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Multicore Processors and Extreme Scale Systems 
§  Characteristics of Extreme Scale systems in the next decade  

§  Massively multi-core (~ 100’s of cores/chip) 
§  Performance driven by parallelism, constrained by energy 
§  Subject to frequent faults and failures 

§  Many Classes of Extreme Scale Systems 

 
 

 
 

Embedded, 100’s of Watts, 
O(103) concurrency 

Data Center 
> 1 MW, 

O(109) concurrency 

Departmental, 
100’s of KW, 

O(106) concurrency Key Challenges 
§  Energy Efficiency 
§  Concurrency 
§  Resiliency 

 
 

References: 
•  DARPA Exascale Software study, V. Sarkar et al, Sep 2009 
•  “Software Challenges in Extreme Scale Systems”.  V. Sarkar, 

W. Harrod, A.E. Snavely.  SciDAC Review, January 2010.  

Mobile, < 10 Watts, 
O(101) concurrency 
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Brief Summary of Exascale Software Study 

§  Area 1: Application Development 
§  Challenge: need for ~ 1000x more concurrency in applications 

with ~ 0.01 – 0.1 bytes/ops, and significant reductions in data 
movement 

è Focus of US DOE co-design centers 
§  Area 2: Expressing Parallelism and Locality (Programmability) 

§  Challenge: forward-scalable and portable expression of intrinsic 
parallelism and locality 

è Focus of US DOE X-Stack programs 
§  Area 3: Managing Parallelism and Locality (Performance) 

§  Challenge: integration of compilers, runtime, OS with auto-tuning 
è Focus of US DOE X-Stack and OS/R programs  

§  See report for details! 

Opportunities for OpenSHMEM 
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Data Challenges in Science 

5 § 5 

Overall trend: most science domains will become data-intensive 
in the exascale timeframe (and many well before then) 
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Reference: DOE report on Synergistic Challenges in Data-Intensive Science and 
Exascale Computing, March 2013.  
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Brief Summary of DOE ASCAC Data Subcommittee Report 
§  Findings 

§  Data analysis needs extreme scale computing and will be subject to 
extreme scale challenges (moving compute to data, etc.) 

§  Integration of data analytics with exascale simulations represents a new 
class of workloads for exascale computing 

§  Urgent need to simplify the workflow for data-intensive science  
§  Urgent need to increase pool of scientists trained in both exascale and 

data-intensive computing 
§  Recommendations 

§  Give higher priority to investments that can benefit both data-intensive 
science and exascale computing 

§  Give higher priority to investments that simplify the workflow for data-
intensive science 

§  Adjust funding to increase pool of scientists trained in both exascale 
and data-intensive computing 

§  See report for details! 
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What is “Hybrid Programming”? 

Zonkey 
Liger 

Jaglion 
Image source: http://en.wikipedia.org/wiki/Hybrid_(biology)  
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Observation: definition of “Hybrid” depends on your 
starting point 
§  If your starting point is a bulk-synchronous SPMD 

program with one thread per rank, then 
“hybridizations” have to be implemented as special-
case extensions, e.g., 
§  Asynchronous data movements across ranks 
§  Task parallelism within a rank 
§  Accelerator parallelism 
§  Task/process cancellation and migration 
§  . . .  
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Another Metaphor for Hybrid Programming Today …. 
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Alternate Approach: Hybrid by Design 

§  If your starting point is a general unified execution 
model and runtime system for extreme scale 
computing, then “hybridizations” are simply 
combinations of features, e.g., 
§  Asynchronous data movements across ranks 
§  Task parallelism within a rank 
§  Accelerator parallelism 
§  Task/process cancellation and migration 
§  . . .  
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Rice Habanero Multicore Software Project: 
Enabling Technologies for Extreme Scale 

Habanero 
Programming 

Languages 

Habanero Static 
Compiler & 

Parallel 
Intermediate 

Representation 

Habanero 
Runtime 
System 

Two-level programming model 
Declarative Coordination 

Language for Domain Experts:  
CnC-HC, CnC-Java, CnC-Python, 

CnC-Matlab, …  +  
Task-Parallel Languages for 

Parallelism-aware Developers:  
Habanero-C, Habanero-Java,  

Habanero-Scala 

Portable execution model 
1) Lightweight asynchronous tasks and 
data transfers 
§  Creation: async tasks, future tasks, 
data-driven tasks 
§  Termination: finish, future get, await 
§  Data Transfers: asyncPut, asyncGet 
2) Locality control for task and data 
distribution  
§  Computation and Data Distributions:  
hierarchical places, global name space 
3) Inter-task synchronization operations 
§  Mutual exclusion:  isolated, actors 
§  Collective and point-to-point 
synchronization: phasers 
 

http://habanero.rice.edu 

Extreme Scale Platforms 

Parallel Applications 
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Performance Variability is on the rise … 
§  Concurrency --- increased performance variability with 

increased parallelism 
§  Energy efficiency --- increased performance variability with 

increased non-uniformity and heterogeneity in processors 
§  Locality --- increased performance variability with increased 

memory hierarchy depths 
§  Resiliency --- increased performance variability with fault 

tolerance adaptation (migration, rollback, redundancy, …) 
Increasing performance variability   
§  Need for asynchrony and reduction of ordering constraints 
§  Runtime becomes an increasingly critical component of software 

stack 
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Role of Runtime Systems 

§  Inherent variability in irregular applications and 
extreme scale platforms calls for a runtime system 
that is 
§  abstract 
§  asynchronous 
§  adaptive 
§  portable 
§  a true manifestation of future execution models 
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Target Platforms 
Habanero programs have been executed on a wide range of 
production and experimental systems 
§  Multicore SMPs (IBM, Intel) 
§  Discrete GPUs (AMD, NVIDIA) 
§  Integrated GPUs (AMD, Intel) 
§  FPGA (Convey, w/ GPU added) 
§  HPC Clusters 
§  Hadoop Clusters  
§  Experimental processors: IBM Cyclops, Intel SCC 
§  . . . 
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Elements of Habanero Execution Model 
1)  Lightweight asynchronous tasks and data transfers 
§  Creation: async tasks, future tasks, data-driven tasks 
§  Termination: finish, future get, await 
§  Data Transfers: asyncPut, asyncGet 
2) Locality control for control and data distribution  
§  Computation and Data Distributions: hierarchical places, global 

name space 
3) Inter-task synchronization operations 
§  Mutual exclusion:  global/object-based isolation, actors 
§  Collective and point-to-point synchronization: phasers 
Goal: unified model of parallelism that spans a wide range of 
extreme scale platforms 
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Example: Habanero abstraction of a CUDA kernel 
invocation 

async at(GPU1) 

async at(GPU2) 

forall(blockIdx) 

forallPhased(threadIdx) 
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Properties of Habanero Execution Model 
§  Deadlock freedom guarantee for large subset of operations 

§  All operations except explicit wait in phasers and explicit await clause in async 
§  Data-race freedom guarantee for subset of data accesses 

§  Future values, accumulator values 
§  Read-write permission regions 
§  Isolated accesses, actors 

§  Determinacy guarantee for subset of programs 
§  Data-race freedom implies determinacy for all programs that do not use mutual 

exclusion constructs (isolated, actors) 
§  Amenable to efficient asynchronous and portable implementations 

§  Locality-aware work-stealing 
§  Hierarchical places with support for heterogeneous processors 
§  Integration with cluster-level communication runtime systems 
§  Scalable synchronization with phasers and delegated isolation 
§  Compiler optimizations for structured parallelism 
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Semantic Classification of 
Habanero Parallel Programs 

§  Legend 
§  DLF = DeadLock-Free 
§  DRF = Data-Race-Free 
§  DET = Determinate 
§  DRFèDET = DRF implies DET 
§  SER = Serializable 

§   If a Habanero program only uses 
async, finish, and future constructs (no 
mutual exclusion), then it is guaranteed 
to belong to the DLF + DRFDET + 
SER class 
§  Adding phasers yields programs in 
the DLF + DRFDET class 
§  Adding async await yields programs in 
the DRFDET class 
§  Restricting shared data accesses to 
futures, isolated, actors yields programs 
in the DRF-ALL class 

7) ALL 

6) DET 
5) DRF-ALL 

4) DLF-DRF-ALL 

1) DLF- 
DRF-DET-SER 

3) DRF-DET 

2) DLF- 
DRF-DET 

“Habanero-Java: the New Adventures of Old X10.” Vincent Cave, Jisheng Zhao, Jun Shirako, 
Vivek Sarkar  PPPJ 2011.  
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1) Primitives for Lightweight Asynchronous Tasks 

//A0(Parent) 

finish {   //Begin finish 

  async { 

    STMT1; //A1(Child) 

  } 

  STMT2;   //A0 

}          //End finish 

STMT2 

async 

STMT1 

terminate 
wait 

A1 A0 

async  S  
§  Creates a new child task that executes 

statement S 
§  Parent task moves on to statement 

following the async 
§  async can be a computation or a 

communication task 

finish S   
§  Execute S, but wait until all 

(transitively) spawned asyncs in 
S‘s scope have terminated 
§  Like OpenMP’s taskwait  

§  Implicit finish between start and 
end of main program 

§  Use of finish cannot create a 
deadlock cycle 

“X10: An Object-oriented approach to non-uniform Clustered Computing”, P.Charles et al. OOPSLA 2005.  
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Parallel Spanning Tree Algorithm in Habanero-C 
1.  int try_labeling(Node* node, Node* parent){!
2.    /* If node->parent is null, set it to parent */!

3.    return CAS(!
4.     (void * volatile *) &(node->parent), !
5.     (void *) NULL, (void *) parent);!
6.  }!
7.  void compute(Node* node){!

8.    int i;!
9.    for(i = 0; i  < node->num_neighbors; i++) {!
10.       Node* child = node->neighbors[i];!
11.       if(try_labeling(child, node)){!
12.         async {compute(child);};!

13.       }!
14.   }!
15.   /* function can return before async’s complete */!
16. }!
17.  finish compute(root);!

Async edge 

Finish edge 

Above	
  synchroniza0on	
  structure	
  
cannot	
  be	
  expressed	
  in	
  Cilk	
  or	
  

OpenMP	
  



21 

Runtime Schedulers for Async-Finish Task Parallelism 

 Work-Sharing (Java ThreadPoolExecutor, OpenMP, …) 
§  Busy worker pushes task at one end of global deque 
§  Access to global deque needs to be synchronized 
 

 Work-Stealing (Cilk, TBB, Java ForkJoin, …) 
§  One deque per worker (better scalability) 
§  Idle worker steals tasks from busy workers 
§  Two scheduling policies of interest 

§  Work-first policy: worker executes child task 
eagerly and leaves continuation to be stolen 

§  Help-first policy: worker pushes child task to be 
stolen (asks for help) and executes continuation 

§  Hybrid adaptive algorithm dynamically selects best 
policy for each async instance 
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§  “Work-First and Help-First Scheduling Policies for Terminally Strict Parallel Programs”, Y.Guo, R.Barik, R.Raman, V.Sarkar, IPDPS 2009. 
§  “SLAW: a Scalable Locality-aware Adaptive Work-stealing Scheduler for Multi-core Systems”, Y.Guo, J.Zhao, V.Cave, V.Sarkar, IPDPS 2010. 
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Parallel Spanning Tree on a Torus Graph with 4M vertices  
(Habanero-Java implementation) 
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Work-first policy is unable to complete due to stack overflow 
Adaptive (adp) policy performs better than help-first policy 
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Data-Driven Futures (DDFs) and Data-Driven Tasks 
(DDTs) in Habanero-C language 

DDF_t* ddfA = DDF_CREATE();!

§  Allocate an instance of a data-driven-future object (container) 

async AWAIT(ddfA, ddfB, …) <Stmt>!

§  Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, 
… become available (i.e., after task becomes “enabled”) 

DDF_PUT(ddfA, V); !

§  Store object V in ddfA, thereby making ddfA available 

§  Single-assignment rule: at most one put is permitted on a given DDF 

DDF_GET (ddfA) 

§  Return value stored in ddfA 

§  No blocking needed --- should only be performed by tasks that contain ddfA 
in their AWAIT clause, or when some other synchronization (e.g., finish) 
guarantees that DDF_PUT must have been performed. 

DDFs and DDTs can be more efficient than OpenMP regions and barriers 
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Example Habanero-C code fragment with Data-
Driven Futures (Dag Parallelism) 
1.   DDF_t* left = DDF_CREATE();!
2.   DDF_t* right = DDF_CREATE();!
3.   finish {!
4.     async AWAIT(left) leftReader(DDF_GET(left)); // Task3!
5.     async AWAIT(right) rightReader(DDF_GET(right)); // Task5!
6.     async AWAIT(left,right) // Task4!
7.           bothReader(DDF_GET(left), DDF_GET(right)); !
8.     async DDF_PUT(left,leftWriter()); //Task1!
9.     async DDF_PUT(right,rightWriter());//Task2!
10.   }!

AWAIT clauses capture data flow relationships 

This	
  example	
  cannot	
  be	
  expressed	
  in	
  OpenMP	
  either	
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Smith Waterman example with DDFs (Habanero-C) 

finish { // matrix is a 2-D array of DDFs!
  for (i=0,i<H;++i) {!
    for (j=0,j<W;++j) {!
      DDF_t* curr = matrix[i][j];!
      DDF_t* above = matrix[i-1][j];!
      DDF_t* left = matrix[i][j-1];!
      DDF_t* uLeft = matrix[i-1][j-1];!
      async AWAIT (above, left, uLeft){!
          Elem* currElem = !
            init(DDF_GET(above),DDF_GET(left), DDF_GET(uLeft));!
          compute(currElem);!
          DDF_PUT(curr, currElem);!
      }/*async*/        !
    }/*for-j*/!
  }/*for-i*/!
}/*finish*/!
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2) Locality control for task and data distribution: 
Hierarchical Place Trees (HPT) abstraction 
§  HPT approach 

§  Hierarchical memory + Dynamic parallelism 
§  Place denotes affinity group at memory hierarchy level 

§  L1 cache, L2 cache, CPU memory, GPU memory, … 
§  Leaf places include worker threads 

§  e.g., W0, W1, W2, W3 
§  Explore multiple HPT configurations 

§  For same hardware and application 
§  Trade-off between locality and load-balance 

 
“Hierarchical Place Trees: A Portable Abstraction for Task  
Parallelism and Data Movement”, Y.Yan et al, LCPC 2009 
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Locality-aware Scheduling using the HPT 

§  Workers attached to leaf places 
§  Bind to hardware core 

§  Each place has a queue 
§  async at(<pl>) <stmt>: push task onto 

place pl’s queue  

§  A worker executes tasks from ancestor places from 
bottom-up 
§  W0 executes tasks from PL3, PL1, PL0 

§  Tasks in a place queue can be executed by all workers 
in the place’s subtree 
§  Task in PL2 can be executed by workers W2 or W3 

PL1 PL2 

PL0 

PL3 

w0 

PL4 

w1 

PL5 

w2 

PL6 

w3 



28 

HPT Implementation in Habanero-C 

“Runtime Systems for Extreme Scale Platforms”, Sanjay Chatterjee, PhD thesis, Dec 2013 
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Example: Cholesky Performance with HPT (12-core SMP) 
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Reference: Runtime Systems for Extreme Scale Platforms. 
Sanjay Chatterjee. Ph.D Thesis, December 2013 
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Preliminary Results with Affinity-based Scheduling 
using Tuning Annotations --- Rician Denoising 

 Up to 3.5x improvement on specific tile size 
Overall improvement of 19% over best optimal tiled version 

Un-Tuned best Tuned best 

3.5x 
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§   async at(P) S 
§  Creates new activity to execute statement S at place P 

§  Explicit data transfer between main memory and device memory when needed 
§ Use of copyin/copyout clauses to improve programmability of data transfers 

§  Device agent workers 
§ Perform asynchronous data copy and task launching for device 

Habanero Hierarchical Place Trees for heterogeneous 
architectures and accelerators  

PL0 

PL1 PL2 

PL3 PL4 PL5 PL6 

PL7 PL8 

W0 W1 W2 W3 

W4 W5 

§  Devices (GPU or FPGA) are represented as memory 
module places and agent workers 
§  GPU memory configuration are fixed, while FPGA 

memory are reconfigurable at runtime 

PL 

PL 

PL 

PL 

Physical memory 

Cache 

GPU memory 

Reconfigurable FPGA 

Implicit data movement 
Explicit data movement 

Wx CPU computation worker 

Wx Device agent worker 
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Habanero-C constructs for Heterogeneous Computing 

finish{ body } 
§  Ensures all tasks spawned inside the body are completed. 
 

async copyin(args1) copyout(args2) at(dev-list) { Body }; 
§  Asynchronously copy data between the device and the host.  
 

forasync point (args) range (<low:high>) seq (args) scratchpad(args)  
              reduce (args) at(dev-list) partition(ratio){ Body } 

§  Data/Task parallel loop. 
 

phased next; 
§  Point to point  synchronization support. 
 

single { Body }; 
§  Body is executed only once. 
 

await (events); 
§  Wait until specified events are completed. 



Habanero-C Compilation Framework 

§ 33	
  

 Shared Virtual Memory     

Data Layout 

Scheduling Details 

Habanero-C 
 (HC) 

C Program + OpenCL 
 + Host Program 

HC Compiler 
(Rose) 

OpenCL SDK + HC-Scheduler  
C Compiler 

(GCC) 

Executable 

GPU CPU 

Machine Independent Program domain expert  
+ 

 parallelism enthusiast 

parallelism specialist 

Tuner specialized for  
heterogeneous architectures 

Hardware Constraints 

Optional: Machine Specific Modules 

Op#onal:	
  
Hardware	
  features	
  



HC to OpenCL Code Generation 

§ 34	
  

int main(){ 
        finish async copyin(b, c) at(gpu); 
        finish forasync point(i, j) range(0:M, 0:N) at(gpu) 

 { 
             a[i * M + j] = b[i * M + j] + c[ i * M + j]; 

 } 
         finish async copyout(a) at(gpu); 
} 

void offload(float *a, float *b, float *c,  
 char *kernel_name, char* ocl_kernel, int dev) 

{  
  //Build and execute the kernel 
//…………………. More Code………………… 
 ind0 = get_buffer((unsigned long)C); 
 ind1 = get_buffer((unsigned long)A); 
 ind2 = get_buffer((unsigned long)B); 
  err  = clSetKernelArg(kernel[1][dev], 0, sizeof(cl_mem),&buffer[ind0].mem_buffer[dev_id]); 
  err  = clSetKernelArg(kernel[1][dev], 1, sizeof(cl_mem),&buffer[ind1].mem_buffer[dev_id]); 
  err  = clSetKernelArg(kernel[1][dev], 2, sizeof(cl_mem),&buffer[ind2].mem_buffer[dev_id]); 
  err  = clSetKernelArg(kernel[1][dev], 3, sizeof(cl_int),&NK); 
  err  = clSetKernelArg(kernel[1][dev], 4, sizeof(cl_int),&NJ); 
  check_error("Failed to set kernel arguments"); 
  global[1]=high1;  global[0]=high2; 
  local[1]= seq1   local[0]= seq2; 
  offset[1]=low1;  offset[0]=low2; 
  err = clEnqueueNDRangeKernel(commands[,kernel, 2, offset, global,local, 0, NULL, 
&Event); 
//…………………. More Code………………… 
err= clGetPlatformInfo (platforms[ct], CL_PLATFORM_NAME, 1024, device_name, NULL); 
err = clGetDeviceIDs(platforms[ct], CL_DEVICE_TYPE_CPU, 4, device_id, &num_devices); 
 //…………………. More Code…………………                                
} 

Kernel_string= 
“void kernel_1(__global float *a, __global float *b,  __global float *c, int M, int N) { 

 i = get_global_id(1); 
 j = get_global_id(0); 
 a[i * M + j] = b[i * M + j] + c[ i * M + j]; 

    }”; 

Host	
  Code	
  

OpenCL	
  Kernel	
  

int main(){ 
 copy_to_device(b,gpu); 

                copy_to_device(c,gpu); 
 cl_finish(gpu); 
 offload(a, b, c, ”kernel_1”, Kernel_string, gpu); 
 cl_finish(gpu); 
 copy_from_device(a,gpu); 
 cl_finish(gpu); 

} 

C	
  Program	
  

HC	
  Code	
  
2D	
  Matrix	
  Addi0on	
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§  New reconstruction methods 
§  decrease radiation exposure (CT) 
§  number of samples (MR) 

§  3D/4D image analysis pipeline 
§  Denoising 
§  Registration 
§  Segmentation 

§  Analysis 
§  Real-time quantitative cancer 

assessment applications 
§  Potential: 

§  order-of-magnitude performance 
improvement 

§  power efficiency improvements  
§  real-time clinical applications and 

simulations using patient imaging data 

Figure credit: NSF Expeditions CDSC project 

Medical imaging application 
(Center for Domain-Specific Computing) 
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D1

R1

S1

…

D2

R2

S2

S2
S1

R2
R1

Instances of steps D
stolen by CPU or GPU

An instance of step R 
stolen by GPU

Steps of type S launched 
at a GPU place

CPU1

env

D2
D1

CPU2 GPU FPGA

Steps of type R launched 
at a FPGA place

Steps D launched 
at a CPU place

Dedicated device queues

CPU only tasks

}  CnC graph representation 
extended with tag functions and 
affinity annotations: 
}  < C > ::  ( D @CPU=20,GPU=10); 
}  < C > :: ( R @GPU=5, FPGA=10); 
}  < C > :: ( S @GPU=12); 

}  [ IN   : k-1 ] → ( D : k ) → [ IN2  : k+1 ]; 
}  [ IN2 : 2*k ] → ( R : k ) → [ IN3  : k/2 ]; 
}  [ IN3 : k ] → ( S : k ) → [ OUT : IN3[k] ]; 

}  env → [ IN : { 0 .. 9 } ], < C : { 0 .. 9 } >; 
}  [ OUT : 1 ] → env; 

Adding Affinity Annotations for Heterogeneous Computing 

“Mapping a Data-Flow Programming Model onto Heterogeneous Platforms.”  Alina Sbirlea, Yi Zou, Zoran Budimlic, 
Jason Cong, Vivek Sarkar.  LCTES 2012 
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Hybrid Scheduling for Heterogeneous Nodes 
♦  Device place has two HC (half-concurrent) mailboxes: inbox 

(green) and outbox (red) 
§  No locks – highly efficient 

♦  Inbox maintains asynchronous device tasks (with IN/OUT) 
§  Concurrent enqueuing device tasks by CPU workers from tail 
§  Sequential dequeuing tasks by device “proxy” worker 

♦  Outbox maintains continuation of the finish scope of tasks 
§  Sequential enqueuing continuation by “proxy” worker 
§  Concurrent dequeuing (steal) by CPU workers 

PL7 Continuations stolen 
by CPU workers 

W4 

Device tasks created from CPU 
worker via 

 async at(gpl) IN() OUT() { … } 
tail head tail head 

PL7 = GPU place 
  W4 = proxy worker at CPU  

for GPU device 
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Hybrid Scheduling with Cross-Platform Work Stealing 
♦  Steps are compiled for execution on CPU, GPU or FPGA 

§  Same-source multiple-target compilation in future 

♦  Device inbox is now a concurrent queue and tasks can be 
stolen by CPU or other device workers 
§  Multitasks, range stealing and range merging in future 

PL7 Continuations stolen 
by CPU workers 

W4 

tail head tail head 

Device tasks stolen by 
CPU and other device 
workers 

Device tasks created from CPU 
worker via 

 async at(gpl) IN() OUT() { … } 
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Intel® 
Xeon® 
Processor Intel® 

Memory 
Controller 
Hub (MCH) 

Intel® I/O 
Subsystem Memory Memory 

Application 
Engine Hub 
(AEH) 

Application Engines 
(AEs) 

Direct 
Data 
Port 

“Commodity” Intel Server Convey FPGA-based coprocessor 

Standard Intel® x86-64 Server 
 x86-64 Linux 

Convey coprocessor 
 FPGA-based 
 Shared cache-coherent memory 

Xeon Quad 
Core LV5408 
40W TDP 

Tesla C1060 
100GB/s off-chip bandwidth 
200W TDP 

XC6vlx760 FPGAs 
80GB/s off-chip bandwidth 
94W Design Power 

Convey HC-1ex Testbed 
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Static vs Dynamic Scheduling 

§  Static Schedule 

§  Dynamic Schedule 

}  < C > :: ( D @CPU=20,GPU=10); 
}  < C > :: ( R @GPU=5, FPGA=10); 
}  < C > :: ( S @GPU=12); 
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Experimental results 

§  Performance for medical imaging kernels 

Denoise	
   Registra0on	
   Segmenta0on	
  

Num	
  itera0ons	
   3	
   100	
   50	
  

CPU	
  (1	
  core)	
   3.3s	
   457.8s	
   36.76s	
  

GPU	
   0.085s	
  (38.3	
  ×)	
   20.26s	
  (22.6	
  ×)	
   1.263s	
  (29.1	
  ×)	
  

FPGA	
   0.190s	
  (17.2	
  ×)	
   17.52s	
  (26.1	
  ×)	
   4.173s	
  (8.8	
  ×)	
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Experimental results 

•  Execution times and active energy with 
dynamic work stealing 
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Communication Workers 
mediate between  

communication runtime and 
node runtime 

From Locality to Communication --- Integrating Inter-node 
Communication with Intra-node Task Scheduling 

“Integrating Asynchronous Task Parallelism with MPI.” Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent 
Cave, Milind Chabbi, Max Grossman, Yonghong Yan, Vivek Sarkar.  IPDPS 2013. 
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UTS Performance on T1XXL 

•  Jaguar Supercomputer at ORNL 
•  18688 nodes with Gemini Interconnect 
•  16 core AMD Opteron nodes with 32 GB memory 

4" 8" 16" 32" 64" 128" 256" 512" 1024"

2""cores/node" 0.67" 0.67" 0.67" 0.67" 0.67" 0.68" 0.68" 0.69" 0.73"
4"cores/node" 1.00" 1.00" 1.00" 1.00" 1.00" 1.01" 1.03" 1.10" 1.33"
8"cores/node" 1.17" 1.17" 1.17" 1.17" 1.17" 1.20" 1.29" 1.66" 4.50"
16"cores/node" 1.26" 1.26" 1.26" 1.26" 1.33" 1.51" 1.98" 5.76" 22.31"

22.31"

0.40"

4.00"
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im
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"

Nodes"
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Failed steals lead to scalability bottleneck in MPI 
•  At 256 nodes: MPI suffers 2.35M failed steals while HCMPI suffers 0.82M 
•  At 1024 nodes: MPI suffers 94.75M failed steals while HCMPI suffers 8.83M 

UTS Scaling on T1XXL 
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PGNS Programming Model 

§  Philosophy : 
§  In the Habanero Partitioned Global Name Space 

(PGNS) programming model, distributed tasks 
communicate via distributed data-driven futures, each 
of which has a globally unique id/name (guid).  

§  PGNS can be implemented on a wide range of 
communication runtimes including GASNet and MPI 
(and OpenSHMEM), regardless of whether or not a 
global address space is supported. 
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Distributed Data-Driven Futures (DDDFs) 

int DDF_HOME (int guid) {…}; !

§  a globally unique DDDF id  è home rank 
int DDF_SIZE (int guid) {…};!

§  a globally unique DDDF id  è size of DDDF in bytes 
 
DDF_t* ddfA = DDF_HANDLE(guid); (contrast with DDF_CREATE of shared 

memory)!

§  Allocate an instance of a distributed data-driven-future object (container) 
§  Multiple nodes can acquire handle to DDDF via its guid!
!

async AWAIT(ddfA, ddfB, …) <Stmt>!

§  Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, 
… become available (i.e., after task becomes “enabled”) 

§  Seamless usage of distributed and shared memory DDFs 
§  Await registration handles the communication implicitly 

§  Batches all communication at start of task (instead of individual get’s) 
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Distributed Data-Driven Futures (DDDFs) 

DDF_PUT(ddfA, V);!

§  Store object V in ddfA, thereby making ddfA available 

§  Single-assignment rule: at most one put is permitted on a given DDF 

§  Restricted only to home rank 

§  Handles communication to registrants implicitly 

DDF_GET (ddfA) (macro for __ddfGet(DDF_t* ddfObj)) 

§  Return value stored in ddfA 

§  Ensured to be safely performed by async’s that contain ddfA in their await 
clause 

§  needs to be preceded by await clause on ddfA if the producer is remote  

§  await can be in a different task provided local synchronization ensures the await 
precedes get 
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Multi-Node SmithWaterman 
#define DDF_HOME(guid) (guid%NPROC)!
#define DDF_SIZE(guid) (sizeof(Elem))!
!
for (i=0;i<H;++i) !
  for (j=0;j<W;++j)!
    matrix[i][j] = DDF_HANDLE(i*H+j);!
!
doInitialPuts(matrix);!
finish {!
  for (i=0,i<H;++i) {!
    for (j=0,j<W;++j) {!
      DDF_t* curr = matrix[i][j];!
      DDF_t* above = matrix[i-1][j];!
      DDF_t* left = matrix[i][j-1];!
      DDF_t* uLeft = matrix[i-1][j-1];!
      if ( isHome(i,j) ) {!
        async AWAIT (above, left, uLeft){!
          Elem* currElem = !
            init(DDF_GET(above),!
                 DDF_GET(left),!
                 DDF_GET(uLeft));!
          compute(currElem);!
          DDF_PUT(curr, currElem);!
        }/*async*/        !
      }/*if*/!
    }/*for*/!
  }/*for*/!
}/*finish*/!

executed running

DDF

DDDF
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Results for APGNS version of SmithWaterman 
(communication runtime uses MPI under the covers) 
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Open Community Runtime (OCR) 
 Open Source Project 

•  Hosted on 01.org since 2012: 
•  Goals 
– Modularity 
– Support for multiple programming systems e.g., programming 

languages, libraries, compilers, DSLs, … 
– Support for hardware platforms e.g., homogeneous manycore, 

heterogeneous accelerators, clusters, … 
•  Development process 
– Continuous integration 
– Development plans driven by community milestones 

•  Organization 
– Steering Committee (SC) --- sets overall strategic directions 

and technical plans 
– Core Team (CT) --- executes technical plan and decides 

actions to take for source code contributions 
– Users and Contributors --- members of OCR community i.e., 

you!! 
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OCR Acknowledgments 

•  Design strongly influenced by 
–  Intel Runnemede project (via DARPA UHPC program) 
–  power efficiency, programmability, reliability, performance 

– Codelet philosophy – Prof. Gao’s group at U. Delaware 
–  implicit notions of dataflow 

– Habanero project – Prof. Sarkar’s group at Rice U. 
–  data-driven tasks, data-driven futures, hierarchical places 

– Concurrent Collections model – Intel Software/Solutions Group 
–  decomposition of algorithm into steps/items/tags, tuning 

– Observation-based Scheduling – Intel Labs 
– monitoring and dynamic adaptation to load and environment 

•  Partial support for the OCR development was provided through the 
X-Stack program funded by U.S. Department of Energy, Office of 
Science, Advanced Scientific Computing Research (ASCR) 
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Evolutionary vs. Revolutionary Approaches 
to Extreme Scale Runtime Systems 

•  Wide agreement that execution models for extreme scale 
systems will differ significantly from past execution models 

•  Shoehorning a new execution model into an old runtime 
system is counter-productive 

•  Instead, make a fresh start but carry forward reusable 
components from current runtime systems as appropriate 

è Motivation for Open Community Runtime framework that … 
–  is representative of future execution models 
–  can be targeted by multiple high-level programming systems 
–  can be mapped on to multiple extreme scale platforms 
–  is available as an open-source testbed 
–  reduces duplication of new infrastructure efforts 
– enables us to address revolutionary challenges collaboratively 
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OCR Assumptions 

•  A fine-grained, asynchronous event-driven runtime 
framework with movable data blocks and sophisticated 
observation enables the next wave of high-performance 
computing 

•  Fine-grained parallelism helps achieve concurrency levels 
required for extreme scale 

•  Asynchronous events and movable data blocks help cope 
with performance variability, data movement, non-uniformity, 
heterogeneity, and resilience in extreme scale systems 

 
•  Sophisticated observation enables introspection into system 

behavior, feedback to OCR client, and adaptation based on 
algorithmic and performance tuning 
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Example API: Creating an  
Event-Driven Task (EDT) 

•  u8 ocrEdtCreate(ocrGuid_t * guid, ocrGuid_t templateGuid, 
u32 paramc, u64* paramv, u32 depc, ocrGuid_t *depv, u16 
properties, ocrGuid_t affinity, ocrGuid_t *outputEvent); 
–  guid [out]: the assigned guid 
–  templateGuid: the template the EDT is an instance of 
–  paramc: nb of u64 parameters 
–  paramv: pointer to u64 parameters 
–  depc: nb of guid parameters 
–  depv: array of guid dependences (if known at creation or NULL) 
–  properties: can specify if finish-edt here. 
–  affinity: affinity guid 
– outputEvent [out]: edt completion notification 
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OCR Vision 

Hero 

Programmer 

Smart 

Compiler 

Higher-level 

language 

Higher-level 

library 

Open Community Runtime Framework 

External Runtime Components 

Extreme Scale Platforms 

R-Stream, ROSE, LLVM CnC, Chapel 
HC-lib, Habanero-UPC, 

PyGAS, OpenSHMEM , … 

MPI, GASNet, 
Portals, PAMI, 
UCCS, ARMCI, … 

C, C++, Fortran 

OCR fills 
a major 
gap in 
intra-
node 

runtime 
systems 
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Conclusions 
 
 
§  Holistic redesign of software stack is needed to address concurrency, 

energy, and resiliency challenges of Extreme Scale systems 
§  Urgent need for execution models that span multiple scales of parallelism 

and heterogeneity – multicore, accelerators, multi-node, HPC cluster, data 
center cluster 

§  Well-designed runtime primitives can provide foundation for new execution 
models, with synergistic innovation in languages and compilers 

§  OpenSHMEM is well suited to help with these challenges because of its 
lightweight support for a partitioned global address space 
§  Integration of OpenSHMEM and OCR is an interesting opportunity 

§  Key question: how to simultaneously advance innovation in OpenSHMEM 
along two fronts? 
§  Exploration of new ideas, as in Habanero and other research projects 
§  Standardization of ideas to support broader adoption 


