

Asynchronism
Runtime API

WWW.caps-entreprise.com

OpenACC Overview and
Compilers

Directive-based Programming (1)

= Three ways of programming GPGPU applications:
. . : : Programmin
Libraries Directives J J
Languages

Ready-to-use Quickly Accelerate
Acceleration Existing Applications

Maximum Performance

WWW.caps-entreprise.com

Directive-based Programming (2)

main() {
double pi = 0.0; long i;

#pragma omp parallel for reduction(+:pi)
for (i=0; i<N; i++)

double t = (double)((i+0.05)/N);

pi +=4.0/(1.0+t*t);
}

printf(“pi = %f\n”, pi/N);

o LT
M YV eoxrzww

main() { e

double pi =0.0; long i:

#pragma acc parallel

for (i=0; i<N: i++)

i
double t = (double)((i+0.05)/N);
pi+=4.0/(1.0+17);

!

printf("pi = %An", pi/N);
!

WWW.caps-entreprise.com

Advantages of Directive-based Programming

= Simple and fast development of accelerated applications
= Non-intrusive

= Helps to keep a unique version of code
o To preserve code assets
o To reduce maintenance cost
o To be portable on several accelerators

= Incremental approach

= Enables "portable" performance

WWW.caps-entreprise.com 6

OpenACC Initiative

OpenACC.
DIRECTIVES FOR ACCELERATORS
' 4
= A CAPS, CRAY, Nvidia and PGI initiative CAPS
= Open Standard = ol
= A directive-based approach for
programming heterogeneous many-core < NVIDIA.

hardware for C and FORTRAN applications

PGI

= http://www.openacc-standard.com

WWW.caps-entreprise.com 7

OpenACC Compilers (1)

CAPS Compilers: PGI Accelerator

= Source-to-source = Extension of x86 PGl
compilers compiler

= Support Intel Xeon Phi, = Support Intel Xeon Phi,
NVIDIA GPUs, AMD NVIDIA GPUs, AMD
GPUs and APUs GPUs and APUs

Cray Compiler:

* Provided with Cray systems only

WWW.caps-entreprise.com 8

CAPS Compilers (2)

Are source-to-source compilers, composed of 3 parts:

= The directives (OpenACC or OpenHMPP)
o Define parts of code to be accelerated
o Indicate resource allocation and communication
o Ensure portability
= The toolchain
o Helps building manycore applications
o Includes compilers and target code generators
o Insulates hardware specific computations
o Uses hardware vendor SDK

= The runtime i"/
o Helps to adapt to platform configuration ‘ ,IA PS od
o Manages hardware resource availability

WWW.caps-entreprise.com 9

CAPS Compilers (3)

= Take the original application as input and generate another
application source code as output

o Automatically turn the OpenACC source code into a accelerator-
specific source code (CUDA, OpenCL)

= Compile the entire hybrid application

= Just prefix the original compilation line with capsmc to
produce a hybrid application

$ capsmc gcc myprogram.c
$ capsmc gfortran myprogram.f90

WWwWw.caps-entreprise.com 10

CAPS Compilers (4)

= CAPS Compilers drives

all compilation passes

= Host application
compilation

o Calls traditional CPU
compilers

o CAPS Runtime is linked
to the host part of the
application

= Device code
production

o According to the
specified target

o A dynamic library is
built

Fortran
Frontend

Extraction module
codelets

Host
code

Instrumen-
tation module

CPU compiler
(gcc, ifort, ...)

Executable
(mybin.exe)

Fun | pyn
#1 #2 Fun

\)
I

UDA Code
Generation

Generation

UDA OpenCL
compilers
|
i

CAPS
Runtime

WWW.caps-entreprise.com

11

CAPS Compilers Options

= Usage:

$ capsmc [CAPSMC_FLAGS] <host compiler> [HOST COMPILER FLAGS] <source files>

= To display the compilation process

$ capsmc -d -c gcc myprogram.c

= To specify accelerator-specific code

$ capsmc —--openacc-target CUDA gcc myprogram.c # (default)

$ capsmc —--openacc-target OPENCL gcc myprogram.c # (AMD and Phi)

WWwWw.caps-entreprise.com 12

Lab Session 1:
Using CAPS Compilers

Lab 1: Using CAPS Compilers

Programming Model

= Express data and computations to be executed on an
accelerator

o Using marked code regions

Data/stream/vector

_ - Data gidfication - parallelism to be
= Main OpenACC constructs W exploited by HWA

o Parallel and kernel regions e.g. CUDA / OpenCL
o Parallel loops
@)
@)

Data regions
Runtime API

CPU and HWA linked with a
PCIx bus

WWW.caps-entreprise.com 16

How to address these system?

= OpenACC and OpenSHMEM

» OpenSHMEM will manage AR
o Inter-node communications
o Intra-node communications

= \What about the accelerator?
OpenACC!

o Communication between
accelerator and host

o Computation on the acceleator

WWW.caps-entreprise.com 17

OpenACC Execution Model

= Among a bulk of computations executed by the CPU, some
regions can be offloaded to hardware accelerators

o Parallel regions
o Kernels regions

= Host is responsible for:
o Allocating memory space on accelerator
o Initiating data transfers
o Launching computations
o Waiting for completion
o Deallocating memory space

= Accelerators execute parallel regions:

o Use work-sharing directives
o Specify level of parallelization

WWwWw.caps-entreprise.com 18

OpenACC Execution Model

= Host-controlled execution

= Based on three parallelism levels
o Gangs — coarse grain

o Workers — fine grain
o Vectors — finest grain

Gang Gang

Worker Worker

WWW.caps-entreprise.com 19

Gangs, Workers, Vectors

= |[n CAPS Compilers, gangs, workers and vectors correspond
to the following in a CUDA grid

ridDim.x = number of gangs
< g gang S

blockDim.y = I I gridDim.y =1

number of workers

«— >
blockDim.x = number of vectors

= Beware: this implementation is compiler-dependent

WWwWw.caps-entreprise.com 20

Directive Syntax

C

#pragma acc directive-name [clause [, clause]
{

code to offload
}

]

Fortran

!Sacc directive-name [clause [, clause] ..]
code to offload

!Sacc end directive-name

WWW.caps-entreprise.com

21

Parallel Construct

= Starts parallel execution on the accelerator
= Creates gangs and workers

= The number of gangs and workers remains constant for the
parallel region

= One worker in each gang begins executing the code in the region

#pragma acc parallel [..]
{ _

for(i=0; 1 < n; 1i++) {

tor(J=0; J < nj J++) { _ Code executed on the hardware

\ accelerator

WWwWw.caps-entreprise.com 22

Kernels Construct

= Defines a region of code to be compiled into a sequence of
accelerator kernels

o Typically, each loop nest will be a distinct kernel
= The number of gangs and workers can be different for each kernel

#pragma acc kernels |[..] $'acc kernels |[..]
{ _ .
for(i=0; i < n; i++) { DO 1i=1,n
— — 1st Kernel
} _ END DO _
for(3=0; 7 < n; J++) { DO J=1,n
~ - 2nd Kernel
} i END DO o
}
$'acc end kernels

WWwWw.caps-entreprise.com 23

Lab Session 2:
Offloading Computations

Lab 2: Offloading Computations

WWwWw.caps-entreprise.com 25

What is the problem using discrete accelerato.rs? 'T‘;_H_"

PCle transfers have huge latencies

* In kernels and parallel regions, data are implicitly managed

o Data are automatically transferred to and from the device
o Implies possible useless communications

Avoiding transfers leads to a better performance

OpenACC offers a solution to control transfers

Device Memory Reuse

* In this example:

o A and B are allocated
and transferred for the
first kernels region

o A and C are allocated
and transferred for the
second kernels region

= How to reuse A
between the two
kernels regions”?

o And save transfer and
allocation time

float A[n];

#pragma acc kernels

{
for(i=0; i < n; i++) {
Ali] = B[n - 1i];
}
}

shmem float get(C, ..)

#pragma acc kernels
{
for(i=0; 1 < n; 1i++) {
C[1] += A[1] * alpha;
}
}

WWW.caps-entreprise.com

28

Data Presence

= How to tell the compiler: “that data has already been
allocated™?

= The present clause declares data that are already present on

the device
o Thanks to data region that contains this region of code

= CAPS Runtime will find and use the data on device

WWwWw.caps-entreprise.com 29

Data Construct: Create and Present Clause -

Allocation of A of size n on the device

Reuse of A already allocated on the
device

Reuse of A already allocated on the
device

float A[n];

“#pragma acc data create (A)
{

— #pragma acc kernels present (A)
{
for (1=0; 1 < n; 1++) {
A[1] = B[n - 1];

}
}

shmem float get (C, ..)

#fpragma acc kernels present(A)

Deallocation of A on the device

{
for (i=0; 1 < n; 1i++) {
C[i] += A[i] * alpha;
}

WWW.caps-entreprise.com

30

Data Storage: Mirroring

= How is the data stored in a data region?
= A data construct defines a section of code where data are mirrored between host and

device
= Mirroring duplicates a CPU memory block into the HWA memory
o The mirror identifier is a CPU memory block address

o Only one mirror per CPU block
o Users ensure consistency of copies via directives

CAPS RT
Descriptor

Mirror copy
Pq P P—

HWA Memory

WWW.caps-entreprise.com

Arrays and Subarrays (1)

= In C and C++, specified with start and length

#pragma acc data create a[0:n]
OR

#pragma acc data create a[:n]
o Allocation of an array a of size n

#pragma acc data create a[2:n/2]
o Allocation of an subarray of a of size n/2
* je: elements a[2], a[3], ..., a[n/2-1 + 2]

o Static arrays can be allocated without having to specify their size: it's
known at compile time

o Length of dynamically allocated arrays must be explicitly specified

WWwWw.caps-entreprise.com 32

Arrays and Subarrays Example

#pragma acc data create(A[:n])
{
fpragma acc kernels present (A[:n])
{
for (i

=0; 1 < n; i++) {
Al1l] =

B[n — 1i];
}
}

shmem float get(C, ..)

#fpragma acc kernels present(A[:n])
{
for (i=0; i < n; 1i++) {
C[i] += A[i] * alpha;
}

!Sacc data create(A(l:n))

!Sacc kernels present(A(l:n))
do i=1,n
A(i) = B(n — 1)
end do
!Sacc end kernels

init (C)

!Sacc kernels present(A(l:n))
do i=1,n

C(i) = A(i) * alpha + C(1i)
end do
!Sacc end kernels

'Sacc end data

WWW.caps-entreprise.com

33

Redundant Transfers

#pragma acc data create(A[:n])

{
fpragma acc kernels present (A[:n])
{

for (i=0; 1 < n; i++) {

A[i] = B[n - 1];
}

}

#pragma acc kernels present (A[:n])
{
for(i=0; 1 < n; 1i++) {
Cl[i] = A[1] * alpha;
}
}
}

* |n this example:

o As allocated for the data
section

* No data transfer of A between
host and device

o B is allocated and transferred
for the first kernels region
 Input transfer
« Qutput transfer

o C is allocated and transferred
for the second kernels region

 Input transfer
« Qutput transfer

= How to avoid useless data
transfers for B and C?

WWwWw.caps-entreprise.com 34

Output Transfers: Copyin and Copyout Clause

#fpragma acc data create(A[:n])
{
#pragma acc kernels present(A[:n]) \
copyin (B[:n])
{
for (1=0;
Ali]
t
}

i < n; i++) {
= Bln - 1];

#pragma acc kernels present(A[:n]) \
copyout (C[:n])
[

for (i=0; i < n; i++) {
C[i] = A[1i] * alpha;
}

~}
}

Copyin declares data that need
only to be copied from the
hostto the device when
entering data section

o Performs input transfers only

Copyout declares data that need
only to be copied from the
device to the host when
exiting data section

o Performs output transfers only

It defines scalars, arrays and
subarrays to be allocated on the
device memory for the duration
of the data region

WWwWw.caps-entreprise.com 35

Input/Output Transfers: Copy Clause ..

#pragma acc data create(A[:n])

{
fpragma acc kernels present (A[:n])
copyin(B[:n])

shmem float get(C, ..)

#pragma acc kernels present (A[:n])
copy (C[:n])

n; i++) {
] * alpha;

\

\

If we change the example, how to
express that input and output
transfers of C are required?

Use copy clause to:

o Declare data that need to be copied
from the host to the device when
entering the data section

o Assign values on the device that
need to be copied back to the host
when exiting the data section

o Allocate scalars, arrays and
subarrays on the device memory for
the duration of the data region

It corresponds to the default
behavior of data regions

WWwWw.caps-entreprise.com 36

Present or * Clauses

= Combines two behaviors

= Declares data that may be present
o If data is already present, use value in the device memory

o If not, allocate data on device when entering region and deallocate
when exiting and transfer data if needed

= Syntax example : present_or_create
o May be shortened to pcreate

WWwWw.caps-entreprise.com 37

Present_or * Clauses Example

Allocation of A of size n on the device

Reuse of A already allocated on the device
Allocation of B of size n on the device for the
duration of the subroutine and input transfer of
B

Deallocation of A on the device

Allocation of A and B of size n on the device for
the duration of the subroutine
Input transfer of B and output transfer of A

\\ N\

Present_or_* clauses are
generally safer

program main
™ ! Sacc data create(A(l:n))

- call f1(n, A, B)

L~ !Sacc end data

_~call f1(n, A, C)
contains
subroutine £1(n, A, B)

!Sacc kernels pcopyout (A(l:n)) \
copyin(B(l:n))
do i=1,n
A(i) = B(n - 1)
end do
!Sacc end kernels
end subroutine f1l

end program main

WWW.caps-entreprise.com

38

Default Behavior

= CAPS Compilers is able to detect the variables required on
the device for the kernels and parallel constructs.

= According to the specification, depending on the type of the
variables, they follow the following policies
o Tables: present_or_copy behavior

o Scalar
« On a parallel construct: firstprivate behavior by default
« On a kernels construct: copy behavior by default

WWwWw.caps-entreprise.com 39

Default (none)

= The default behavior, especially on kernels is very error-
prone:

o Write-only variables that could be privatized have a copy default
policy
= The default policy leads to needless copies:
o Loop bounds are usually constant, yet copied in and out

o Write-only arrays don’t need to be initialized, yet copied in and out
o Etc...

= The default(none) policy, on kernels or parallel will issue a
compilation error unless all variables have their policy
specified explicitly: can be time consuming, but allows to fix
bugs easily in the process.

WWwWw.caps-entreprise.com 40

Constructs and Directives

» OpenACC defines two ways of managing accelerator
allocations and transfers

o With data constructs followed by allocation or transfer clauses
o Or standalone directives for allocations or transfers

= Data constructs are declarative
o They define properties for a code regions and variables

* |Imperative directives are standalone statements

WWwWw.caps-entreprise.com 41

Declare Directive: use the variable’s scope as

lifetime on device

In Fortran: used in the declaration section of a subroutine,

function, or module

In C/C++: follow a variable declaration

Specifies variables or arrays to be allocated on the device memory
for the duration of the function, subroutine or program

Specifies the kind of transfer to realize (create, copy, copyin, etc)

float A[n];

#fpragma acc data create (A)

{
#fpragma acc kernels present (A)
{

for (i=0; i < n; i++) {

A[i] = B[n - 1];
}

}

float A[n];
#pragma acc declare create (A7)

#fpragma acc kernels present (A)
{
for(i=0; i < n; i++) {
Ali] = B[n - 1];
}
}

WWwWw.caps-entreprise.com 42

Update Directive: make explicit transfers .

= Used within explicit or implicit data region
= Updates all or part of host memory arrays with values from
the device when used with host clause

= Updates all or part of device memory arrays with values
from the host when used with device clause

!Sacc kernels copyout (A(l:n))

copyin (B(l:n))

do i=1,n

A(l) =
end do

!Sacc end kernels

B(n — 1)

\

!Sacc data create(A(l:n), \

1Sacc update device (B(l:n))

ﬁl Sacc kernels
do i=1,n
A(i) = B(n - 1)
end do

!Sacc end kernels
1Sacc update host (A(1l:n))

!Sacc end kernels

Lab session 3:
Data Management

Lab 3: Data Management

Gangs, Workers, Vectors in Parallel Cons.truc’gs K

= In parallel constructs, the
number of gangs, workers
and vectors is the same for
the entire section

= The clauses:
o num_gangs
o num_workers
o vector_length

= Enable to specify the
number of gangs, workers
and vectors in the
corresponding parallel
section

#pragma acc parallel, num gangs(128) \
num workers (256)

{

for(i=0; 1 < n; 1i++) {
for (3j=0; j < m; Jj++) {

}
}

— 256

|
128

WWwWw.caps-entreprise.com 47

Loop Constructs

= A Loop directive applies to a loop that immediately follow the
directive

= The parallelism to use is described by one of the following
clause:

o Gang for coarse-grain parallelism
o Worker for middle-grain parallelism
o Vector for fine-grain parallelism

WWwWw.caps-entreprise.com 48

= Gang clause:

o The iterations of the
following loop are executed
in parallel

o Iterations are distributed
among the gangs available

o In a parallel construct, no
argument is allowed

#pragma acc parallel, num gangs (128) |\

{

num_workers(l92)

#pragma acc loop gang
for(i=0; i < n; 1i++) {
] m; Jj++) |

— 192

—

|
128

WWwWw.caps-entreprise.com 49

#pragma parallel num gang(2)
{

#pragma acc loop gang
for(i = 0; 1 < n; 1 ++)

A[i] = B[i] * B[i] * 3.14;

WWwWw.caps-entreprise.com 50

Workers

= Worker clause:

o The iterations of the
following loop are executed
in parallel

o Iterations are distributed
among the multiple workers
withing a single gang

o Loop iterations must be data
independent, unless it
performs a reduction
operation

o In a parallel construct, no
argument is allowed

#pragma acc parallel, num gangs (128) \
num workers (192)

{

#pragma acc loop gang

for (i=0; 1 < n; i++) {
#pragma acc loop worker
for(j=0; j < n; j++) {

}

}

(S S
inn
N = O

— 192

|
128

WWW.caps-entreprise.com

51

Vector

#pragma acc parallel, num gangs (128) \
num workers (192)
» Vector clause (
o The iterations of the #pragma acc loop gang
following loop are for (i=0; i < n; i++) {
. #fpragma acc loop worker
executed in SIMD mode for (=0; 3 < m; j++) {
#pragma acc loop vector
for (k=0; k < 1; k++) {
o Iterations are distributed N
among the multiple } }
workers withing a single -
gang

- 192
o In a parallel construct,

no argument is allowed

|

128

WWW.caps-entreprise.com 52

#pragma acc kernels

{

#fpragma acc loop gang(128)
for (1i=0; 1 <n; 1i++) {

} ”

#fpragma acc loop gang(64)
for (j=0; 7 < m; Jj++) {

}

i=0

i=2

The parallelism
description is the same
as in parallel sections

However, these clauses
accept an argument to
specify the number of
gangs, workers or
vectors to use

Every loop can have a
different number of
gangs, workers or
vectors in the same
kernels region

WWwWw.caps-entreprise.com 53

Data Independency

loop are data- mdependent

with no synchronization

In kernels sections, the clause independent specifies that iterations of the

The user does not have to think about gangs, workers or vector parameters

Allows the compiler to generate code to execute the iterations in parallel

A[O] = 0;
#pragma acc loop independent
for(i=1; i<n; i++)

A(l) = O~

Programming error

WWwWw.caps-entreprise.com 54

Extra OpenACC loop clauses

= Sequential execution

= Automatic parallelization
o Compiler should parallelize a loop if proved parallel

= Loop collapsing
= Loop tiling

= Privatize variable
= Reduction

» Hardware specific
= Atomics

WWwWw.caps-entreprise.com 55

Routine (1)

- Byll_ degault, if a function is called from a kernel/parallel section, it is
Inine
o Relﬂucilres to have the body of the function in the same file as where it's
calle
o Leads to code bloat

= Marking a function with a “routine” pragma allows to generate a
HWA for later use from a kernel/parallel section

#pragma acc routine [gang, worker, seq..]
int do stuff (int n, float *t) ({

}

= As the caller’s context can be different (gang, worker, vector)
it may be necessary to specify which context will be used to
enable work-sharing in the routine.

WWwWw.caps-entreprise.com 56

Routine (2): nested parallelism

= Before OpenACC 2.0, a kernel/parallel section was not
allowed to call a function that contains other kernels/parallel

section
= In theory, this should get rid of some call overhead, and
needless device < host < device copies

o In practice, current generation of HWA do not allow improve
performance in a noticeable way.

WWwWw.caps-entreprise.com 57

Lab Session 4:
Compute Kernels

Lab 4: Compute Kernels

Asynchronism

= By default, the code on the
accelerator is synchronous

o The host waits for CPU HWA CPU HWA

completion of the parallel or 1 1
kernels region X X
= The async clause enables to T
use the device whilethe v 5 Lo
host process continues with $3 S 1 3
the code following the |
regon | = | =
4 ‘/'4/
= (Can be used on paralleland 5 5¥

kernels regions and update
directives

WWwWw.caps-entreprise.com 61

Wait Directive (1)

= (Causes the program to wait for an asynchronous activity
o Parallel, kernels regions or update directives

= An identifier can be added to the async clause and wait directive:
o Host thread will wait for the asynchronous activities with the same ID

= Without any identifier, the host process waits for all asynchronous
activities

#pragma acc kernels, async S$lacc kernels, async (1)
Slacec end kernels
#pragma acc kernels, async S'acc kernels, async (2)

Slacc end kernels

#pragma acc wait Sltacc wait (1)

WWwWw.caps-entreprise.com 62

Wait Directive (2)

= Compute regions have an
implicit data section.

o Most HWA do not offer
asynchronous transfer from non-
pinned memory

o Dependence between kernels is
bound by their data dependence
= In practice, an explicit data
section is required

Slacc
Slacc

S$Slacc
S$Slacc
S$lacc
S$lacc
Slacc
S$Slacc

Slacc

data create (tl,t2,t3)
kernels, async (1)

end kernels
kernels, async (2)
end kernels
wait(1l,2), async(3)
kernels, async(3)
end kernels

end data

WWwWw.caps-entreprise.com 63

Execute OpenACC Computations on the Host

= OpenACC sections defines the behavior of the accelerator
o What happens if there is no accelerator?
o What if the OpenACC code should also be executed on the host?

= The jf clause enables to generate two copies of the
OpenACC code:

o One to be executed on the host
o One to be executed on the accelerator

WWwWw.caps-entreprise.com 64

If Clause

= Available on parallel, kernels or data constructs and update
directive

= When clause evaluation corresponds to:
o Zero in C or C++ or .false. in Fortran, the host copy is executed
o Nonzero in C or C++ or .true. in Fortran, the accelerator copy is

executed
#pragma acc kernels if (cond) Slacc kernels if(cond)
{ for (i=0; i < n; i++) { DO 1i=1,n
} : ENB DO
} S!;cc end kernels

WWwWw.caps-entreprise.com 65

Runtime API

= May limit portability of the code

o Conditional compilation using OPENACC preprocessor variable is
available

= Enables to:

o Query available HWA,

o Retrieve environment information,

o Program in OpenACC without having to use directives
O

Do things that aren’t possible with directives
« EXx: do a partial update of a structure field

Runtime API

= |nitialize the runtime for a device type
= Disconnect a device from a program
= Get the number of device

= set/get the type of device

= Allocate/free memory

= Transfer data

WWwWw.caps-entreprise.com 67

Runtime API: “Fallback™ Example

Check number of CUDA devices available on
the system
« If 0 is return, no CUDA device is available

int dev;

Dev = acc_get num device(acc_device cuda);

If no device is avai|ab|e, #pragma acc data copy(A[0:N]) if (dev)

- {
the host code is executed N Soraoma ace kernels if (dev)

#fpragma acc kernels if (dev)

for (int 1 = 0+t*N/2; 1 < (1+t)*N/2; ++1) {
A[i] = A[i] ...;

}

WWwWw.caps-entreprise.com 68

Runtime API: Multi-device Example

Two CPU threads are created with OpenMP:
« thread #0 will manage device #0
« thread #1 will manage device #1

\\\\\\\\ #pragma omp parallel for
for (int t = ; t < 2; ++t) {

Data set is split in two:
each set will be processed
by one device

™

acc_set device num(t, acc_device default);

’/7#pragma acc kernels copy (A[O+t*N/2: (1+t) *N/2])
{
#fpragma acc loop independent
for (int i = 0+t*N/2; 1 < (1+t)*N/2; ++1i) {
A[i] = A[i] ...;
}

}

acc_shutdown (acc_device default)

}

WWW.caps-entreprise.com

69

‘ Conclusion
O

Conclusion

= OpenSHMEM and OpenACC are fully compatible!

o For now, OpenACC regions cannot contains OpenSHMEM
communications

= OpenACC allows you to address the accelerator

Fast development of high-level heterogeneous applications
Beware of compiler-dependent behaviors

Explicit the calls to an accelerator

i
Whatever the target I
 Nvidia GPU

« AMD GPU and APU “e & &
« Intel Xeon Phi

WWW.caps-entreprise.com 71

@)
@)
©)
©)

Accelerator Programming model paralielization CAPS Workbench
Directive-based programming HpC Portabllity

Parallel Computing CAPS Compilers

OpenCL

Many-Core programming

OpenHMPP NVIDIA Cuda Code speedup T OpenACC |

High Performance Computing Performance

a Y / 4 I
CAPS”?

Visit CAPS Website:
www.caps-entreprise.com

