
OpenSHMEM over MPI-3 one-sided
communication

Jeff Hammond, Sayan Ghosh
and Barbara Chapman

Argonne National Laboratory and University of Houston

6 March 2014

Jeff Hammond OpenSHMEM over MPI-3



Background

Fundamental premises:

MPI (community) is uncompromising w.r.t. portability.

SHMEM (community) is uncompromising w.r.t. performance.

Historically, MPI and SHMEM had (mostly) non-overlapping
feature sets.

MPI-1 provided message passing.

MPI-2 provided one-sided communication that was too
restrictive for many applications due to the requirement that
it run on the Earth Simulator (for example); atomics were
missing and the memory model was challenging (even to
understand).

MPI-3 tried very hard to get it right w.r.t. one-sided
communication.

Jeff Hammond OpenSHMEM over MPI-3



New Features in MPI-3

Designed to make it possible to use as a conduit for
Global Arrays, ARMCI, SHMEM, UPC, CAF, etc.

Defined new memory model (UNIFIED) for
cache-coherent architectures.

More flexible synchronization semantics (local
completion).

Real atomics (F&Op and C&S).

Scalable memory allocation (potentially symmetric
under-the-hood).

Communicator creation that isn’t collective on the parent
group (not RMA).

Jeff Hammond OpenSHMEM over MPI-3



Motivation

Academic desire to verify the MPI Forum’s belief
that MPI-3 is a reasonable conduit for PGAS.

apt-get install openshmem

Keep vendors honest w.r.t. MPI-3 one-sided
performance.

Interoperability of OpenSHMEM and MPI.

In the unlikely event that you have a
supercomputer with MPI-3 but not SHMEM. . .

Jeff Hammond OpenSHMEM over MPI-3



MPI-3 Details

MPI Win are the objects against which one performs RMA. . .

MPI_Win_create_dynamic(info, comm, &win);

MPI_Win_create(buffer, size, disp, info,

comm, &win);

MPI_Win_allocate(size, disp, info, comm,

&buffer, &win);

MPI_Win_allocate_shared(size, disp, info,

comm, &buffer, &win);

The symmetric heap is like an implicit window.

Jeff Hammond OpenSHMEM over MPI-3



Using MPI windows in SHMEM

Mapping symmetric heap to MPI windows is
relatively easy.

Mapping text+bss+data into MPI windows is
OS-specific but otherwise easy.

Mapping static into MPI windows is very hard
(and not currently supported in OSHMPI).

Jeff Hammond OpenSHMEM over MPI-3



Symmetric heap design

1 Allocate a single window and sub-allocate (standard
approach).

2 Create a single dynamic window and attach all symmetric
data to it (bad approach).

3 Allocate a window for every sheap allocation (ARMCI-MPI
approach).

Only 1 avoids potentially expensive window lookup in every
communication operation.

ARMCI usage is bandwidth-oriented and needs flexibility; SHMEM
usage is latency-oriented and restrictive.

Jeff Hammond OpenSHMEM over MPI-3



Implementation Details

void __shmem_put(MPI_Datatype type, int typsz, void *trg,

const void *src, size_t len, int pe)

{

enum shmem_window_id_e win_id;

shmem_offset_t offset;

__shmem_window_offset(trg, pe, &win_id, &offset);

if (world_is_smp && win_id==SHEAP) {

void * ptr = smp_sheap_ptrs[pe] + (trg - sheap_base_ptr);

memcpy(ptr, src, len*typsz);

} else {

MPI_Win win = (win_id==SHEAP) ? shpwin : txtwin;

int n = (int)len; assert(len<(size_t)INT32_MAX);

MPI_Accumulate(src, n, type, pe, offset,

n, type, MPI_REPLACE, win);

MPI_Win_flush_local(pe, win);

}

} /* This is condensed relative to original source. */

Jeff Hammond OpenSHMEM over MPI-3



Implementation Details

void shmem_int_put(int *target, const int *source,

size_t len, int pe)

{

__shmem_put(MPI_INT, 4, target, source, len, pe);

}

We encode the type size instead of making a function-call lookup
in MPI.

We can and will support 64b count (via MPI datatypes) but right
now we just assert if count exceeds 32b range.

Jeff Hammond OpenSHMEM over MPI-3



SHMEM to MPI: Atomic Operations

SHMEM function MPI function MPI Op

shmem cswap MPI Compare and swap -
shmem swap MPI Fetch and op MPI REPLACE

shmem fadd MPI Fetch and op MPI SUM

shmem add MPI Accumulate MPI SUM

MPI requires two function calls because all RMA communication is
nonblocking; we need a flush to complete AMOs.

It is natural to assume subcommunicators will be reused and thus
the implementation should cache them; we have a partial
implementation of this but don’t use it.

Jeff Hammond OpenSHMEM over MPI-3



Collective Operations - Communicator Setup

void __shmem_acquire_comm(int pe_start, int pe_logs, int pe_size,

MPI_Comm * comm, int pe_root, int * broot)

{

if (pe_start==0 && pe_logs==0 && pe_size==shmem_world_size) {

*comm = SHCW /* SHMEM_COMM_WORLD */; *broot = pe_root;

} else {

MPI_Group strgrp;

int * pe_list = malloc(pe_size*sizeof(int));

int pe_stride = 1<<pe_logs;

for (int i=0; i<pe_size; i++)

pe_list[i] = pe_start + i*pe_stride;

MPI_Group_incl(SHGW, pe_size, pe_list, &strgrp);

MPI_Comm_create_group(SHCW, strgrp, pe_start, comm);

if (pe_root>=0) /* Avoid unnecessary translation */

*broot = __shmem_translate_root(strgrp, pe_root);

MPI_Group_free(&strgrp);

free(pe_list);

}

} /* This is condensed relative to original source. */

Jeff Hammond OpenSHMEM over MPI-3



SHMEM to MPI: Collective Operations

SHMEM MPI

shmem barrier MPI Barrier

shmem broadcast MPI Bcast

shmem collect MPI Allgatherv

shmem fcollect MPI Allgather

shmem <op> to all MPI Allreduce(op)

shmem collect requires an MPI Allgather on the counts into a
temporary buffer prior to the MPI Allgatherv.

Jeff Hammond OpenSHMEM over MPI-3



Performance Results - Disclaimer

Do not attribute to malice what can be
explained by stupidity.

We tried very hard to use every implementation
properly but it is possible that we missed things. In
some cases, we were unable to provide the best
environment.

e.g. Portals-SHMEM should use XPMEM but we
cannot install it.

Jeff Hammond OpenSHMEM over MPI-3



Implementation effects

10
2

10
3

10
4

10
5

10
6

10
7

2
0

2
5

2
10

2
15

2
20

2
25

L
o

g
 M

e
s
s
a

g
e

 R
a

te
 (

M
e

s
s
a

g
e

s
/s

)

Message size (bytes)

MPI-3

OpenSHMEM

10
2

10
3

10
4

10
5

10
6

10
7

10
8

2
0

2
5

2
10

2
15

2
20

2
25

L
o

g
 M

e
s
s
a

g
e

 R
a

te
 (

M
e

s
s
a

g
e

s
/s

)

Message size (bytes)

MPI-3

OpenSHMEM

Figure: Internode and intranode (2 PEs) message rate (Put+long) with
MPI-3 RMA and OpenSHMEM interfaces as implemented with
MVAPICH2 and MVAPICH2-X.

Jeff Hammond OpenSHMEM over MPI-3



Latency - Get

 0.01

 0.1

 1

 10

 100

 1000

2
0

2
5

2
10

2
15

2
20

L
o

g
 L

a
te

n
c
y
 (

u
s
)

Message size (bytes)

GASNet

MVAPICH2-X

OSHMPI

Portals4

MLNX

 1

 10

 100

 1000

2
0

2
5

2
10

2
15

2
20

L
o

g
 L

a
te

n
c
y
 (

u
s
)

Message size (bytes)

GASNet

MVAPICH2-X

OSHMPI

Portals4

MLNX

Figure: Intranode (left) and internode (right).

Jeff Hammond OpenSHMEM over MPI-3



Latency - Put

 0.01

 0.1

 1

 10

 100

 1000

2
0

2
5

2
10

2
15

2
20

L
o

g
 L

a
te

n
c
y
 (

u
s
)

Message size (bytes)

GASNet

MVAPICH2-X

OSHMPI

Portals4

MLNX

 0.1

 1

 10

 100

 1000

2
0

2
5

2
10

2
15

2
20

L
o

g
 L

a
te

n
c
y
 (

u
s
)

Message size (bytes)

GASNet

MVAPICH2-X

OSHMPI

Portals4

MLNX

Figure: Intranode (left) and internode (right).

Jeff Hammond OpenSHMEM over MPI-3



Message Rate - Put

10
2

10
3

10
4

10
5

10
6

10
7

10
8

2
0

2
5

2
10

2
15

2
20

2
25

L
o

g
 R

a
te

 (
M

e
s
s
a

g
e

s
/s

)

Message size (bytes)

OSHMPI
GASNet
Portals4

MVAPICH2-X
MLNX

10
2

10
3

10
4

10
5

10
6

10
7

2
0

2
5

2
10

2
15

2
20

2
25

L
o

g
 R

a
te

 (
M

e
s
s
a

g
e

s
/s

)

Message size (bytes)

OSHMPI
GASNet
Portals4

MVAPICH2-X
MLNX

Figure: Intranode (left) and internode (right).

Jeff Hammond OpenSHMEM over MPI-3



Message Rate - Atomics (internode)

 0.01

 0.1

 1

s
h
m

e
m

_
in

t_
fa

d
d

s
h
m

e
m

_
in

t_
fin

c
s
h
m

e
m

_
in

t_
a
d
d

s
h
m

e
m

_
in

t_
in

c
s
h
m

e
m

_
in

t_
c
s
w

a
p

s
h
m

e
m

_
in

t_
s
w

a
p

s
h
m

e
m

_
lo

n
g
lo

n
g
_
fa

d
d

s
h
m

e
m

_
lo

n
g
lo

n
g
_
fin

c
s
h
m

e
m

_
lo

n
g
lo

n
g
_
a
d
d

s
h
m

e
m

_
lo

n
g
lo

n
g
_
in

c
s
h
m

e
m

_
lo

n
g
lo

n
g
_
c
s
w

a
p

s
h
m

e
m

_
lo

n
g
lo

n
g
_
s
w

a
p

L
o

g
 M

ill
io

n
 o

p
s
/s

Jeff Hammond OpenSHMEM over MPI-3



Conclusions and Future Work

MPI-3 is a reasonable conduit for OpenSHMEM.

Shared memory performance is (naturally) good.

MPI implementation quality is (obviously) the limiting factor
in internode performance.

Looking at MPI-3 might help one reason about future
extensions to OpenSHMEM.

We would very much like to have users and their feedback.

Software hardening and performance tuning is ongoing.

Jeff Hammond OpenSHMEM over MPI-3



Acknowledgments

Pavan Balaji and Jim Dinan for MPI-3 expertise.

SHMEM-Portals team (esp. Brian Barrett and Keith Underwood).

Tony Curtis for encouragement.

https://github.com/jeffhammond/oshmpi

Jeff Hammond OpenSHMEM over MPI-3


