
HIPATIA BoF

Joshua Lothian, Jonathan
Schrock, Matthew Baker,
Ed D’Azevedo, Stephen
Poole

OpenSHMEM 2014 Workshop

March 5, 2014

Annapolis, MD

2 Presentation name

HIPATIA

• HIPATIA is:

– The HIgh Performance AdapTive Integrated Linear Algebra
Benchmark

– Pluggable benchmark initially targeting OpenSHMEM
communications across numerous data types, data storage,
algorithms

– Focus on areas not well represented by HPL

– Open source (license TBD)

– Portable, autoconf-based build system

3 Presentation name

Why HIPATIA?

• Not all applications are solving real-valued, dense matrices

– HPCG benchmark addresses sparse matrices, but only in reals

• Desire for a good OpenSHMEM-focused benchmark

• Allow for different inputs – maybe we don’t want a random
matrix, but some sort of graph as input (think “Big Data”)

• Industry likes having a single number to show to
management that represents the problems of interest to
them

– Oil & Gas interest in fixed point

4 Presentation name

HIPATIA features

• We intend to provide a straightforward, pluggable
architecture for linear algebra benchmarking

• Ability to measure power/energy will be a core capability

• Likewise, where possible, we will utilize hardware counters
for performance instrumentation

– Many processors lack counters for integer ops 

5 Presentation name

HIPATIA

Data Types

Integers

C
Integers

GMP

Complex
Fixed
point

Real

C
doubles

MPFR

Data Storage

Dense
Matrix

Sparse Matrix

CSR CSC

Algorithms

LU CG

Communications

OpenSH
MEM

UPC MPI

Instrumentation

Performan
ce

Counters
Power

6 Presentation name

Current development status

• We initially targeted dense integer and real matrices

– Dense, real is well studied, and relatively easy to implement

– Dense integer is somewhat less well studied, but still more
straightforward than sparse integer

• Kernels implemented but still need to be integrated

• Integer calculations performed using GNU MPFR library -
http://www.mpfr.org/

– 64-bit and 128-bit floating point however:

– MPFR uses GMP in backend, which executes on integer units on
rather than FP

• Multiple “true” integer algorithms have been prototyped in
serial

http://www.mpfr.org/
http://www.mpfr.org/

7 Presentation name

Some notes on preliminary results

• These are very preliminary numbers for a GEMM kernel

• Math and communication work, but have not been tuned for
speed

• Upcoming additions to OpenSHMEM API will help (active
sets, etc.)

• In short, we are showing ease of portability rather than
meaningful performance results

8 Presentation name

Preliminary Results

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1 2 4 8 16 24 32 48

O
p

s/
s

PEs

p7-gasnet-double

p7-gasnet-mpfr

magnycours-uccs-
double
magnycours-uccs-
mpfr
bazooka-mpt-
double
bazooka-mpt-mpfr

xk7-cray-double

9 Presentation name

Performance per PE

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1 2 4 8 16 24 32 48

O
p

s/
s/

P
E

PEs

p7-gasnet-double

p7-gasnet-mpfr

magnycours-uccs-double

magnycours-uccs-mpfr

bazooka-mpt-double

bazooka-mpt-mpfr

xk7-cray-double

10 Presentation name

What’s next?

• Complete user interface

• Standardize plugin API

– Allow vendors/implementers to swap in optimized versions of
solver/comms/etc

• Determine exactly how MPFR operations map to CPU
operations

• Solutions of sparse matrices in the integer domain

– Challenging to find appropriate algorithms that:

• keep intermediate values within the integers

• Keep intermediate values a reasonable size

• Have consistent/deterministic storage and runtime complexity

• Open source release

11 Presentation name

Integer solvers

• We can take two different paths:

– Native C integers

– GMP integer

• C ints are great, easy to transfer with OpenSHMEM

– Values are limited

• GMP ints are great, near limitless values

– Painful to transfer with OpenSHMEM as size can vary depending
on value

– Either export to a string, or poke around in GMP internals

12 Presentation name

Integer Solvers

• A variation of the Hermite Normal Form algorithm by Kannan
and Bachem.

– Suffers from intermediate term explosion, cannot use C types

• Single intermediate terms O(1-10MB) for highly constrained inputs

• Dixon’s p-adic expansion algorithm

– Most of the calculations performed modulo a prime, can use C
types for these

• Congruence methods utilizing the Chinese Remainder
Theorem

– Most of the calculations performed modulo a prime, can use C
types for these

– Solution calculated for several different primes

• Finite Fields

13 Presentation name

Acknowledgements

This work was supported by the United States Department of Defense &
used resources of the Extreme Scale Systems Center at Oak Ridge
National Laboratory.

