
Implementing Split-Mode
Barriers in OpenSHMEM

Michael A Raymond
SGI MPT Team Leader

©2013 SGI SGI Company Proprietary

• SHMEM barriers
• Dynamic Sparse Data Exchange Problem
• Design Evolutions
• Results
• Conclusions

Agenda

©2013 SGI SGI Company Proprietary 2

• shmem_barrier_all()
• shmem_barrier() for sub-groups
• Requires a symmetric sync variable
• All prior RMAs done by barrier completion

Barriers in OpenSHMEM

©2013 SGI SGI Company Proprietary 3

• Split-mode vs asynchronous barriers
• barrier_post(), barrier_test(), barrier_wait()
• Allow PEs to get other work done while

waiting for everyone to have posted
• Recently added in MPI 3.0

Split-mode Barriers

©2013 SGI SGI Company Proprietary 4

• Data exchange problem with shifting graph
links

• Reviewed by Hoefler et al.
• They proposed a microbenchmark to

compare alternative solutions
• Fundamentally a message passing model

Dynamic Sparse Data Exchange

©2013 SGI SGI Company Proprietary 5

for (1 – 1000) {
 randomly choose log(#PEs)
 generate 1-1024 bytes of data for them
 send the data out
 discover our incoming peers
 get their data
}

Their Microbenchark

©2013 SGI SGI Company Proprietary 6

• Set of buffers in the symheap
• Message descriptor data type

– PE, buffer location, buffer size
• Queue of descriptors
• Queue pointer atomic variable

Data Structures

©2013 SGI SGI Company Proprietary 7

for (1 – 1000) {
 generate_peers_and_data();
 send_notices(); /* FADD + Put */
 barrier_start();
 do {
 done = barrier_test();
 while (probe for notices) shmem_getmem();
 } while (!done);
 shmem_barrier_all(); /* Gets done? */
}

OpenSHMEM Implementation

©2013 SGI SGI Company Proprietary 8

Test Configuration
• SGI ICE-X
• 32 nodes
• Two 12-core Intel Ivy

Bridges per node
• Mellanox ConnectX-3

FDR
• 768 PEs

©2013 SGI SGI Company Proprietary 9

Design Evolutions

©2013 SGI SGI Company Proprietary

• Based on MPICH 3.0 Ibarrier design
• Uses message passing
• Test code uses standard MPI_Test(),

MPI_Wait()
• Results: 0.551

Barrier Based on MPI_Ibarrier()

©2013 SGI SGI Company Proprietary 11

Barriers in SGI SHMEM
• Dissemination barrier
• One 32-bit counter for

each exchange
• Using AMOs on the

counters allow reuse
• Results: 1.463s

©2013 SGI SGI Company Proprietary 12

barrier_test()
{
 if (first) {
 shmem_int_inc(&words[step], tgt_pe);
 first = 0;
 }
 do {
 if (0 == words[step]) {return 0;}
 step++; tgt_pe = next_partner();
 if (not last step) {
 shmem_int_inc(&word[step], tgt_pe);
 } else {break;}
 } while (1);
 for (0 .. #steps) {shmem_int_add(&words[i], -1, my_pe);}
 return 1;
}

Initial Split-Mode Version

©2013 SGI SGI Company Proprietary 13

• Mellanox IB doesn’t do CPU coherent
AMOs

• Force all AMOs through the HCA
• 32-bit AMOs require special tricks
• Switched to 64-bit data structure
• Ignored implications for pSync size
• Result: 0.663 seconds

64-bit Integers

©2013 SGI SGI Company Proprietary 14

• Implementation doesn’t need the result of
any AMO

• shmem_long_inc() implemented as
shmem_long_fadd(,1,)

• The later expects a local result, the former
doesn’t

• Altered implementation to not wait for
result

• Result: 0.688s, slower

Non-blocking AMO

©2013 SGI SGI Company Proprietary 15

• Previous approach allowed a single
asynchronous AMO

• What about using more?
• Verified that safe within this specific

benchmark
• Up to 2 asynchronous AMOs: 0.678s
• Up to 4: 0.671s
• Both still slower

Multiple Outstanding AMOs

©2013 SGI SGI Company Proprietary 16

• Exhausted AMO approach
• AMOs were only used to save space
• Switched to Puts
• Required multi-phase datastructure
• Result: 0.485 seconds

Barriers without AMOs

©2013 SGI SGI Company Proprietary 17

• Ibarrier() benefits from progress engine
inclusion

• Hacked progress engine to poll & update
barrier state

• Result: 0.484 seconds, no change
• Might benefit other codes
• “Communicator”-based SHMEM

collectives might make this easier

More Frequent Progress Checks

©2013 SGI SGI Company Proprietary 18

Experiment Execution Time

MPI_Ibarrier() 0.551

32-bit AMOs 1.463

64-bit AMOs 0.663

Non-blocking 64-bit AMO 0.688

2 asynchronous 64-bit AMOs 0.678

4 asynchronous 64-bit AMOs 0.671

64-bit Puts 0.485

Progress engine integration 0.484

Summary Performance

©2013 SGI SGI Company Proprietary 19

• Same overall algorithm but different
primitives

• Asynchronous barriers can be useful to
OpenSHMEM developers

• Post-Wait vs Test
• Communicator Object

Conclusions

©2013 SGI SGI Company Proprietary 20

©2013 SGI SGI Company Proprietary 21

	Implementing Split-Mode Barriers in OpenSHMEM
	Agenda
	Barriers in OpenSHMEM
	Split-mode Barriers
	Dynamic Sparse Data Exchange
	Their Microbenchark
	Data Structures
	OpenSHMEM Implementation
	Test Configuration
	Design Evolutions
	Barrier Based on MPI_Ibarrier()
	Barriers in SGI SHMEM
	Initial Split-Mode Version
	64-bit Integers
	Non-blocking AMO
	Multiple Outstanding AMOs
	Barriers without AMOs
	More Frequent Progress Checks
	Summary Performance
	Conclusions
	Slide Number 21

