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Barriers in OpenSHMEM

« shmem_barrier_all()

 shmem_barrier() for sub-groups
 Requires a symmetric sync variable

 All prior RMAs done by barrier completion
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Split-mode Barriers

« Split-mode vs asynchronous barriers
e barrier _post(), barrier_test(), barrier_wait()

« Allow PEs to get other work done while
waiting for everyone to have posted

 Recently added in MPI 3.0
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Dynamic Sparse Data Exchange

e Data exchange problem with shifting graph
links

* Reviewed by Hoefler et al.

* They proposed a microbenchmark to
compare alternative solutions

 Fundamentally a message passing model
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Their Microbenchark

for (1 — 1000) {
randomly choose log(#PESs)
generate 1-1024 bytes of data for them
send the data out
discover our incoming peers
get their data
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Data Structures

o Set of buffers in the symheap

 Message descriptor data type
— PE, buffer location, buffer size

* Queue of descriptors
* Queue pointer atomic variable
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OpenSHMEM Implementation

for (1 — 1000) {
generate_peers_and_data();
send_notices(); /* FADD + Put */
barrier_start();
do {
done = barrier_test();
while (probe for notices) shmem_getmem();
} while ('done);
shmem_barrier_all(); /* Gets done? */
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Test Configuration

e SGI ICE-X
e 32 nodes

 Two 12-core Intel lvy
Bridges per node

e Mellanox ConnectX-3
FDR

/68 PEs
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Design Evolutions
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Barrier Based on MPI_Ibarrier()

 Based on MPICH 3.0 Ibarrier design
e Uses message passing

» Test code uses standard MPI_Test(),
MPI_Wait()

e Results: 0.551
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Barriers in SGl| SHMEM

e Dissemination barrier e e OO O

« One 32-bit counter for
each exchange

e © e e © e
e Using AMOs on the — —
counters allow reuse
 Results: 1.463s e f sSe.> f *e
<€ >
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Initial Split-Mode Version

barrier_test()

{
if (first) {
shmem_int_inc(&words[step], tgt_pe);
first = 0;
}
do {
if (0 == wordsJ[step]) {return 0;}
step++; tgt_pe = next_partner();
if (not last step) {
shmem_int_inc(&word[step], tgt_pe);
} else {break;}
} while (1);
for (O .. #steps) {shmem _int_add(&words[i], -1, my_pe);}
return 1;
}
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64-bit Integers

e Mellanox IB doesn’t do CPU coherent
AMOs

* Force all AMOs through the HCA

e 32-bit AMOs require special tricks
« Switched to 64-bit data structure

* Ignored implications for pSync size
* Result: 0.663 seconds
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Non-blocking AMO

* Implementation doesn’t need the result of
any AMO

« shmem_long_inc() implemented as
shmem long_fadd(,1,)

* The later expects a local result, the former
doesn’t

 Altered implementation to not wait for
result

e Result: 0.688s, slower
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Multiple Outstanding AMOs

* Previous approach allowed a single
asynchronous AMO

 \What about using more?

 Verified that safe within this specific
benchmark

e Up to 2 asynchronous AMQOs: 0.678s
e Upto4:0.671s
e Both still slower
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Barriers without AMQOs

 Exhausted AMO approach

« AMOs were only used to save space
e Switched to Puts

* Required multi-phase datastructure
e Result: 0.485 seconds
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More Frequent Progress Checks

 Ibarrier() benefits from progress engine
Inclusion

 Hacked progress engine to poll & update
barrier state

* Result: 0.484 seconds, no change
* Might benefit other codes

e “Communicator’-based SHMEM
collectives might make this easier
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Summary Performance
Eperiment | EecutionTme

MPI_lbarrier() 0.551
32-bit AMOs 1.463
64-bit AMOs 0.663
Non-blocking 64-bit AMO 0.688
2 asynchronous 64-bit AMOs 0.678
4 asynchronous 64-bit AMOs 0.671
64-bit Puts 0.485
Progress engine integration 0.484
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Conclusions

« Same overall algorithm but different
primitives

* Asynchronous barriers can be useful to
OpenSHMEM developers

e Post-Wait vs Test

« Communicator Object
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