-

Implementing Split
3arriers in OpenSil

Michael A Raﬁmon
~ SGI MPT Team Leade

(

©2013 SGI SGI Company Proprietar



Agenda

« SHMEM barriers

 Dynamic Sparse Data Exchange Problem
e Design Evolutions

* Results

« Conclusions

2 ©2013 SGI SGI Company Proprietary.



Barriers in OpenSHMEM

« shmem_barrier_all()

 shmem_barrier() for sub-groups
 Requires a symmetric sync variable

 All prior RMAs done by barrier completion

3 ©2013 SGI SGI Company Proprietary,



Split-mode Barriers

« Split-mode vs asynchronous barriers
e barrier _post(), barrier_test(), barrier_wait()

« Allow PEs to get other work done while
waiting for everyone to have posted

 Recently added in MPI 3.0

4 ©2013 SGI SGI Company Proprietary,



Dynamic Sparse Data Exchange

e Data exchange problem with shifting graph
links

* Reviewed by Hoefler et al.

* They proposed a microbenchmark to
compare alternative solutions

 Fundamentally a message passing model

5 ©2013 SGI SGI Company Proprietary,



Their Microbenchark

for (1 — 1000) {
randomly choose log(#PESs)
generate 1-1024 bytes of data for them
send the data out
discover our incoming peers
get their data

6 ©2013 SGI SGI Company Proprietary,



Data Structures

o Set of buffers in the symheap

 Message descriptor data type
— PE, buffer location, buffer size

* Queue of descriptors
* Queue pointer atomic variable

7 ©2013 SGI SGI Company Proprietary,



OpenSHMEM Implementation

for (1 — 1000) {
generate_peers_and_data();
send_notices(); /* FADD + Put */
barrier_start();
do {
done = barrier_test();
while (probe for notices) shmem_getmem();
} while ('done);
shmem_barrier_all(); /* Gets done? */

8 ©2013 SGI SGI Company Proprietary,



Test Configuration

e SGI ICE-X
e 32 nodes

 Two 12-core Intel lvy
Bridges per node

e Mellanox ConnectX-3
FDR

/68 PEs

9 ©2013 SGI SGI Company Proprietary.



Design Evolutions

©2013 SGI b



Barrier Based on MPI_Ibarrier()

 Based on MPICH 3.0 Ibarrier design
e Uses message passing

» Test code uses standard MPI_Test(),
MPI_Wait()

e Results: 0.551

©2013 SGI SGI Company Proprietary.



Barriers in SGl| SHMEM

e Dissemination barrier e e OO O

« One 32-bit counter for
each exchange

e © e e © e
e Using AMOs on the — —
counters allow reuse
 Results: 1.463s e f sSe.> f *e
<€ >

12 ©2013SGI SGI Company Proprietary.




Initial Split-Mode Version

barrier_test()

{
if (first) {
shmem_int_inc(&words[step], tgt_pe);
first = 0;
}
do {
if (0 == wordsJ[step]) {return 0;}
step++; tgt_pe = next_partner();
if (not last step) {
shmem_int_inc(&word[step], tgt_pe);
} else {break;}
} while (1);
for (O .. #steps) {shmem _int_add(&words[i], -1, my_pe);}
return 1;
}

13 ©2013SGlI SGI Company Proprietary.




64-bit Integers

e Mellanox IB doesn’t do CPU coherent
AMOs

* Force all AMOs through the HCA

e 32-bit AMOs require special tricks
« Switched to 64-bit data structure

* Ignored implications for pSync size
* Result: 0.663 seconds

14 ©2013SGlI SGI Company Proprietary.



Non-blocking AMO

* Implementation doesn’t need the result of
any AMO

« shmem_long_inc() implemented as
shmem long_fadd(,1,)

* The later expects a local result, the former
doesn’t

 Altered implementation to not wait for
result

e Result: 0.688s, slower

©2013 SGI SGI Company Proprietary.



Multiple Outstanding AMOs

* Previous approach allowed a single
asynchronous AMO

 \What about using more?

 Verified that safe within this specific
benchmark

e Up to 2 asynchronous AMQOs: 0.678s
e Upto4:0.671s
e Both still slower

©2013 SGI SGI Company Proprietary.



Barriers without AMQOs

 Exhausted AMO approach

« AMOs were only used to save space
e Switched to Puts

* Required multi-phase datastructure
e Result: 0.485 seconds

©2013 SGI SGI Company Proprietary.



More Frequent Progress Checks

 Ibarrier() benefits from progress engine
Inclusion

 Hacked progress engine to poll & update
barrier state

* Result: 0.484 seconds, no change
* Might benefit other codes

e “Communicator’-based SHMEM
collectives might make this easier

18 ©2013SGI SGI Company Proprietary.



Summary Performance
Eperiment | EecutionTme

MPI_lbarrier() 0.551
32-bit AMOs 1.463
64-bit AMOs 0.663
Non-blocking 64-bit AMO 0.688
2 asynchronous 64-bit AMOs 0.678
4 asynchronous 64-bit AMOs 0.671
64-bit Puts 0.485
Progress engine integration 0.484

19 ©2013SGI SGI Company Proprietary.




Conclusions

« Same overall algorithm but different
primitives

* Asynchronous barriers can be useful to
OpenSHMEM developers

e Post-Wait vs Test

« Communicator Object

20 ©20135saGlI SGI Company Proprietary.



21 ©2013SGlI SGI Company Proprietary.




	Implementing Split-Mode Barriers in OpenSHMEM
	Agenda
	Barriers in OpenSHMEM
	Split-mode Barriers 
	Dynamic Sparse Data Exchange
	Their Microbenchark
	Data Structures
	OpenSHMEM Implementation
	Test Configuration
	Design Evolutions
	Barrier Based on MPI_Ibarrier()
	Barriers in SGI SHMEM
	Initial Split-Mode Version
	64-bit Integers
	Non-blocking AMO
	Multiple Outstanding AMOs
	Barriers without AMOs
	More Frequent Progress Checks
	Summary Performance
	Conclusions
	Slide Number 21

