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Goal 

Goal: Educating the OpenSHMEM Community 

 CUDA: Compute Unified Device Architecture 

  CUDA C: C language extensions for parallelism 

 CUDA memory and synchronization model 

 CUDA process and thread model 

 Future directions 

 

This talk the start of a discussion 

 Not a recommendation for immediate change. 
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NVIDIA’s Goal 

Standard for one-sided communication in a parallel context 

Move beyond host-managed communication 

Express communication with parallelism 

Improve Amdahl fraction 

 

Drop-in library usable on both the CPU and GPU 
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Acronyms and Synonyms 

GPU == GPGPU == TOC 

GPU is the historical name 

GPGPU General Purpose GPU, modern GPU with compute capability 

TOC Throughput Optimized Core 

Power efficient  parallel computation 

LOC Latency Optimized Core 

CPU-like single threaded core 

Trade higher power use for fewer, shorter clock cycles 
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GPUs: GeForce, Quadro, TESLA
 

ARM SoCs: Tegra
 

NVIDIA 

R8 Ray Tracing.wmv
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The Day Job That Makes It All Possible… 

Leverage volume graphics market to serve HPC 

HPC needs outstrip HPC market’s ability to fund the development 

Computational graphics and compute are highly aligned 

GeForce Quadro Tegra 

R8 Ray Tracing.wmv


7 

GPU Innovation Accelerating 
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C for CUDA : C with a few keywords 

void saxpy_serial(int n, float a, float *x, float *y) 

{ 

    for (int i = 0; i < n; ++i) 

        y[i] = a*x[i] + y[i]; 

} 

// Invoke serial SAXPY kernel 

saxpy_serial(n, 2.0, x, y); 

 

__global__ void saxpy_parallel(int n, float a, float *x, float *y) 

{ 

    int i = blockIdx.x*blockDim.x + threadIdx.x; 

    if (i < n)  y[i] = a*x[i] + y[i]; 

} 

// Invoke parallel SAXPY kernel with 256 threads/block 

int nblocks = (n + 255) / 256; 

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y); 

Standard C Code 

Parallel C Code 
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CUDA: C on the GPU 

A simple, explicit programming language solution 

Extend only where necessary 
 __global__ void KernelFunc(...); 

 __shared__ int SharedVar; 

 KernelFunc<<< 500, 128 >>>(...); 

Explicit GPU memory allocation 

cudaMalloc(), cudaFree() 

Memory copy from host to device, etc.  

cudaMemcpy(), cudaMemcpy2D(), ... 
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void saxpy_serial(int n,  

                  float a,  

                  float *x,  

                  float *y) 

{ 

   

 

for (int i = 0; i < n; ++i) 

    y[i] = a*x[i] + y[i]; 

} 

// Perform SAXPY on 1M elements 

saxpy_serial(4096*256, 2.0, x, y); 

__global__  

void saxpy_parallel(int n,  

                    float a,  

                    float *x,  

                    float *y) 

{ 

  int start = threadIndex(); 

  int stride = threadCount(); 

  for (int i = start; i < n; i+= stride ) 

      y[i] = a*x[i] + y[i]; 

} 

// Perform SAXPY on 1M elements 

saxpy_parallel(4096*256,2.0,x,y); 

CUDA C with APK 

Standard C Code Parallel C Code 

http://developer.nvidia.com/cuda-toolkit 
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Process and Thread Model 

Many threads required for performance 

Thousands to ~100K typical 

Hardware scheduler keeps up to 32K active (Kepler K20) 

2K threads to cover memory latency 

Program in threads, hardware executes in SIMT 

Supports complete divergence 

Hardware/architecture vectorizes dynamically 

Implication: PE-per-thread (or even thread group) infeasible 

… with PE-per-node too coarse-grained 
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Memory Space Model 

Threads have multiple memory spaces 

 Private local - each thread 

 Shared - among threads in active thread block 

  Within the lifetime of the thread block 

 Read-only (visible to all threads, persistent across kernels) 

  Constant 

  Texture - additional addressing modes, data filtering 

 Global (all threads, persistent across kernels) 

Implication: Rich memory spaces vs OpenSHMEM memory spaces 
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Programming 100K nodes 

Committed to legacy requirement:  MPI + on-node parallelism 

Hybrid Multicore 

Directive or language solution 

Explicit and implicit memory hierarchy management 

Exascale system wide programming model 

Exascale solution must support enabling technologies for PGAS and 

GPUDirect 

ATOMIC 

Cluster wide addressing, paging 

Active memory hierarchy 



14 

Kernel Acceleration (Offload) Model 

Current programming model 

CPU constructs work kernel 

Submits to a queue 

GPU interprets and executes the kernel 

No concurrency guarantee 

Spinwait within kernel == deadlock 

Thread block has internal consistency 

External or inter-kernel consistent only at exit sync 

Work submission (launch) and exit (join) only points of consistency 
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GPUs Accelerate Computational Core 

Application Code 

+ 

GPU CPU Use GPU to Parallelize 

Compute-Intensive Functions 
Rest of Sequential 

CPU Code 
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Kernel Acceleration (Offload) Model 

Real life is a bit more sophisticated 

Hardware thread scheduling and dispatch 

Execution behavior introspection 

Occupancy, effectiveness 

Power and thermal 

All influence behavior and performance 

GPU kernels can create new kernels 

Architectural improvement that moves longer chunks to GPU 
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Kernel Execution 

• Each kernel is executed on 

one device 

• Multiple kernels can execute 

on a device at one time 

… 
… 

… 

CUDA-capable GPU 

CUDA thread • Each thread is executed by a 

core 

CUDA core 

CUDA thread block 

 

• Each block is executed by 

one SM and does not migrate 

• Several concurrent blocks can 

reside on one SM depending 

on the blocks’ memory 

requirements and the SM’s 

memory resources 

… 

CUDA Streaming 

Multiprocessor 

CUDA kernel grid 

... 
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GPU Parallelism 

Thread 

per-thread 
local memory 

per-block 
shared 
memory 

. . . 

Kernel  bar() 
per-device 

global 
memory 

Global barrier 

Thread Block 

Local barrier 

Kernel  foo() 

. . . . . . 
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SIMD versus MIMD versus SIMT? 

SIMD: Single Instruction 

Multiple Data 

SIMT = MIMD Programming Model w/ 

             SIMD Implementation Efficiencies 

VLD 

VADD 

VST 
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SUB 

MIMD: Multiple Instruction 

Multiple Data 

SIMT: Single Instruction 

Multiple Thread 
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Divergence in Parallel Computing 

Removing divergence pain from parallel programming 

  

SIMD Pain 

User or compiler required to SIMD-ify 

User suffers when computation goes divergent 

 

GPUs: Decouple execution width from programming model 

Threads can diverge freely 

Inefficiency only when granularity exceeds native machine width 

Hardware managed 

Managing divergence becomes performance optimization 

Scalable 
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Illustration of Launch/Join Consistency 

No (externally promised) consistency during offload execution 

CPU 

GPGPU 
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Undefined ordering implications 

Execution and completion ordering undefined 

Allows hardware thread scheduling 

Key element of performance 

Implication: GPU communication operations unordered 
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OpenSHMEM Integration Challenges 

Simple model is simple -- CPU driven 

Potentially eave data on GPU-controlled memory 

Use only after GPU sync join 

Performance and scalability limited 

Differentiated memory 

CPU (DDR) vs GPU (GDR) local memory 

Internal operational memory 
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Unified Memory 

Dramatically Lower Developer Effort 

Developer View Today Developer View With 
Unified Memory 

Unified Memory System 
Memory 

GPU Memory 
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Multi-GPU: Unified Virtual Addressing  
Single Partitioned Address Space  

          

System 

Memory 

CPU GPU0 

GPU0 

Memory 

GPU1 

GPU1 

Memory 

PCI-e 

0x0000 

0xFFFF 
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Unified Memory Delivers 

1. Simpler 

Programming & 

Memory Model 

2. Performance 

Through 

Data Locality 

 Migrate data to accessing processor 

 

 Guarantee global coherency 

 

 Still allows cudaMemcpyAsync() hand tuning 

 Single pointer to data, accessible anywhere 

 

 Tight language integration 

 

 Greatly simplifies code porting 
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Super Simplified Memory Management Code 

void sortfile(FILE *fp, int N) { 
  char *data; 
  data = (char *)malloc(N); 
 
  fread(data, 1, N, fp); 
 
  qsort(data, N, 1, compare); 
 
 
  use_data(data); 
 
  free(data); 
} 

void sortfile(FILE *fp, int N) { 
  char *data; 
  cudaMallocManaged(&data, N); 
 
  fread(data, 1, N, fp); 
 
  qsort<<<...>>>(data,N,1,compare); 
  cudaDeviceSynchronize(); 
 
  use_data(data); 
 
  cudaFree(data); 
} 

CPU Code CUDA 6 Code with Unified Memory 
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Impact of CUDA 5 and Kepler 

Separate Compilation & 

Linking 

Dynamic Parallelism 

CPU Kepler GPU 

GPU can generate work for itself 

Compiler does not have to ‘see’ all functions 

Link and externally call device code 

Create reusable libraries 

 

+ Prog.exe main.cpp 

a.c

u 

b.c

u 

a.o b.o 

c.cu 

c.o 
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Conclusion 

Sketch of CUDA memory and threading 

Concern about trading sideways with a communication model 

  MPI worked well with clusters 

Single core, strongly ordered TSO memory model 

Single path to NIC 

Rank == node, or rank == core 

Easy to send, hard to receive 

Need a improved community API that matches upcoming machines 

Thousands of threads 

Hierarchy of locality and memory spaces 


