
Reducing Synchronization Overhead
Through Bundled Communication
James Dinan, Clement Cole, Gabriele Jost, Stan Smith,
Keith Underwood, and Robert W. Wisniewski

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core, VTune, and Cilk are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

2

SHMEM Synchronization Gap

Strong ordering semantic
§  Remote completion of all operations

Globally synchronizes PEs
§  Ensure next phase can reuse buffers

§  Can be expensive

§  Load Imbalance, noise, etc.

Point-to-point ordering
§  Weaker than remote completion

Point-to-point synchronization
§  O(P) messages, vs O(log P) for barrier

Comm/sync are split up
§  Limits optimizations in the runtime

3

for	
 (pe	
 =	
 0;	
 pe	
 <	
 NPES;	
 pe++)	

	
 	
 shmem_putmem(data,	
 PE);	

	

shmem_barrier_all();	

for	
 (pe	
 =	
 0;	
 pe	
 <	
 NPES;	
 pe++)	

	
 	
 shmem_putmem(data,	
 PE);	

	

shmem_fence();	

	

for	
 (pe	
 =	
 0;	
 pe	
 <	
 NPES;	
 pe++)	

	
 	
 shmem_int_add(flag,	
 -­‐1,	
 PE);	

	

shmem_int_wait_until(flag,	
 EQ,	
 0);	

Consistent Barrier Point-to-Point Flags

Bundling Communication and Synchronization

Bundle comm. and synchronization together in a single operation

§  Counter is incremented at the target after the operation has completed

§  Weak counting semantic: the receiver can do the increment in get/wait

Bundling enables implementation optimizations

§  Leverage hardware capabilities (ordering, bundling, events, …)

Enables a receiver-managed implementation

§  Can significantly reduce communication involved in synchronization

4

shmem_ct_create(&ct);	

	

for	
 (pe	
 =	
 0;	
 pe	
 <	
 NPES;	
 pe++)	

	
 	
 shmem_put_ct(ct,	
 data,	
 …,	
 PE);	

	

shmem_ct_wait(ct,	
 NPES);	

Counting Puts Interface

Creation / free is collective
§  Every PE needs a handle to refer to the counter

§  Individual counter created on each PE

Query functions are local

§  Read, write, or wait on a counter

§  Counter updates can be delayed until query

Add “counting” versions of one-sided communication operations

5

void shmem_ct_create(shmem_ct_t *ct);
void shmem_ct_free(shmem_ct_t *ct);

long shmem_ct_get(shmem_ct_t ct);
void shmem_ct_set(shmem_ct_t ct, long value);
void shmem_ct_wait(shmem_ct_t ct, long greater_or_equal_val);

void shmem_putmem_ct(shmem_ct_t ct, void *target, …, int pe);
...

Counting Puts Implementation

Implementation on top of SHMEM
§  Put, fence, increment flag

Shared memory implementation
§  Similar to implementation on SHMEM

§  Copy, membar, atomic increment flag

Use communication events
§  Portals network – counting events,

counter triggered by communication

§  Other networks – completion events,
update counter in query function

Piggyback info in message header
§  UDP, PSM, etc…

6

put(ct1, …)

Source PE Target PE

fence()

int_inc(ct1, …)

put_ct(ct1, …)

Source PE Target PE

pu
t_

ct
(c

t1
, …

)

Sender-Managed Receiver-Managed

Signaling Puts in Portals SHMEM

Create separate portal table entries for each counter
§  Non-matching entries, list entry (LE) points to memory segment
§  Isolates counters from each other

Portals counting event is attached to LE on counting PTE
§  Automatically incremented when the operation completes

Direct counting puts to corresponding CT PTE, others to generic PTE

7

NI

Portal Table
Data

LE

Heap
LE

Data
LE

Heap
LE

Heap
Seg.

ct1_heap
…

ct1_data
heap
data

CT
Event

put_ct(ct1, …)

Source PE Target PE Data
Seg.

Empirical Evaluation

Implemented and available in Portals-SHMEM
§  http://code.google.com/p/portals-shmem/‎

Evaluation system:
§  Mellanox QDR InfiniBand, single switch

§  Intel® Xeon® X5680 x 2, 24 GB memory

§  15 nodes, 12 cores per node = 180 PEs
§  Open source Portals-IB, Portals-SHMEM

Benchmarks and highlights:
§  All-to-all (bandwidth)

–  2x bandwidth for small messages

§  Ping-pong (latency)
–  ½ latency for small messages

§  Pipelined parallel stencil kernel (overlap)
–  More than 2x improvement

8

All-to-All Bandwidth (180 PEs)

Measure bandwidth achieved in all-to-all
§  Bandwidth shown is aggregated per-node / physical network endpoint

Bandwidth improvement of >2x for small messages
§  Fence + flags approach sends O(P) additional messages
§  Barrier synchronizes all PEs, only as fast as the slowest PE

Large messages amortize cost of sync messages (Amdahl)

9

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 64 128 256 512 1024 2048 4096 8192 16384

B
a

n
d

w
id

th
 p

e
r

N
o

d
e

 (
M

B
/s

)

Message Size (Bytes)

Counting Puts
Fence+Flags

Barrier All

Ping-Pong Benchmark

Bundle sender’s operations
§  Put, fence, and atomic increment are combined
§  Weaker than fence, only ensures that this put is visible to receiver

Experiment:
§  PEs switch sender/receiver roles every iteration
§  Sweep message length parameter

10

shmem_putmem(rcv,	
 snd,	
 msg_len,	
 pe);	

shmem_fence();	

shmem_int_inc(&flag,	
 target);	

shmem_int_wait(&flag,	
 0);	

flag	
 =	
 0;	

Sender Receiver

shmem_putmem_ct(ct,	
 rcv,	
 snd,	
 msg_len,	
 pe);	
 shmem_ct_wait(ct,	
 1);	

shmem_ct_set(ct,	
 0);	

Fence + Flags

Counting Puts

Sender Receiver

Half Round-Trip Latency (2 PEs)

Counting puts eliminate atomic increment message
§  Halves latency for small message sizes
§  Large messages amortize sync. cost (Amdahl)

Explicit fence is also eliminated
§  Removes waiting for completion at the sender
§  We can fire and forget the counting put, through a bounce buffer

11

 4

 8

 16

 32

 64

 128

 256

1 4 16 64 256 1k 4k 16k 64k 256k

H
a

lf
R

o
u

n
d

-T
ri
p

 L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

Fence+Flag
Counting Puts

Pipelined Parallel Stencil Benchmark

Stencil update rule
§  A(i, j) = A(i-1, j) + A(i, j-1) - A(i-1, j-1)

Domain decomposition along j-dimension
§  Data dependence – West, North, Northwest

§  Pipelined parallelism

§  Put data to neighbor’s ghost cell and notify them

Intel Parallel Research Kernels, Synch_p2p benchmark

§  Tim Mattson, Rob van der Wijngaart (http://github.com/ParRes)
12

M

N

Completed

Enabled

Active

Data dep.

PE = 0 PE = 1 PE = 2 PE = 3

(0, 0)

Sync_P2P Strong Scaling

Dataset is A[M, N] = 12800 x 1280
§  Executed using 4 PEs per node

§  GFLOPS = Total FLOPs at all PEs / exec. time (notably comm. time)

Small messages (single element) result in high comm. overheads

§  Flags double the number of small messages that are sent

§  Benchmark is communication bound on small messages
13

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50

G
F

L
O

P
S

Number of PEs

Fence+Flags
Counting Puts

Synch_P2P Weak Scaling (48 PEs)

Dataset is A[M, N] = M x 12800

§  Run on 4 PEs per node, 48 PEs total

Shows impact of pipelining startup, shutdown latency

§  Large values of M amortize this cost

§  More efficient point-to-point sync. reduces pipelining overhead
14

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 20000 40000 60000 80000 100000 120000

G
F

L
O

P
S

Problem Size (M x 12800)

Fence+Flags
Counting Puts

Related Work

UPC semaphores proposal (Bonachea, et al.)
§  Similar idea in UPC

§  Could use receiver-managed implementations

Split-C signaling store

§  Wait for a specific number of bytes to arrive

§  One counter per process

MPI point-to-point communication

§  Send/recv, data movement and sync. are conjoined

Full/empty bits

§  Tera MTA, Cray XMT, Chapel, …

Put-with-flag
§  ARMCI_Put_flag(), GASPI write-and-notify

15

Aggregate
synchronization
from multiple
operations

Synchronize
individual
operations

SHMEM Synchronization Discussion

Bundling can improve efficiency of point-to-point synchronization
§  Enables implementation optimizations
§  Leverage hardware capabilities, e.g. communication events

Variety of interfaces for bundled comm. and synchronization
§  Opaque flag object

–  Pro: Better enabling of receiver-managed implementations
–  Con: Requires additional API to query remotely

§  Integer flag
–  Pro: Fits into existing API, can be queried remotely
–  Con: Restricts implementation options, e.g. hard to use counting events

§  Update rule: increment vs. set
–  Increment: aggregates synchronizations to a single object
–  Set: fine-grain, can require many flags, e.g. scalability challenge for all-to-all

Additional synchronization operations for investigation
§  Control-only barrier – counting puts already synchronized data
§  Split-phase barrier and non-blocking synchronizations

16

