
OpenSHMEM Workshop 2014

March 4-6, 2014

Benchmarking Parallel Performance 

on Many-Core Processors

Bryant C. Lam (speaker)

Ajay Barboza

Ravi Agrawal

Dr. Alan D. George

Dr. Herman Lam

NSF Center for High-Performance Reconfigurable 

Computing (CHREC), University of Florida



Motivation and Approach

 Motivation
 Emergent many-core processors in HPC and scientific 

computing require performance profiling with existing 
parallelization tools, libraries, and models
 HPC typically distributed cluster systems of multi-core devices

 New shifts toward heterogeneous computing for better power utilization

 Can many-core processors replace several servers?

 Can computationally dense servers of many-core devices scale?

 Can many-core replace other accelerators (e.g., GPU) in 
heterogeneous systems?

 Approach
 Evaluate architectural strengths of two current-generation 

many-core processors
 Tilera TILE-Gx8036 and Intel Xeon Phi 5110P

 Evaluate many-core app performance and scalability with 
SHMEM and OpenMP on these many-core processors

2



Overview

 Devices
 Tilera TILE-Gx

 Intel Xeon Phi

 Benchmarking Parallel Applications
 SHMEM and OpenMP applications

 SHMEM-only applications

 Conclusions

3



Tilera TILE-Gx8036 Architecture

 64-bit VLIW processors

 32k L1i cache, 32k L1d cache

 256k L2 cache per tile

 Up to 750 billion operations per second

 Up to 60 Tbps of on-chip mesh 

interconnect

 Over 500 Gbps memory bandwidth

 1 to 1.5 GHz operating frequency

 Power consumption: 10 to 55W; 22W 

for typical applications

 2-4 DDR3 memory controllers

 mPIPE delivers wire-speed packet 

classification, processing, distribution

 MiCA for cryptographic acceleration

 Available in stand-alone server or PCIe

VLIW: very long instruction word

mPIPE: multicore Programmable Intelligent Packet Engine

MiCA: Multicore iMesh Coprocessing Accelerator



Tilera iMesh Interconnect Fabric

 Tiles consist of processing core, cache, and switch

 Switches attach to mesh fabric via five networks

 QDN (reQuest)

RDN (Response)

 Two networks for improved 

memory-access bandwidth

 SDN (Share)

 Cache access and coherence

 IDN (Internal)

 Communication with external I/O

 UDN (User)

 User-accessible dynamic network

for low-latency packet transfers between tiles

5

32k L1i cache

32k L1d cache

256k L2 cache per tile



Intel Xeon Phi 5110P Architecture

6

 60 cores up to 240 threads

 32k L1i cache, 32k L1d cache

 512k L2 cache per core

 8 GB GDDR5 memory

 320 GB/s bandwidth

 PCIe x16 form factor, passively cooled

 512‐bit SIMD instructions

 1.053 GHz

 225W TDP

 Native and Offload compute models

 Intel compiler and library support

 Math Kernel Library

 OpenMP

 Intel MPI, Intel Clik

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner



Xeon Phi Coprocessor Core

7

 Coprocessor core features x86-like instruction set
 4-way Simultaneous Multithreading (SMT)

 In-order instruction processing

 Wide 512-bit SIMD vector units

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner



Xeon Phi Memory Accesses

8

 Ring Interconnect
 High-bandwidth wide 

interconnect feeds cores 
from other caches and 
GDDR5 memory

 Streaming Stores
 for (i = 0; i < HUGE; i++)

A[i] = k*B[i] + C[i];

 Historically, A is read from 
cache, then written

 With streaing stores: write 
cache line of A without 
unnecessary read
 Boosts memory bandwidth

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner



Device Comparison

9

60 cores with up to 240 threads

32k L1i, 32k L1d, 512k L2 cache per core, 

30 MB shared L2

8 GB GDDR5 memory

320 GB/s bandwidth

PCIe x16 form factor, passively cooled

512‐bit SIMD instructions

1.053 GHz

225W TDP

Native and Offload compute models

Intel compiler and library support

Intel Xeon Phi 5110P

36 tiles of 64-bit VLIW processors

32k L1i, 32k L1d, 256k L2 cache per tile, 

9MB shared L2

Up to 750 billion operations per second

60 Tbps of on-chip mesh interconnect

Over 500 Gbps memory bandwidth

1.0 to 1.5 GHz operating frequency

10 to 55W (22W typical)

2 DDR3 memory controllers

mPIPE for 10×4 Gbps wire-speed 

packet processing

MiCA for crypto and compression

Tilera TILE-Gx8036



Benchmarking Parallel Apps

 Evaluate scalability of parallel apps

on TILE-Gx and Xeon Phi

 Leverage SHMEM and OpenMP for parallelization

 TILE-Gx

 OpenMP

 OpenSHMEM reference implementation atop GASNet

 CHREC ongoing project: TSHMEM for TILE-Gx

 Xeon Phi

 OpenMP

 OpenSHMEM reference implementation atop GASNet

10



OpenMP

 OpenMP first standardized in 1997
 Thread parallelization with fork/join model

 Programming via compiler directives in C/C++ or 
Fortran
 Example: #pragma omp parallel for

 Incremental parallelization of sequential applications

 Commonly available via compilers

 Potential difficulties with race conditions, false sharing, 
and non-optimal serialization in parallel sections

 Limited to local SMP devices; Little to non-existent 
support for programming across multiple devices

11



Introduction to PGAS

 PGAS = partitioned global address space
 Share data by dividing the global address space into local and 

remote partitions
 Hardware and software infrastructure handle transmission of data when not local

 Gives a shared-memory view of distributed-memory cluster 
systems

 PGAS languages and libraries
 SHMEM, UPC, Cray Chapel, IBM X10, Co-Array Fortran, Titanium

12



SHMEM

 SHMEM developed originally in 1993
for Cray T3D distributed-memory supercomputer
 Standardized via OpenSHMEM community (January 2012)

 Process parallelization with single-program, multiple-data
process replication (e.g., mpirun)

 Programming via library functions in C/C++ or Fortran
 Features one-sided point-to-point and collective operations

 Example: shmem_int_put(), shmem_broadcast32()

 Potential to replace MPI+OpenMP model common in HPC 
with ability to handle distributed systems of SMP devices

 PGAS via library functions; No need for compiler support

 Large, shared, data structures difficult to handle if data is not 
amenable for symmetric distribution to participating PEs

13



OpenSHMEM

 OpenSHMEM community now manages
development of future SHMEM specifications
 Reference implementation and test suite also provided

 OpenSHMEM reference impl. built atop GASNet
 GASNet is a network and communication abstraction library

 Supports hardware networking
technologies (e.g., InfiniBand)

 Enables portability between networking
hardware if GASNet API used in your
application or library

 Enables support for vast majority of
cluster-based systems

 We use GASNet’s SMP abstraction
with OpenSHMEM for TILE-Gx
and Xeon Phi benchmarking

14

OpenSHMEM API



OpenSHMEM and TSHMEM

TSHMEM Overview

SHMEM reference design directly over 
Tilera TILE-Gx architecture and 
libraries

 Stay true to SHMEM principles
 High performance with low overhead

 Portability with easy programmability

 Maximize architectural benefits
 Tile interconnect, mPIPE, MiCA

 Extend design to multi-device systems
 Evaluate interconnect capabilities

 Explore design on other many-core 
devices including Intel Xeon Phi

15

HPC acceleration with SHMEM on many-core processors

Tilera Libraries
(TMC, gxio, etc.)

TSHMEM with OpenSHMEM API

Setup

Device Functionality

Data 
Transfers

Sync

TSHMEM reference design on TILE-Gx36

Modular design 

utilizing vendor 

libraries

• Dynamic symmetric heap management

• Point-to-point data transfer

• Point-to-point synchronization

• Barrier synchronization

• Broadcast, Collection, Reduction

• Atomics for dynamic variables

• Extension to multiple many-core devices

Achieved

• Port of TSHMEM to Intel Xeon Phi

• Exploration of new SHMEM extensions

Ongoing



Applications Benchmarking

 Three apps focused on SHMEM vs. OpenMP
performance with same computation and 
communication patterns
 Matrix multiply

 Linear curve fitting

 Exponential curve fitting

 Four apps focused on SHMEM-only performance 
between TILE-Gx and Xeon Phi
 OSH matrix multiply

 OSH heat image

 Huge async radix sort

 FFTW with SHMEM

16



Apps – Matrix Multiplication

 Matrix multiply common in many applications (C = A × B)
 For OpenMP version, all three matrices are shared and accessible from any 

thread

 For SHMEM version, A and C matrices distributed; B matrix is private copy
 Large memory consumption in SHMEM; OpenMP uses shared compiler directive

 SHMEM version should use a more distributed implementation, but the chosen 
implementation preserves computation pattern with OpenMP version

 OpenMP has advantage; SHMEM not amenable for large non-distributed data structures
(in this case, matrix B)

 TILE-Gx
 TSHMEM and OpenMP execution

times are very similar

 OpenSHMEM scalability concerns
with more than 8 PEs (1/4 of device)

 Xeon Phi
 OpenMP scales well up to 128 PEs

 OpenSHMEM scalability concerns
with more than 16 PEs
(7% of possible threads)

17

0.1

1

10

100

1000

1 2 4 8 16 32 64 128 256

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
)

Number of PEs

Matrix Multiply

OpenMP OpenSHMEM TSHMEM

OpenMP OpenSHMEMXeon Phi 5110P

TILE-Gx8036



Apps – Linear Curve Fitting

 Linear curve fitting performs linear least-squares approximation 
on a set of points
 Calculates minimum least-squares deviation from a set of points and 

approximates a linear-regression line

 TILE-Gx
 TSHMEM and OpenMP performance

approximately equivalent

 OpenSHMEM shows scalability
concerns after 8 PEs

 Xeon Phi
 OpenMP outperforms

OpenSHMEM

 Similar performance between
TSHMEM on TILE-Gx and
OpenSHMEM on Xeon Phi
at 32 and 36 PEs

18

0.1

1

10

100

1 2 4 8 16 32 64 128 256

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
)

Number of PEs

Linear Curve Fit

OpenMP OpenSHMEM TSHMEM

OpenMP OpenSHMEMXeon Phi 5110P

TILE-Gx8036



Apps – Exponential Curve Fitting

 Exponential curve fitting can leverage linear curve fitting 
algorithm by transforming exponential equation into linear 
equation with logarithms

 TILE-Gx
 Similar performance with TSHMEM and OpenMP

 OpenSHMEM shows scaling issues beyond 16 PEs

 Xeon Phi
 OpenSHMEM is faster than

OpenMP with parity
performance at 64 PEs

 Bottleneck in OpenMP is
parallel reduction operation
with logarithms in loop body
and subsequent sync;
SHMEM version avoids this

19

1

10

100

1000

1 2 4 8 16 32 64 128 256

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
)

Number of PEs

Exponential
Curve Fit

OpenMP OpenSHMEM TSHMEM

OpenMP OpenSHMEMXeon Phi 5110P

TILE-Gx8036



Apps – OSH Matrix Multiplication

 Next four applications are SHMEM-only applications to compare optimal 
SHMEM performance between TILE-Gx and Xeon Phi
 Emphasis on performance comparison between SHMEM implementations

 This matrix multiplication is provided by OpenSHMEM test suite

 Same serial baseline as previous matrix multiply, but this app has different 
data structure arrangement
 A, B, and C are distributed data structures across all SHMEM partitions

 More communication with B matrix

 TILE-Gx
 OpenSHMEM scalability

issues after 16 PEs

 Xeon Phi
 Due to more optimal serial

baseline, OpenSHMEM
performance heavily suffers

 TILE-Gx TSHMEM performance
very comparable to Xeon-Phi
OpenSHMEM performance

20

10

100

1000

1 2 4 8 16 32 64 128 256

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
)

Number of PEs

OSH Matrix Multiply

OpenSHMEM TSHMEM

OpenSHMEMXeon Phi 5110P

TILE-Gx8036



Apps – OSH Heat Image

 Also from OpenSHMEM test suite, this app does 

heat-convection modeling and outputs an image

 TILE-Gx

 Similar performance between OpenSHMEM and 

TSHMEM until 16 PEs

 Xeon Phi

 OpenSHMEM scales well

 Application runtime

checks prevent execution

for PE counts > 64

21

1

10

100

1 2 4 8 16 32 64

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
)

Number of PEs

OSH Heat Image

OpenSHMEM TSHMEM

OpenSHMEMXeon Phi 5110P

TILE-Gx8036



Apps – Huge Async Radix Sort

 Pseudo-application which performs large, asynchronous radix sort
 Randomly generated values to fill requested memory

 All-to-all communication for key-exchange phase
 Majority of application’s runtime

 Very quick integer sorting after key exchange

 TILE-Gx
 OpenSHMEM scalability concerns beyond 8 PEs

 This application is very amenable for TILE-Gx
due to integer comparisons

 Xeon Phi
 OpenSHMEM scales well, but

scaling considerably decreases
at higher PE counts
 Very favorable performance

with TSHMEM on TILE-Gx at
32 PEs, especially after normalization
of device power consumption

22

5

50

1 2 4 8 16 32 64

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
)

Number of PEs

HAMR

OpenSHMEM TSHMEM

OpenSHMEMXeon Phi 5110P

TILE-Gx8036



Apps – FFTW with SHMEM

 FFTW is popular threaded library for very fast DFT operations
 Process-level parallelization of threaded FFTW library using SHMEM

 TILE-Gx
 Unlike previous applications that were similar in performance, 

TSHMEM is 20% faster than OpenSHMEM

 OpenSHMEM scalability issues
beyond 8 PEs

 Xeon Phi
 OpenSHMEM scales well

 TSHMEM on TILE-Gx has
comparable performance to
OpenSHMEM on Xeon Phi
 Surprising result given strength of

floating-point performance on
Xeon Phi

23

1

10

100

1 2 4 8 16 32 64

Ex
ec

u
ti

o
n

 T
im

e 
(s

ec
)

Number of PEs

FFTW

OpenSHMEM TSHMEM

OpenSHMEMXeon Phi 5110P

TILE-Gx8036



Conclusions

 SHMEM and OpenMP applications
 TSHMEM and OpenMP exhibit similar

performance on TILE-Gx

 OpenSHMEM exhibits scalability concerns

 Faster execution times with Xeon Phi over TILE-Gx
 Performance per watt, however, still requires further exploration

 Independently developed SHMEM-only applications
 TSHMEM outperforms OpenSHMEM for all SHMEM applications on TILE-Gx

 Justifies TSHMEM approach of bare-metal library design for many-core performance

 OpenSHMEM reference library designed for portability to distributed cluster systems

 At this moment, TSHMEM is only for Tilera devices
 Work underway for portability to Xeon Phi

 Questions?
 Contact me at blam@chrec.org

 More about CHREC at http://www.chrec.org/

24


