
Hybrid Programming Challenges for
Extreme Scale Software

Vivek Sarkar
E.D. Butcher Chair in Engineering

Professor of Computer Science
Rice University

vsarkar@rice.edu

2

Acknowledgments --- Habanero Team
§  Faculty

§  Vivek Sarkar
§  Senior Research Scientist

§  Michael Burke
§  Research Scientists

§  Zoran Budimlić, Philippe Charles, Jun Shirako, Jisheng Zhao
§  Research Programmer

§  Vincent Cavé
§  Postdoctoral Researchers

§  Akihiro Hayashi
§  PhD Students

§  Kumud Bhandari, Shams Imam, Deepak Majeti, Alina Sbîrlea, Dragoș Sbîrlea, Kamal Sharma,
Rishi Surendran, Sağnak Taşırlar, Nick Vrvilo, Yunming Zhang

§  Undergraduate Students
§  Kyle Kurihara, Bing Xue

§  Supported in part by the National Science Foundation, and by the X-Stack program
funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing
Research (ASCR).

3

Multicore Processors and Extreme Scale Systems
§  Characteristics of Extreme Scale systems in the next decade

§  Massively multi-core (~ 100’s of cores/chip)
§  Performance driven by parallelism, constrained by energy
§  Subject to frequent faults and failures

§  Many Classes of Extreme Scale Systems

Embedded, 100’s of Watts,
O(103) concurrency

Data Center
> 1 MW,

O(109) concurrency

Departmental,
100’s of KW,

O(106) concurrency Key Challenges
§  Energy Efficiency
§  Concurrency
§  Resiliency

References:
•  DARPA Exascale Software study, V. Sarkar et al, Sep 2009
•  “Software Challenges in Extreme Scale Systems”. V. Sarkar,

W. Harrod, A.E. Snavely. SciDAC Review, January 2010.

Mobile, < 10 Watts,
O(101) concurrency

4

Brief Summary of Exascale Software Study

§  Area 1: Application Development
§  Challenge: need for ~ 1000x more concurrency in applications

with ~ 0.01 – 0.1 bytes/ops, and significant reductions in data
movement

è Focus of US DOE co-design centers
§  Area 2: Expressing Parallelism and Locality (Programmability)

§  Challenge: forward-scalable and portable expression of intrinsic
parallelism and locality

è Focus of US DOE X-Stack programs
§  Area 3: Managing Parallelism and Locality (Performance)

§  Challenge: integration of compilers, runtime, OS with auto-tuning
è Focus of US DOE X-Stack and OS/R programs

§  See report for details!

Opportunities for OpenSHMEM

5

Data Challenges in Science

5 § 5

Overall trend: most science domains will become data-intensive
in the exascale timeframe (and many well before then)

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

2010" 2011" 2012" 2013" 2014" 2015"

Detector"
Sequencer"
Processor"
Memory"

CAGR = 72%

CAGR = 60%

CAGR = 36%

CAGR = 20%

Reference: DOE report on Synergistic Challenges in Data-Intensive Science and
Exascale Computing, March 2013.

6

Brief Summary of DOE ASCAC Data Subcommittee Report
§  Findings

§  Data analysis needs extreme scale computing and will be subject to
extreme scale challenges (moving compute to data, etc.)

§  Integration of data analytics with exascale simulations represents a new
class of workloads for exascale computing

§  Urgent need to simplify the workflow for data-intensive science
§  Urgent need to increase pool of scientists trained in both exascale and

data-intensive computing
§  Recommendations

§  Give higher priority to investments that can benefit both data-intensive
science and exascale computing

§  Give higher priority to investments that simplify the workflow for data-
intensive science

§  Adjust funding to increase pool of scientists trained in both exascale
and data-intensive computing

§  See report for details!

7

What is “Hybrid Programming”?

Zonkey
Liger

Jaglion
Image source: http://en.wikipedia.org/wiki/Hybrid_(biology)

8

Observation: definition of “Hybrid” depends on your
starting point
§  If your starting point is a bulk-synchronous SPMD

program with one thread per rank, then
“hybridizations” have to be implemented as special-
case extensions, e.g.,
§  Asynchronous data movements across ranks
§  Task parallelism within a rank
§  Accelerator parallelism
§  Task/process cancellation and migration
§  . . .

9

Another Metaphor for Hybrid Programming Today ….

10

Alternate Approach: Hybrid by Design

§  If your starting point is a general unified execution
model and runtime system for extreme scale
computing, then “hybridizations” are simply
combinations of features, e.g.,
§  Asynchronous data movements across ranks
§  Task parallelism within a rank
§  Accelerator parallelism
§  Task/process cancellation and migration
§  . . .

11

Rice Habanero Multicore Software Project:
Enabling Technologies for Extreme Scale

Habanero
Programming

Languages

Habanero Static
Compiler &

Parallel
Intermediate

Representation

Habanero
Runtime
System

Two-level programming model
Declarative Coordination

Language for Domain Experts:
CnC-HC, CnC-Java, CnC-Python,

CnC-Matlab, … +
Task-Parallel Languages for

Parallelism-aware Developers:
Habanero-C, Habanero-Java,

Habanero-Scala

Portable execution model
1) Lightweight asynchronous tasks and
data transfers
§  Creation: async tasks, future tasks,
data-driven tasks
§  Termination: finish, future get, await
§  Data Transfers: asyncPut, asyncGet
2) Locality control for task and data
distribution
§  Computation and Data Distributions:
hierarchical places, global name space
3) Inter-task synchronization operations
§  Mutual exclusion: isolated, actors
§  Collective and point-to-point
synchronization: phasers

http://habanero.rice.edu

Extreme Scale Platforms

Parallel Applications

12

Performance Variability is on the rise …
§  Concurrency --- increased performance variability with

increased parallelism
§  Energy efficiency --- increased performance variability with

increased non-uniformity and heterogeneity in processors
§  Locality --- increased performance variability with increased

memory hierarchy depths
§  Resiliency --- increased performance variability with fault

tolerance adaptation (migration, rollback, redundancy, …)
Increasing performance variability 
§  Need for asynchrony and reduction of ordering constraints
§  Runtime becomes an increasingly critical component of software

stack

13

Role of Runtime Systems

§  Inherent variability in irregular applications and
extreme scale platforms calls for a runtime system
that is
§  abstract
§  asynchronous
§  adaptive
§  portable
§  a true manifestation of future execution models

14

Target Platforms
Habanero programs have been executed on a wide range of
production and experimental systems
§  Multicore SMPs (IBM, Intel)
§  Discrete GPUs (AMD, NVIDIA)
§  Integrated GPUs (AMD, Intel)
§  FPGA (Convey, w/ GPU added)
§  HPC Clusters
§  Hadoop Clusters
§  Experimental processors: IBM Cyclops, Intel SCC
§  . . .

15

Elements of Habanero Execution Model
1) Lightweight asynchronous tasks and data transfers
§  Creation: async tasks, future tasks, data-driven tasks
§  Termination: finish, future get, await
§  Data Transfers: asyncPut, asyncGet
2) Locality control for control and data distribution
§  Computation and Data Distributions: hierarchical places, global

name space
3) Inter-task synchronization operations
§  Mutual exclusion: global/object-based isolation, actors
§  Collective and point-to-point synchronization: phasers
Goal: unified model of parallelism that spans a wide range of
extreme scale platforms

16

Example: Habanero abstraction of a CUDA kernel
invocation

async at(GPU1)

async at(GPU2)

forall(blockIdx)

forallPhased(threadIdx)

17

Properties of Habanero Execution Model
§  Deadlock freedom guarantee for large subset of operations

§  All operations except explicit wait in phasers and explicit await clause in async
§  Data-race freedom guarantee for subset of data accesses

§  Future values, accumulator values
§  Read-write permission regions
§  Isolated accesses, actors

§  Determinacy guarantee for subset of programs
§  Data-race freedom implies determinacy for all programs that do not use mutual

exclusion constructs (isolated, actors)
§  Amenable to efficient asynchronous and portable implementations

§  Locality-aware work-stealing
§  Hierarchical places with support for heterogeneous processors
§  Integration with cluster-level communication runtime systems
§  Scalable synchronization with phasers and delegated isolation
§  Compiler optimizations for structured parallelism

18

Semantic Classification of
Habanero Parallel Programs

§  Legend
§  DLF = DeadLock-Free
§  DRF = Data-Race-Free
§  DET = Determinate
§  DRFèDET = DRF implies DET
§  SER = Serializable

§  If a Habanero program only uses
async, finish, and future constructs (no
mutual exclusion), then it is guaranteed
to belong to the DLF + DRFDET +
SER class
§  Adding phasers yields programs in
the DLF + DRFDET class
§  Adding async await yields programs in
the DRFDET class
§  Restricting shared data accesses to
futures, isolated, actors yields programs
in the DRF-ALL class

7) ALL

6) DET
5) DRF-ALL

4) DLF-DRF-ALL

1) DLF-
DRF-DET-SER

3) DRF-DET

2) DLF-
DRF-DET

“Habanero-Java: the New Adventures of Old X10.” Vincent Cave, Jisheng Zhao, Jun Shirako,
Vivek Sarkar PPPJ 2011.

19

1) Primitives for Lightweight Asynchronous Tasks

//A0(Parent)

finish { //Begin finish

 async {

 STMT1; //A1(Child)

 }

 STMT2; //A0

} //End finish

STMT2

async

STMT1

terminate
wait

A1 A0

async S
§  Creates a new child task that executes

statement S
§  Parent task moves on to statement

following the async
§  async can be a computation or a

communication task

finish S
§  Execute S, but wait until all

(transitively) spawned asyncs in
S‘s scope have terminated
§  Like OpenMP’s taskwait

§  Implicit finish between start and
end of main program

§  Use of finish cannot create a
deadlock cycle

“X10: An Object-oriented approach to non-uniform Clustered Computing”, P.Charles et al. OOPSLA 2005.

20

Parallel Spanning Tree Algorithm in Habanero-C
1.  int try_labeling(Node* node, Node* parent){!
2.  /* If node->parent is null, set it to parent */!

3.  return CAS(!
4.  (void * volatile *) &(node->parent), !
5.  (void *) NULL, (void *) parent);!
6.  }!
7.  void compute(Node* node){!

8.  int i;!
9.  for(i = 0; i < node->num_neighbors; i++) {!
10.  Node* child = node->neighbors[i];!
11.  if(try_labeling(child, node)){!
12.  async {compute(child);};!

13.  }!
14.  }!
15.  /* function can return before async’s complete */!
16. }!
17.  finish compute(root);!

Async edge

Finish edge

Above	
 synchroniza0on	
 structure	

cannot	
 be	
 expressed	
 in	
 Cilk	
 or	

OpenMP	

21

Runtime Schedulers for Async-Finish Task Parallelism

 Work-Sharing (Java ThreadPoolExecutor, OpenMP, …)
§  Busy worker pushes task at one end of global deque
§  Access to global deque needs to be synchronized

 Work-Stealing (Cilk, TBB, Java ForkJoin, …)
§  One deque per worker (better scalability)
§  Idle worker steals tasks from busy workers
§  Two scheduling policies of interest

§  Work-first policy: worker executes child task
eagerly and leaves continuation to be stolen

§  Help-first policy: worker pushes child task to be
stolen (asks for help) and executes continuation

§  Hybrid adaptive algorithm dynamically selects best
policy for each async instance

T1 T2 … … Tp

§ W
1

§ Foreach

§ Wp+1

§ Tp

§ W
3

§ T2

§ W
2

§ T1
§ 
…

§ Su
bm

it
Ta

sk
s

§ Blocked

T1 T2 … … Tp

§ W
1

§ Foreach

§ Wp+1

§ Tp

§ W
3

§ T2

§ W
2

§ T1
§ 
…

§ Su
bm

it
Ta

sk
s

§ Blocked

T2..p

§ 
W1

§ T1 T3..p

§ 
W2

§ T2

§ 
Wp

§ Tp § …

T1 T2 … … Tp

§ W
1

§ Foreach

§ Wp+1

§ Tp

§ W
3

§ T2

§ W
2

§ T1
§ 
…

§ Su
bm

it
Ta

sk
s

§ Blocked

T1 T2 … … Tp

§ W
1

§ Foreach

§ Wp+1

§ Tp

§ W
3

§ T2

§ W
2

§ T1
§ 
…

§ Su
bm

it
Ta

sk
s

§ Blocked

T2..p

§ 
W1

§ T1 T3..p

§ 
W2

§ T2

§ 
Wp

§ Tp § … T2..p

§ 
W1

§ T1 T3..p

§ 
W2

§ T2

§ 
Wp

§ Tp § …

§  “Work-First and Help-First Scheduling Policies for Terminally Strict Parallel Programs”, Y.Guo, R.Barik, R.Raman, V.Sarkar, IPDPS 2009.
§  “SLAW: a Scalable Locality-aware Adaptive Work-stealing Scheduler for Multi-core Systems”, Y.Guo, J.Zhao, V.Cave, V.Sarkar, IPDPS 2010.

T1 T2 … … Tp

W1

Foreach

Wp+1

Tp

W3

T2

W2

T1 …
Su

bm
it

Ta
sk

s

Blocked

T1 T2 … … Tp

W1

Foreach

Wp+1

Tp

W3

T2

W2

T1 …
Su

bm
it

Ta
sk

s

Blocked

T2..p

W1

T1 T3..p

W2

T2

Wp

Tp …

T1 T2 … … Tp

W1

Foreach

Wp+1

Tp

W3

T2

W2

T1 …
Su

bm
it

Ta
sk

s

Blocked

T1 T2 … … Tp

W1

Foreach

Wp+1

Tp

W3

T2

W2

T1 …
Su

bm
it

Ta
sk

s

Blocked

T2..p

W1

T1 T3..p

W2

T2

Wp

Tp … T2..p

W1

T1 T3..p

W2

T2

Wp

Tp …

w1
work-stealing

pop tasks push
tasks

w2 w3 w4

steal tasks
deque

tail

head

w1 w2 w3 w4

get tasks

work-sharing

put
tasks

global queue

tail head

22

Parallel Spanning Tree on a Torus Graph with 4M vertices
(Habanero-Java implementation)

0
10
20
30
40
50
60
70
80
90

1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (M

eg
aE

dg
es

/S
ec

)

Number of Workers

PDFS – Niagara 2
hf adp

Work-first policy is unable to complete due to stack overflow
Adaptive (adp) policy performs better than help-first policy

23

Data-Driven Futures (DDFs) and Data-Driven Tasks
(DDTs) in Habanero-C language

DDF_t* ddfA = DDF_CREATE();!

§  Allocate an instance of a data-driven-future object (container)

async AWAIT(ddfA, ddfB, …) <Stmt>!

§  Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB,
… become available (i.e., after task becomes “enabled”)

DDF_PUT(ddfA, V); !

§  Store object V in ddfA, thereby making ddfA available

§  Single-assignment rule: at most one put is permitted on a given DDF

DDF_GET (ddfA)

§  Return value stored in ddfA

§  No blocking needed --- should only be performed by tasks that contain ddfA
in their AWAIT clause, or when some other synchronization (e.g., finish)
guarantees that DDF_PUT must have been performed.

DDFs and DDTs can be more efficient than OpenMP regions and barriers

24

Example Habanero-C code fragment with Data-
Driven Futures (Dag Parallelism)
1.   DDF_t* left = DDF_CREATE();!
2.   DDF_t* right = DDF_CREATE();!
3.   finish {!
4.   async AWAIT(left) leftReader(DDF_GET(left)); // Task3!
5.   async AWAIT(right) rightReader(DDF_GET(right)); // Task5!
6.   async AWAIT(left,right) // Task4!
7.   bothReader(DDF_GET(left), DDF_GET(right)); !
8.   async DDF_PUT(left,leftWriter()); //Task1!
9.   async DDF_PUT(right,rightWriter());//Task2!
10.   }!

AWAIT clauses capture data flow relationships

This	
 example	
 cannot	
 be	
 expressed	
 in	
 OpenMP	
 either	

25

Smith Waterman example with DDFs (Habanero-C)

finish { // matrix is a 2-D array of DDFs!
 for (i=0,i<H;++i) {!
 for (j=0,j<W;++j) {!
 DDF_t* curr = matrix[i][j];!
 DDF_t* above = matrix[i-1][j];!
 DDF_t* left = matrix[i][j-1];!
 DDF_t* uLeft = matrix[i-1][j-1];!
 async AWAIT (above, left, uLeft){!
 Elem* currElem = !
 init(DDF_GET(above),DDF_GET(left), DDF_GET(uLeft));!
 compute(currElem);!
 DDF_PUT(curr, currElem);!
 }/*async*/ !
 }/*for-j*/!
 }/*for-i*/!
}/*finish*/!

26

2) Locality control for task and data distribution:
Hierarchical Place Trees (HPT) abstraction
§  HPT approach

§  Hierarchical memory + Dynamic parallelism
§  Place denotes affinity group at memory hierarchy level

§  L1 cache, L2 cache, CPU memory, GPU memory, …
§  Leaf places include worker threads

§  e.g., W0, W1, W2, W3
§  Explore multiple HPT configurations

§  For same hardware and application
§  Trade-off between locality and load-balance

“Hierarchical Place Trees: A Portable Abstraction for Task
Parallelism and Data Movement”, Y.Yan et al, LCPC 2009

27

Locality-aware Scheduling using the HPT

§  Workers attached to leaf places
§  Bind to hardware core

§  Each place has a queue
§  async at(<pl>) <stmt>: push task onto

place pl’s queue

§  A worker executes tasks from ancestor places from
bottom-up
§  W0 executes tasks from PL3, PL1, PL0

§  Tasks in a place queue can be executed by all workers
in the place’s subtree
§  Task in PL2 can be executed by workers W2 or W3

PL1 PL2

PL0

PL3

w0

PL4

w1

PL5

w2

PL6

w3

28

HPT Implementation in Habanero-C

“Runtime Systems for Extreme Scale Platforms”, Sanjay Chatterjee, PhD thesis, Dec 2013

29

Example: Cholesky Performance with HPT (12-core SMP)

9.572&

8.235&

6.945&
6.609& 6.573&

6.851& 7.258&

8.278&

11.595&

6.751&
6.122&

6.329& 6.331& 6.361&
6.865&

7.549&

8.393&

11.789&

6.000&

7.000&

8.000&

9.000&

10.000&

11.000&

12.000&

20& 25& 40& 50& 60& 75& 100& 125& 150&

Ti
m
e
%(
s)
%

Tile%Size%

Cholesky%6000x6000%

Base& HPT&

Reference: Runtime Systems for Extreme Scale Platforms.
Sanjay Chatterjee. Ph.D Thesis, December 2013

30

Preliminary Results with Affinity-based Scheduling
using Tuning Annotations --- Rician Denoising

 Up to 3.5x improvement on specific tile size
Overall improvement of 19% over best optimal tiled version

Un-Tuned best Tuned best

3.5x

31

§  async at(P) S
§  Creates new activity to execute statement S at place P

§  Explicit data transfer between main memory and device memory when needed
§ Use of copyin/copyout clauses to improve programmability of data transfers

§  Device agent workers
§ Perform asynchronous data copy and task launching for device

Habanero Hierarchical Place Trees for heterogeneous
architectures and accelerators

PL0

PL1 PL2

PL3 PL4 PL5 PL6

PL7 PL8

W0 W1 W2 W3

W4 W5

§  Devices (GPU or FPGA) are represented as memory
module places and agent workers
§  GPU memory configuration are fixed, while FPGA

memory are reconfigurable at runtime

PL

PL

PL

PL

Physical memory

Cache

GPU memory

Reconfigurable FPGA

Implicit data movement
Explicit data movement

Wx CPU computation worker

Wx Device agent worker

32

Habanero-C constructs for Heterogeneous Computing

finish{ body }
§  Ensures all tasks spawned inside the body are completed.

async copyin(args1) copyout(args2) at(dev-list) { Body };
§  Asynchronously copy data between the device and the host.

forasync point (args) range (<low:high>) seq (args) scratchpad(args)
 reduce (args) at(dev-list) partition(ratio){ Body }

§  Data/Task parallel loop.

phased next;
§  Point to point synchronization support.

single { Body };
§  Body is executed only once.

await (events);
§  Wait until specified events are completed.

Habanero-C Compilation Framework

§ 33	

 Shared Virtual Memory

Data Layout

Scheduling Details

Habanero-C
 (HC)

C Program + OpenCL
 + Host Program

HC Compiler
(Rose)

OpenCL SDK + HC-Scheduler
C Compiler

(GCC)

Executable

GPU CPU

Machine Independent Program domain expert
+

 parallelism enthusiast

parallelism specialist

Tuner specialized for
heterogeneous architectures

Hardware Constraints

Optional: Machine Specific Modules

Op#onal:	

Hardware	
 features	

HC to OpenCL Code Generation

§ 34	

int main(){
 finish async copyin(b, c) at(gpu);
 finish forasync point(i, j) range(0:M, 0:N) at(gpu)

 {
 a[i * M + j] = b[i * M + j] + c[i * M + j];

 }
 finish async copyout(a) at(gpu);
}

void offload(float *a, float *b, float *c,
 char *kernel_name, char* ocl_kernel, int dev)

{
 //Build and execute the kernel
//…………………. More Code…………………
 ind0 = get_buffer((unsigned long)C);
 ind1 = get_buffer((unsigned long)A);
 ind2 = get_buffer((unsigned long)B);
 err = clSetKernelArg(kernel[1][dev], 0, sizeof(cl_mem),&buffer[ind0].mem_buffer[dev_id]);
 err = clSetKernelArg(kernel[1][dev], 1, sizeof(cl_mem),&buffer[ind1].mem_buffer[dev_id]);
 err = clSetKernelArg(kernel[1][dev], 2, sizeof(cl_mem),&buffer[ind2].mem_buffer[dev_id]);
 err = clSetKernelArg(kernel[1][dev], 3, sizeof(cl_int),&NK);
 err = clSetKernelArg(kernel[1][dev], 4, sizeof(cl_int),&NJ);
 check_error("Failed to set kernel arguments");
 global[1]=high1; global[0]=high2;
 local[1]= seq1 local[0]= seq2;
 offset[1]=low1; offset[0]=low2;
 err = clEnqueueNDRangeKernel(commands[,kernel, 2, offset, global,local, 0, NULL,
&Event);
//…………………. More Code…………………
err= clGetPlatformInfo (platforms[ct], CL_PLATFORM_NAME, 1024, device_name, NULL);
err = clGetDeviceIDs(platforms[ct], CL_DEVICE_TYPE_CPU, 4, device_id, &num_devices);
 //…………………. More Code…………………
}

Kernel_string=
“void kernel_1(__global float *a, __global float *b, __global float *c, int M, int N) {

 i = get_global_id(1);
 j = get_global_id(0);
 a[i * M + j] = b[i * M + j] + c[i * M + j];

 }”;

Host	
 Code	

OpenCL	
 Kernel	

int main(){
 copy_to_device(b,gpu);

 copy_to_device(c,gpu);
 cl_finish(gpu);
 offload(a, b, c, ”kernel_1”, Kernel_string, gpu);
 cl_finish(gpu);
 copy_from_device(a,gpu);
 cl_finish(gpu);

}

C	
 Program	

HC	
 Code	

2D	
 Matrix	
 Addi0on	

35

de
no

is
in

g

re
gi

st
ra

tio
n

se
gm

en
ta

tio
n

an
al

ys
is

re

co
ns

tru
ct

io
n

§  New reconstruction methods
§  decrease radiation exposure (CT)
§  number of samples (MR)

§  3D/4D image analysis pipeline
§  Denoising
§  Registration
§  Segmentation

§  Analysis
§  Real-time quantitative cancer

assessment applications
§  Potential:

§  order-of-magnitude performance
improvement

§  power efficiency improvements
§  real-time clinical applications and

simulations using patient imaging data

Figure credit: NSF Expeditions CDSC project

Medical imaging application
(Center for Domain-Specific Computing)

36

D1

R1

S1

…

D2

R2

S2

S2
S1

R2
R1

Instances of steps D
stolen by CPU or GPU

An instance of step R
stolen by GPU

Steps of type S launched
at a GPU place

CPU1

env

D2
D1

CPU2 GPU FPGA

Steps of type R launched
at a FPGA place

Steps D launched
at a CPU place

Dedicated device queues

CPU only tasks

}  CnC graph representation
extended with tag functions and
affinity annotations:
}  < C > :: (D @CPU=20,GPU=10);
}  < C > :: (R @GPU=5, FPGA=10);
}  < C > :: (S @GPU=12);

}  [IN : k-1] → (D : k) → [IN2 : k+1];
}  [IN2 : 2*k] → (R : k) → [IN3 : k/2];
}  [IN3 : k] → (S : k) → [OUT : IN3[k]];

}  env → [IN : { 0 .. 9 }], < C : { 0 .. 9 } >;
}  [OUT : 1] → env;

Adding Affinity Annotations for Heterogeneous Computing

“Mapping a Data-Flow Programming Model onto Heterogeneous Platforms.” Alina Sbirlea, Yi Zou, Zoran Budimlic,
Jason Cong, Vivek Sarkar. LCTES 2012

37

Hybrid Scheduling for Heterogeneous Nodes
♦  Device place has two HC (half-concurrent) mailboxes: inbox

(green) and outbox (red)
§  No locks – highly efficient

♦  Inbox maintains asynchronous device tasks (with IN/OUT)
§  Concurrent enqueuing device tasks by CPU workers from tail
§  Sequential dequeuing tasks by device “proxy” worker

♦  Outbox maintains continuation of the finish scope of tasks
§  Sequential enqueuing continuation by “proxy” worker
§  Concurrent dequeuing (steal) by CPU workers

PL7 Continuations stolen
by CPU workers

W4

Device tasks created from CPU
worker via

 async at(gpl) IN() OUT() { … }
tail head tail head

PL7 = GPU place
 W4 = proxy worker at CPU

for GPU device

38

Hybrid Scheduling with Cross-Platform Work Stealing
♦  Steps are compiled for execution on CPU, GPU or FPGA

§  Same-source multiple-target compilation in future

♦  Device inbox is now a concurrent queue and tasks can be
stolen by CPU or other device workers
§  Multitasks, range stealing and range merging in future

PL7 Continuations stolen
by CPU workers

W4

tail head tail head

Device tasks stolen by
CPU and other device
workers

Device tasks created from CPU
worker via

 async at(gpl) IN() OUT() { … }

39

Intel®
Xeon®
Processor Intel®

Memory
Controller
Hub (MCH)

Intel® I/O
Subsystem Memory Memory

Application
Engine Hub
(AEH)

Application Engines
(AEs)

Direct
Data
Port

“Commodity” Intel Server Convey FPGA-based coprocessor

Standard Intel® x86-64 Server
 x86-64 Linux

Convey coprocessor
 FPGA-based
 Shared cache-coherent memory

Xeon Quad
Core LV5408
40W TDP

Tesla C1060
100GB/s off-chip bandwidth
200W TDP

XC6vlx760 FPGAs
80GB/s off-chip bandwidth
94W Design Power

Convey HC-1ex Testbed

39

40

Static vs Dynamic Scheduling

§  Static Schedule

§  Dynamic Schedule

}  < C > :: (D @CPU=20,GPU=10);
}  < C > :: (R @GPU=5, FPGA=10);
}  < C > :: (S @GPU=12);

41

Experimental results

§  Performance for medical imaging kernels

Denoise	
 Registra0on	
 Segmenta0on	

Num	
 itera0ons	
 3	
 100	
 50	

CPU	
 (1	
 core)	
 3.3s	
 457.8s	
 36.76s	

GPU	
 0.085s	
 (38.3	
 ×)	
 20.26s	
 (22.6	
 ×)	
 1.263s	
 (29.1	
 ×)	

FPGA	
 0.190s	
 (17.2	
 ×)	
 17.52s	
 (26.1	
 ×)	
 4.173s	
 (8.8	
 ×)	

42

Experimental results

•  Execution times and active energy with
dynamic work stealing

43

Communication Workers
mediate between

communication runtime and
node runtime

From Locality to Communication --- Integrating Inter-node
Communication with Intra-node Task Scheduling

“Integrating Asynchronous Task Parallelism with MPI.” Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent
Cave, Milind Chabbi, Max Grossman, Yonghong Yan, Vivek Sarkar. IPDPS 2013.

44

UTS Performance on T1XXL

•  Jaguar Supercomputer at ORNL
•  18688 nodes with Gemini Interconnect
•  16 core AMD Opteron nodes with 32 GB memory

4" 8" 16" 32" 64" 128" 256" 512" 1024"

2""cores/node" 0.67" 0.67" 0.67" 0.67" 0.67" 0.68" 0.68" 0.69" 0.73"
4"cores/node" 1.00" 1.00" 1.00" 1.00" 1.00" 1.01" 1.03" 1.10" 1.33"
8"cores/node" 1.17" 1.17" 1.17" 1.17" 1.17" 1.20" 1.29" 1.66" 4.50"
16"cores/node" 1.26" 1.26" 1.26" 1.26" 1.33" 1.51" 1.98" 5.76" 22.31"

22.31"

0.40"

4.00"

40.00"

Sp
ee
du

p"
"

(M
PI
"T
im

e"
/"H

CM
PI
"T
im

e)
"

Nodes"

2""cores/node" 4"cores/node"

8"cores/node" 16"cores/node"

45

Failed steals lead to scalability bottleneck in MPI
•  At 256 nodes: MPI suffers 2.35M failed steals while HCMPI suffers 0.82M
•  At 1024 nodes: MPI suffers 94.75M failed steals while HCMPI suffers 8.83M

UTS Scaling on T1XXL

46

PGNS Programming Model

§  Philosophy :
§  In the Habanero Partitioned Global Name Space

(PGNS) programming model, distributed tasks
communicate via distributed data-driven futures, each
of which has a globally unique id/name (guid).

§  PGNS can be implemented on a wide range of
communication runtimes including GASNet and MPI
(and OpenSHMEM), regardless of whether or not a
global address space is supported.

47

Distributed Data-Driven Futures (DDDFs)

int DDF_HOME (int guid) {…}; !

§  a globally unique DDDF id è home rank
int DDF_SIZE (int guid) {…};!

§  a globally unique DDDF id è size of DDDF in bytes

DDF_t* ddfA = DDF_HANDLE(guid); (contrast with DDF_CREATE of shared

memory)!

§  Allocate an instance of a distributed data-driven-future object (container)
§  Multiple nodes can acquire handle to DDDF via its guid!
!

async AWAIT(ddfA, ddfB, …) <Stmt>!

§  Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB,
… become available (i.e., after task becomes “enabled”)

§  Seamless usage of distributed and shared memory DDFs
§  Await registration handles the communication implicitly

§  Batches all communication at start of task (instead of individual get’s)

48

Distributed Data-Driven Futures (DDDFs)

DDF_PUT(ddfA, V);!

§  Store object V in ddfA, thereby making ddfA available

§  Single-assignment rule: at most one put is permitted on a given DDF

§  Restricted only to home rank

§  Handles communication to registrants implicitly

DDF_GET (ddfA) (macro for __ddfGet(DDF_t* ddfObj))

§  Return value stored in ddfA

§  Ensured to be safely performed by async’s that contain ddfA in their await
clause

§  needs to be preceded by await clause on ddfA if the producer is remote

§  await can be in a different task provided local synchronization ensures the await
precedes get

49

Multi-Node SmithWaterman
#define DDF_HOME(guid) (guid%NPROC)!
#define DDF_SIZE(guid) (sizeof(Elem))!
!
for (i=0;i<H;++i) !
 for (j=0;j<W;++j)!
 matrix[i][j] = DDF_HANDLE(i*H+j);!
!
doInitialPuts(matrix);!
finish {!
 for (i=0,i<H;++i) {!
 for (j=0,j<W;++j) {!
 DDF_t* curr = matrix[i][j];!
 DDF_t* above = matrix[i-1][j];!
 DDF_t* left = matrix[i][j-1];!
 DDF_t* uLeft = matrix[i-1][j-1];!
 if (isHome(i,j)) {!
 async AWAIT (above, left, uLeft){!
 Elem* currElem = !
 init(DDF_GET(above),!
 DDF_GET(left),!
 DDF_GET(uLeft));!
 compute(currElem);!
 DDF_PUT(curr, currElem);!
 }/*async*/ !
 }/*if*/!
 }/*for*/!
 }/*for*/!
}/*finish*/!

executed running

DDF

DDDF

50

Results for APGNS version of SmithWaterman
(communication runtime uses MPI under the covers)

51

Open Community Runtime (OCR)
 Open Source Project

•  Hosted on 01.org since 2012:
•  Goals
– Modularity
– Support for multiple programming systems e.g., programming

languages, libraries, compilers, DSLs, …
– Support for hardware platforms e.g., homogeneous manycore,

heterogeneous accelerators, clusters, …
•  Development process
– Continuous integration
– Development plans driven by community milestones

•  Organization
– Steering Committee (SC) --- sets overall strategic directions

and technical plans
– Core Team (CT) --- executes technical plan and decides

actions to take for source code contributions
– Users and Contributors --- members of OCR community i.e.,

you!!

52

OCR Acknowledgments

•  Design strongly influenced by
–  Intel Runnemede project (via DARPA UHPC program)
–  power efficiency, programmability, reliability, performance

– Codelet philosophy – Prof. Gao’s group at U. Delaware
–  implicit notions of dataflow

– Habanero project – Prof. Sarkar’s group at Rice U.
–  data-driven tasks, data-driven futures, hierarchical places

– Concurrent Collections model – Intel Software/Solutions Group
–  decomposition of algorithm into steps/items/tags, tuning

– Observation-based Scheduling – Intel Labs
– monitoring and dynamic adaptation to load and environment

•  Partial support for the OCR development was provided through the
X-Stack program funded by U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research (ASCR)

53

Evolutionary vs. Revolutionary Approaches
to Extreme Scale Runtime Systems

•  Wide agreement that execution models for extreme scale
systems will differ significantly from past execution models

•  Shoehorning a new execution model into an old runtime
system is counter-productive

•  Instead, make a fresh start but carry forward reusable
components from current runtime systems as appropriate

è Motivation for Open Community Runtime framework that …
–  is representative of future execution models
–  can be targeted by multiple high-level programming systems
–  can be mapped on to multiple extreme scale platforms
–  is available as an open-source testbed
–  reduces duplication of new infrastructure efforts
– enables us to address revolutionary challenges collaboratively

54

OCR Assumptions

•  A fine-grained, asynchronous event-driven runtime
framework with movable data blocks and sophisticated
observation enables the next wave of high-performance
computing

•  Fine-grained parallelism helps achieve concurrency levels
required for extreme scale

•  Asynchronous events and movable data blocks help cope
with performance variability, data movement, non-uniformity,
heterogeneity, and resilience in extreme scale systems

•  Sophisticated observation enables introspection into system

behavior, feedback to OCR client, and adaptation based on
algorithmic and performance tuning

55

Example API: Creating an
Event-Driven Task (EDT)

•  u8 ocrEdtCreate(ocrGuid_t * guid, ocrGuid_t templateGuid,
u32 paramc, u64* paramv, u32 depc, ocrGuid_t *depv, u16
properties, ocrGuid_t affinity, ocrGuid_t *outputEvent);
–  guid [out]: the assigned guid
–  templateGuid: the template the EDT is an instance of
–  paramc: nb of u64 parameters
–  paramv: pointer to u64 parameters
–  depc: nb of guid parameters
–  depv: array of guid dependences (if known at creation or NULL)
–  properties: can specify if finish-edt here.
–  affinity: affinity guid
– outputEvent [out]: edt completion notification

56

OCR Vision

Hero

Programmer

Smart

Compiler

Higher-level

language

Higher-level

library

Open Community Runtime Framework

External Runtime Components

Extreme Scale Platforms

R-Stream, ROSE, LLVM CnC, Chapel
HC-lib, Habanero-UPC,

PyGAS, OpenSHMEM , …

MPI, GASNet,
Portals, PAMI,
UCCS, ARMCI, …

C, C++, Fortran

OCR fills
a major
gap in
intra-
node

runtime
systems

57

Conclusions

§  Holistic redesign of software stack is needed to address concurrency,

energy, and resiliency challenges of Extreme Scale systems
§  Urgent need for execution models that span multiple scales of parallelism

and heterogeneity – multicore, accelerators, multi-node, HPC cluster, data
center cluster

§  Well-designed runtime primitives can provide foundation for new execution
models, with synergistic innovation in languages and compilers

§  OpenSHMEM is well suited to help with these challenges because of its
lightweight support for a partitioned global address space
§  Integration of OpenSHMEM and OCR is an interesting opportunity

§  Key question: how to simultaneously advance innovation in OpenSHMEM
along two fronts?
§  Exploration of new ideas, as in Habanero and other research projects
§  Standardization of ideas to support broader adoption

