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SHMEM Synchronization Gap 

Strong ordering semantic 
§  Remote completion of all operations 

Globally synchronizes PEs 
§  Ensure next phase can reuse buffers 

§  Can be expensive 

§  Load Imbalance, noise, etc. 

Point-to-point ordering 
§  Weaker than remote completion 

Point-to-point synchronization 
§  O(P) messages, vs O(log P) for barrier 

Comm/sync are split up 
§  Limits optimizations in the runtime 

3 

for	
  (pe	
  =	
  0;	
  pe	
  <	
  NPES;	
  pe++)	
  
	
  	
  shmem_putmem(data,	
  PE);	
  
	
  
shmem_barrier_all();	
  

for	
  (pe	
  =	
  0;	
  pe	
  <	
  NPES;	
  pe++)	
  
	
  	
  shmem_putmem(data,	
  PE);	
  
	
  
shmem_fence();	
  
	
  
for	
  (pe	
  =	
  0;	
  pe	
  <	
  NPES;	
  pe++)	
  
	
  	
  shmem_int_add(flag,	
  -­‐1,	
  PE);	
  
	
  
shmem_int_wait_until(flag,	
  EQ,	
  0);	
  

Consistent Barrier Point-to-Point Flags 



Bundling Communication and Synchronization 

Bundle comm. and synchronization together in a single operation 

§  Counter is incremented at the target after the operation has completed 

§  Weak counting semantic: the receiver can do the increment in get/wait 

Bundling enables implementation optimizations 

§  Leverage hardware capabilities (ordering, bundling, events, …) 

Enables a receiver-managed implementation 

§  Can significantly reduce communication involved in synchronization 
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shmem_ct_create(&ct);	
  
	
  
for	
  (pe	
  =	
  0;	
  pe	
  <	
  NPES;	
  pe++)	
  
	
  	
  shmem_put_ct(ct,	
  data,	
  …,	
  PE);	
  
	
  
shmem_ct_wait(ct,	
  NPES);	
  



Counting Puts Interface 

Creation / free is collective 
§  Every PE needs a handle to refer to the counter 

§  Individual counter created on each PE 

Query functions are local 

§  Read, write, or wait on a counter 

§  Counter updates can be delayed until query 

Add “counting” versions of one-sided communication operations 
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void shmem_ct_create(shmem_ct_t *ct); 
void shmem_ct_free(shmem_ct_t *ct); 
 
long shmem_ct_get(shmem_ct_t ct); 
void shmem_ct_set(shmem_ct_t ct, long value); 
void shmem_ct_wait(shmem_ct_t ct, long greater_or_equal_val); 
 
void shmem_putmem_ct(shmem_ct_t ct, void *target, …, int pe); 
... 



Counting Puts Implementation 

Implementation on top of SHMEM 
§  Put, fence, increment flag 

Shared memory implementation 
§  Similar to implementation on SHMEM 

§  Copy, membar, atomic increment flag 

Use communication events 
§  Portals network – counting events, 

counter triggered by communication 

§  Other networks – completion events, 
update counter in query function 

Piggyback info in message header 
§  UDP, PSM, etc… 
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put(ct1, …) 

Source PE     Target PE 

fence() 

int_inc(ct1, …) 

put_ct(ct1, …) 

Source PE     Target PE 

pu
t_

ct
(c

t1
, …

) 

Sender-Managed Receiver-Managed 



Signaling Puts in Portals SHMEM 

Create separate portal table entries for each counter 
§  Non-matching entries, list entry (LE) points to memory segment 
§  Isolates counters from each other 

Portals counting event is attached to LE on counting PTE 
§  Automatically incremented when the operation completes 

Direct counting puts to corresponding CT PTE, others to generic PTE 
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Empirical Evaluation 

Implemented and available in Portals-SHMEM 
§  http://code.google.com/p/portals-shmem/‎ 

Evaluation system: 
§  Mellanox QDR InfiniBand, single switch 

§  Intel® Xeon® X5680 x 2, 24 GB memory 

§  15 nodes, 12 cores per node = 180 PEs 
§  Open source Portals-IB, Portals-SHMEM 

Benchmarks and highlights: 
§  All-to-all (bandwidth) 

–  2x bandwidth for small messages 

§  Ping-pong (latency) 
–  ½ latency for small messages 

§  Pipelined parallel stencil kernel (overlap) 
–  More than 2x improvement 
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All-to-All Bandwidth (180 PEs) 

Measure bandwidth achieved in all-to-all 
§  Bandwidth shown is aggregated per-node / physical network endpoint 

Bandwidth improvement of >2x for small messages 
§  Fence + flags approach sends O(P) additional messages 
§  Barrier synchronizes all PEs, only as fast as the slowest PE 

Large messages amortize cost of sync messages (Amdahl) 
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Ping-Pong Benchmark 

Bundle sender’s operations 
§  Put, fence, and atomic increment are combined 
§  Weaker than fence, only ensures that this put is visible to receiver 

Experiment: 
§  PEs switch sender/receiver roles every iteration 
§  Sweep message length parameter 
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shmem_putmem(rcv,	
  snd,	
  msg_len,	
  pe);	
  
shmem_fence();	
  
shmem_int_inc(&flag,	
  target);	
  

shmem_int_wait(&flag,	
  0);	
  
flag	
  =	
  0;	
  

Sender Receiver 

shmem_putmem_ct(ct,	
  rcv,	
  snd,	
  msg_len,	
  pe);	
   shmem_ct_wait(ct,	
  1);	
  
shmem_ct_set(ct,	
  0);	
  

Fence + Flags 

Counting Puts 

Sender Receiver 



Half Round-Trip Latency (2 PEs) 

Counting puts eliminate atomic increment message 
§  Halves latency for small message sizes 
§  Large messages amortize sync. cost (Amdahl) 

Explicit fence is also eliminated 
§  Removes waiting for completion at the sender 
§  We can fire and forget the counting put, through a bounce buffer 
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Pipelined Parallel Stencil Benchmark 

Stencil update rule 
§  A(i, j) = A(i-1, j) + A(i, j-1) - A(i-1, j-1) 

Domain decomposition along j-dimension 
§  Data dependence – West, North, Northwest 

§  Pipelined parallelism 

§  Put data to neighbor’s ghost cell and notify them 

Intel Parallel Research Kernels, Synch_p2p benchmark 

§  Tim Mattson, Rob van der Wijngaart (http://github.com/ParRes) 
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Sync_P2P Strong Scaling 

Dataset is A[M, N] = 12800 x 1280 
§  Executed using 4 PEs per node 

§  GFLOPS = Total FLOPs at all PEs / exec. time (notably comm. time) 

Small messages (single element) result in high comm. overheads 

§  Flags double the number of small messages that are sent 

§  Benchmark is communication bound on small messages 
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Synch_P2P Weak Scaling (48 PEs) 

Dataset is A[M, N] = M x 12800 

§  Run on 4 PEs per node, 48 PEs total 

Shows impact of pipelining startup, shutdown latency 

§  Large values of M amortize this cost 

§  More efficient point-to-point sync. reduces pipelining overhead 
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Related Work 

UPC semaphores proposal (Bonachea, et al.) 
§  Similar idea in UPC 

§  Could use receiver-managed implementations 

Split-C signaling store 

§  Wait for a specific number of bytes to arrive 

§  One counter per process 

MPI point-to-point communication 

§  Send/recv, data movement and sync. are conjoined 

Full/empty bits 

§  Tera MTA, Cray XMT, Chapel, … 

Put-with-flag 
§  ARMCI_Put_flag(), GASPI write-and-notify 
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SHMEM Synchronization Discussion 

Bundling can improve efficiency of point-to-point synchronization 
§  Enables implementation optimizations 
§  Leverage hardware capabilities, e.g. communication events 

Variety of interfaces for bundled comm. and synchronization 
§  Opaque flag object 

–  Pro: Better enabling of receiver-managed implementations 
–  Con: Requires additional API to query remotely 

§  Integer flag 
–  Pro: Fits into existing API, can be queried remotely 
–  Con: Restricts implementation options, e.g. hard to use counting events 

§  Update rule: increment vs. set 
–  Increment: aggregates synchronizations to a single object 
–  Set: fine-grain, can require many flags, e.g. scalability challenge for all-to-all 

Additional synchronization operations for investigation 
§  Control-only barrier – counting puts already synchronized data 
§  Split-phase barrier and non-blocking synchronizations 
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