First OpenSHMEM Workshop 2014 6t March 2014 1

Thursday, March 6, 2014

Extending the OpenSHMEM Analyzer to perform
synchronization and multi-valued analysis

Swaroop Pophale, Oscar Hernandez, Stephen Poole, and Barbara Chapman

UNIVERSITY of OA.K
HOUSTON RIDGE

National Laboratory

First OpenSHMEM Workshop 2014 6 March 2014)

Outline

* Motivation
* Discovering Synchronization Phases

 |ntroduction

* OpenUH compiler
* OpenSHMEM Analyzer (OSA)

* Concurrency Analysis
* Implementation

e Results

* Limitations

* Summary

UNIVERSITY of OAK
HOUSTON RIDGE

National Laboratory

First OpenSHMEM Workshop 2014 6 March 2014 3

Motivation

e The OpenSHMEM Analyzer (OSA) is a compiler-based tool to help the user

correctly use the OpenSHMEM library API.

* Paper: Oscar, H., Siddhartha, J., Pophale, S., Stephen, P., Kuehn, J., Barbara, C.: The
OpenSHMEM Analyzer. In: Proceedings of the Sixth Conference on Partitioned Global
Address Space Programming Model. PGAS 12 (2012)

* Extending the OpenSHMEM to perform concurrent analysis

* In OpenSHMEM vyou can write syntactically correct parallel programs but that are
semantically wrong are possible.

* Optimizations are often limited to portions of code between barriers.

* Synchronization errors can lead to race conditions and deadlock.

OAK
RIDGE

National Laboratory

First OpenSHMEM Workshop 2014 6" March 2014

Discovering Synchronization Phases

* Extending OSA to discover the synchronization phases of an OpenSHMEM
program
* Important for memory consistency and control points in an application
* Two forms of collective synchronization exists in OpenSHMEM
 shmem_barrier_all is defined over all PEs.

 shmem_barrier is defined over an active set.

* An active set is a logical grouping of PEs based on three parameters (passed
as arguments) namely, PE start, logPE_stride and PE size triplet .

* OpenSHMEM specification allows unaligned barriers.

* Optimizations are possible only between global synchronization calls.
* Same concepts are applicable to other PGAS languages/libraries.

UNIVERSITY of OAK
HOUSTON RIDGE

National Laboratory

First OpenSHMEM Workshop 2014 6 March 2014 5

Textually Unaligned Barriers

* Textually Non-aligned vs. Aligned code
if (me%2==0){ if (me%2==0){

shmem_barrier_all();

} }

else{ else{

shmem_barrier_all();

i }

shmem_barrier_all();
BOTH ARE VALID IN OPENSHMEM

OAK
‘RIDGE

First OpenSHMEM Workshop 2014 6" March 2014

Introduction: OpenUH Compiler

* Open source research compiler based on Open64

 Complete support for OpenMP 2.5 (in C/C++ & Fortran) and
CAF

e Stable, portable, modularized with complete optimization
framework

* Available on most Linux platforms

OAK
RIDGE

First OpenSHMEM Workshop 2014 6" March 2014

Introduction: OSA

e OpenSHMEM Analyzer (OSA) extends the existing compiler
technology to report errors accurately in context of C and
OpenSHMEM.

* Provided basic syntactic and semantic checks.

e Verifies at compile time that all OpenSHMEM library calls are using
the appropriate classes of data as required by Specification 1.0.

* Mainly focuses on IPA phase of the OpenUH compiler.

o OAK
HOUSTON RIDG

National Laboratory

First OpenSHMEM Workshop 2014 6t March 2014 8

SA within OpenUH

FRONT-END(s)

4

LOCAL INTRA-PROCEDURAL ANALYSIS
* Data and Control flow analysis
* Procedure Summarization

!

INTER-PROCEDURAL ANALYSIS

¢ Call Graph Generation

¢ Inter-Procedural data flow analysis,
procedure cloning, array region
analysis, inlining

!

MIDDLE END/BACKEND
* Loop nest optimizations

* Whole program optimizations
¢ Code Generation

[)

Y
[EXECUTABLE]

UNIVERSITY of OA.K
HOUSTON RIDGE

National Laboratory

First OpenSHMEM Workshop 2014 6" March 2014

Concurrency Analysis

* All PEs execute the application in SPMD style

e Different PEs may take different execution paths based on the
implicit or explicit conditions set by the programmer.

e Variables that have different values on different PEs.
e Multivalued seed

 Multi-Valued Expressions

* “An expression is multi-valued if it evaluates differently in different
threads.”

UNIVERSITY of OAK
HOUSTON RIDG

National Laboratory

First OpenSHMEM Workshop 2014 6 March 2014

Implementation

 Step 1: Identification of multivalued seeds and multivalued
expression
* Analyze Control and Data flow
e Construct System dependence graph
* Analyze effect of OpenSHMEM calls on multivalued seeds

e Step 2: Detection of OpenSHMEM barriers and their ordering

e Step 3: Barrier tree generation and barrier matching

UNIVERSITY of OAK
HOUSTON RIDGE

National Laboratory

First OpenSHMEM Workshop 2014 6t March 2014

11
Step 1: Control Flow and Data Flow
P 1.
int main(int argc, char *argv[])({ start_pes(0);
. me = _my_pe();
if (me==0) { npes =_num_pes();
shmem barrier all(); ;xiw)
int temp = x+y;
shmem barrier all(); True ‘\\\\\\{:r
}
else { shmem_barrier_all(); I if(me==1) I
. int temp = x+y;
if (me==1) { shmem_barrier_all(); True False
shmem barrier all();
old = shmem int finc (&y, 0);
shmem int sum to all(&y,&x,
1 ’ 1 ’ 0 yNpes- 1 ’ pWI’k ’ pSync) H shmem_barrier_all
x= xX+10 ; old = shmem_int_finc (&y, 0); shmem_barrier_all();
. shmem_int_sum_to_all(&y,&x,1,1, shmem_int_sum_to_all(&y,&x
Shmem_lnt_get (&y 4 &y ’ 1 ’ 0) 7 O,npes—l,pWrK,pSync); ,1,1,0,npes,pWrk,pSync); Y
shmem barrier all(); x=x+10; x=y*0.23;
} - - shmem_int_get(&y,&y,1,0); shmem_barrier_all();
else{ shmem_barrier_all();
shmem barrier all(); |
shmem int sum to all(&y,&x,
1,1,0,npes-1,pWrk,pSync); return 0;
x=y*0.23
shmem barrier all();
}
}
return 0; Control Flow Graph
}
UNIVERSITY of OA'K
HOUSTON RIDGE

National Laboratory

First OpenSHMEM Workshop 2014

6t March 2014 12

Step 1: System Dependence Graph

AY
shmem_int_sum_to_aII(&y,&x,l,l}\

4%

P 0,npes-1,pWrk,pSync);

Ell shmem_barrier_all(); IEZ

Control Dependence Edge

Data Dependence Edge

UNIVERSITY of

shmem_int_sum_to_all(&y,&x,1,1,0,npes-
1,pWrk,pSync);

1
1
1
A4
I return O; I

b5 I shmem_int_get(&y,&y,1,0) I

~< S~ _ T

L Dsl shmem_barrier_all() I

>3
EBI X=y*0.23 I E4I shmem_b?rner_allls I

OAK

HOUSTON

RIDGE

National Laboratory

First OpenSHMEM Workshop 2014 6t March 2014

Step 1: Multi-valued and OpenSHMEM

* Multi-valued-ness depends on the semantics of OpenSHMEM
and its treatment of different program variables.

OpenSHMEM Library Variable Effect
Operations Affected
_num_pes npes Single-valued
_my_pe me Multi-valued
PUT (elemental, block, rarget Multi-valued
strided)
GET (elemental, block, target Multi-valued
strided)
ATOMICS (fetch and operate) target Multi-valued
BROADCAST rarget Multi-valued
COLLECTS (fixed and target array Single-valued if active set
variable length) = npes else Multi-valued
TABLE 1

EFFECT OF OPENSHMENM LIBRARY CALLS ON PROGRAM VARIABLES

UNIVERSITY of OA.K
HOUSTON RIDGE

National Laboratory

First OpenSHMEM Workshop 2014

Step 2: Barrier Detection

6" March 2014

 We analyze the CFG of the program to determine the presence

and relative ordering of the barriers.

* Based on the multivalued analysis we mark points at which the

execution paths diverge.

 Mark conditionals with appropriate operator:

Placement of barriers Operator Result
used
bl followed by b2 . bl - b2
if((single-valued) conditional) bl | b2
bl else b2;
if((nultivalued-valued) ¢ bl |¢ b2

conditional) bl else b2;

TABLE 11
RULES FOR BUILDING A BARRIER EXPRESSION

OAK
IDGE

National Laboratory

First OpenSHMEM Workshop 2014 6" March 2014

Step 3: Barrier Tree Generation and
Barrier Matching

* Generating a barrier tree
* |terate over the AST
* Analyze conditionals
* Determine relationship
e OQutput using graphviz

* Use barrier tree to match unaligned barriers

* Traverse barrier tree to match barriers

* Gives line number information where potential unmatched barrier is
found.

OAK

HOUSTON RIDGE

First OpenSHMEM Workshop 2014 6" March 2014

Results

* Application: Matrix Multiplication

* The application consists of three 2-D arrays A,
B, and C, where C is used to store the product
of two matrices A and B.

OAK
HOUSTON 'RIDGE

First OpenSHMEM Workshop 2014 6 March 2014 17

Output (1)

4 -
2 STMTS(7)

(0) start_pes as
i ENTRY (1) _my_pe 16
[srnsizs) | <
(2) _num_pes a7
* (3) shmem_barrier_all [Bll
- (4) shmalloc 22
- (5) shmalloc 23
(6) shmalloc 24
'
ki
o STMTS(25)
v '
[STH7s (38) i
e LOOP (25)
v < ' “
fsmors o) Wl snas o) | i
— T — STMTS(25)
an L (0) shmalloc 26
STMTS(25)
» - ; ’ (1) shmalloc 27
[Eves Bl svrs 2§ e
= (2) shmalloc 28
i

=
(0) shmem_barrier_all [§Bl

(1) shmem_barrier_all il
'/

J .
STMTS(38) LOOP (29)

)

-
=z ; - -
/ v - LOOP (38) STMTS(29

STs (A1)

-

STMTS(38) STMTS(38) STMTS

BRANCH (38) \

(0) shmem_barrier_all [59] STMTS(39)

]
H (1) shmem_double_max_to_all [l /
: a

vwegraph: main

Figure: CFG with OpenSHMEM calls

OAK

HOUSTON RIDGE

First OpenSHMEM Workshop 2014 6t March 2014 18

Output (2)

BA1 BAZ BA3 BAG

B7 B8

BA4 ¥ BAS %

Figure: Barrier Tree generated for Matrix Multiplication benchmark

UNIVERSITY of OA.K
HOUSTON RIDGE

National Laboratory

First OpenSHMEM Workshop 2014 6th March 2014 19
Limitations
» Static analysis tool

« shmem _barrier statements are tricky
— active set parameters
— Solution: explicit active sets

UNIVERSITY of OAK
HOUSTON RIDGE

National Laboratory

First OpenSHMEM Workshop 2014 6" March 2014

Summary

e OSA combines data and control flow information to
determine concurrent paths in OpenSHMEM application.

e Barriers are points in OpenSHMEM applications that
guarantee memory consistency.

* Unaligned barriers are a challenge for application
programmers.

e OSA provides visual feedback of analysis to application
programmer to better understand the program structure and
synchronization structure of the program.

OAK
HOUSTON NRI.PI)GE

u

First OpenSHMEM Workshop 2014 6t March 2014 21

Acknowledgement

This work was supported by the United States Department of
Defense & used resources of the Extreme Scale Systems Center
at Oak Ridge National Laboratory.

OAK
RIDGE

National Laboratory

UNIVERSITY of OA.K
HOUSTON RIDGE

National Laboratory

