#### Oak Ridge National Laboratory Computing and Computational Sciences



Universal Common Communication Substrate

#### Presented by: Pavel Shamis (Pasha)



**OAK RIDGE NATIONAL LABORATORY** 

ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY



# The Team

# • ORNL

- Pavel Shamis / Pasha
- Manjunath Gorentla Venkata / Manju
- Oscar Hernandez
- Stephen Poole
- Tommy Janjusic
- Swen Boehm
- Douglas Fuller
- UH
  - Tony Curtis
  - Donald Aaron Welch
  - Swaroop Pophale
  - Siddharta Jana

# • UTK

- George Bosilca
- Thomas Herault
- Aurélien Bouteiller

# • LANL

- Ginger Young
- DoD
  - Nick P.
  - Kevin B



# History

- "Déjà vu" of OpenSHMEM implementer
  - We have seen this network code somewhere ?
  - A lot of similarity in initialization and communication flow ?
  - Critical-path flow are similar but not identical
- ULPs can have a high degree of overlap in the requirements they place on the lower level network layers
  - Communication interface can have a high degree of overlap in communication semantics
    - Send/Recv, AM, RDMA, AMO, Collectives, etc.



# **History - continued**

- Idea of re-using high performance communication codes has been around for while:
  - ONET (~2009) Rich Graham & Steve Pool
  - OpenSHMEM / "Yoda" (~2010) Mellanox & ORNL collaboration



# **History - continued**

- Universal Common Communication Substrate (UCCS) Beginning...
  - Let's re-use internal MPI network codes and expertize to design a <u>standalone</u> communication middleware that serves <u>broader</u> HPC community with an initial focus <u>OpenSHMEM/PGAS</u> (but not only...)
- In addition to high-performance implementation we want to <u>standardize</u> the API





# Goals

- Provide a common low-level scalable, robust, portable, simple and performance driven communication API for multiple parallel programming models over modern network interfaces
- Increasing code reusability and reducing development effort
- Include performance/power measurement capabilities in a central location





# **Goals - Continued**

- Support hybrid programming environments <u>efficiently</u>
- Provide flexible API to accommodate requirements of I/O systems, Big Data applications, and Languages
- <u>Runtime</u> support for multiple network technologies (when possible)
- Provide and an interface for code translation (CAF, UPC, etc)
- Performance
- Define <u>specification</u> describing the communication middleware



# **Long Term Goals**

- Direct network hardware support
- Co-design
  - Hardware
  - Compilers
- Community support





#### **Overview**





#### **UCCS API**





#### **Implementation Details**

- Initial code was based on Byte Transfer Layer (BTL)....
  - But we had to rewrite most of the critical path
- Modular Component Architecture (MCA)
  - Based on Open MPI MCA, which is essentially dynamically loaded libraries/components
  - Available as a <u>standalone</u> library: <u>http://uccs.github.io/libocoms/</u>
  - OCOMS Open Component Module Service



# **Implementation detail - continued**

- Runtime Environment Abstraction libRTE
  - A <u>standalone</u> Abstraction for Runtime environments
    - STCI, ORTE, ALPS, SLURM
  - Will be available soon: http://uccs.github.io/librte/
- Collectives <u>http://www.csm.ornl.gov/cheetah/</u>
  - Work in progress
- We don't like "bundles"
- UCCS Specifications v0.1, v0.2, and v0.3 work in progress
- Supported networks (pre-production): Infiniband, Cray.



#### **OpenSHMEM and UCCS**





# Update

- OpenSHMEM Reference Implementation
  - Internal interfaces were extended to support UCCS and libRTE and continue to support GASnet
  - UCCS is a used as development platform for future OpenSHMEM extensions and research
    - Non-blocking communication
    - Extended network operations
    - Collectives, etc.
- OpenSHMEM-UCCS pre-production version is used internally for extensions evaluation and application development



# **InfiniBand**

- Mellanox Connect-X and Connect-IB HCAs provide technology enabling efficient and high-performance implementation of OpenSHMEM and UCCS
  - Low software overhead
  - Hardware Offload



| Mellanox InfiniBand     | UCCS | OpenSHMEM |
|-------------------------|------|-----------|
| RDMA                    | V    | V         |
| AMO                     | V    | V         |
| Collectives/CORE-Direct | V    | V         |

 UCCS provides experimental user-level VERBS bypass mode for Mellanox Connect-X devices





#### **UTK slides starts here**



We are open for colaboration

# http://uccs.github.io/uccs uccs-info@ornl.gov

# UNIVERSITY of HOUSTON









#### **Acknowledgements**



This work was supported by the United States Department of Defense & used resources of the Extreme Scale Systems Center at Oak Ridge National Laboratory.



#### **Questions ?**



