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• shmem_barrier_all() 
• shmem_barrier() for sub-groups 
• Requires a symmetric sync variable 
• All prior RMAs done by barrier completion 

 

Barriers in OpenSHMEM 
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• Split-mode vs asynchronous barriers 
• barrier_post(), barrier_test(), barrier_wait() 
• Allow PEs to get other work done while 

waiting for everyone to have posted 
• Recently added in MPI 3.0 

Split-mode Barriers  
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• Data exchange problem with shifting graph 
links 

• Reviewed by Hoefler et al. 
• They proposed a microbenchmark to 

compare alternative solutions 
• Fundamentally a message passing model 

Dynamic Sparse Data Exchange 
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for (1 – 1000) { 
 randomly choose log(#PEs) 
 generate 1-1024 bytes of data for them 
 send the data out 
 discover our incoming peers 
 get their data 
} 

Their Microbenchark 
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• Set of buffers in the symheap 
• Message descriptor data type 

– PE, buffer location, buffer size 
• Queue of descriptors 
• Queue pointer atomic variable 

Data Structures 
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for (1 – 1000) { 
 generate_peers_and_data(); 
 send_notices(); /* FADD + Put */ 
 barrier_start(); 
 do { 
  done = barrier_test(); 
  while (probe for notices) shmem_getmem(); 
 } while (!done); 
 shmem_barrier_all(); /* Gets done? */ 
} 
 

OpenSHMEM Implementation 
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Test Configuration 
• SGI ICE-X 
• 32 nodes 
• Two 12-core Intel Ivy 

Bridges per node 
• Mellanox ConnectX-3 

FDR 
• 768 PEs 
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Design Evolutions 

©2013 SGI                                                           SGI Company Proprietary  



• Based on MPICH 3.0 Ibarrier design 
• Uses message passing 
• Test code uses standard MPI_Test(), 

MPI_Wait() 
• Results: 0.551 

Barrier Based on MPI_Ibarrier() 
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Barriers in SGI SHMEM 
• Dissemination barrier 
• One 32-bit counter for 

each exchange 
• Using AMOs on the 

counters allow reuse 
• Results: 1.463s 
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barrier_test() 
{ 
 if (first) { 
  shmem_int_inc(&words[step], tgt_pe); 
  first = 0; 
 } 
 do { 
  if (0 == words[step]) {return 0;} 
  step++; tgt_pe = next_partner(); 
  if (not last step) { 
   shmem_int_inc(&word[step], tgt_pe);  
  } else {break;} 
 } while (1); 
 for (0 .. #steps) {shmem_int_add(&words[i], -1, my_pe);} 
 return 1; 
}  

Initial Split-Mode Version 
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• Mellanox IB doesn’t do CPU coherent 
AMOs 

• Force all AMOs through the HCA 
• 32-bit AMOs require special tricks 
• Switched to 64-bit data structure 
• Ignored implications for pSync size 
• Result: 0.663 seconds 

64-bit Integers 
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• Implementation doesn’t need the result of 
any AMO 

• shmem_long_inc() implemented as 
shmem_long_fadd(,1,) 

• The later expects a local result, the former 
doesn’t 

• Altered implementation to not wait for 
result 

• Result: 0.688s, slower 
 
 

Non-blocking AMO 
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• Previous approach allowed a single 
asynchronous AMO 

• What about using more? 
• Verified that safe within this specific 

benchmark 
• Up to 2 asynchronous AMOs: 0.678s 
• Up to 4: 0.671s 
• Both still slower 

Multiple Outstanding AMOs 
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• Exhausted AMO approach 
• AMOs were only used to save space 
• Switched to Puts 
• Required multi-phase datastructure 
• Result: 0.485 seconds 

Barriers without AMOs 
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• Ibarrier() benefits from progress engine 
inclusion 

• Hacked progress engine to poll & update 
barrier state 

• Result: 0.484 seconds, no change 
• Might benefit other codes 
• “Communicator”-based SHMEM 

collectives might make this easier 

More Frequent Progress Checks 
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Experiment Execution Time 

MPI_Ibarrier() 0.551 

32-bit AMOs 1.463 

64-bit AMOs 0.663 

Non-blocking 64-bit AMO 0.688 

2 asynchronous 64-bit AMOs 0.678 

4 asynchronous 64-bit AMOs 0.671 

64-bit Puts 0.485 

Progress engine integration 0.484 

Summary Performance 
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• Same overall algorithm but different 
primitives 

• Asynchronous barriers can be useful to 
OpenSHMEM developers 

• Post-Wait vs Test 
• Communicator Object 

Conclusions 
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