
NVIDIA Compute Devices

or ‘The GPGPU Memory Model’

March 2014

2

Goal

Goal: Educating the OpenSHMEM Community

 CUDA: Compute Unified Device Architecture

 CUDA C: C language extensions for parallelism

 CUDA memory and synchronization model

 CUDA process and thread model

 Future directions

This talk the start of a discussion

 Not a recommendation for immediate change.

3

NVIDIA’s Goal

Standard for one-sided communication in a parallel context

Move beyond host-managed communication

Express communication with parallelism

Improve Amdahl fraction

Drop-in library usable on both the CPU and GPU

4

Acronyms and Synonyms

GPU == GPGPU == TOC

GPU is the historical name

GPGPU General Purpose GPU, modern GPU with compute capability

TOC Throughput Optimized Core

Power efficient parallel computation

LOC Latency Optimized Core

CPU-like single threaded core

Trade higher power use for fewer, shorter clock cycles

5

GPUs: GeForce, Quadro, TESLA

ARM SoCs: Tegra

NVIDIA

R8 Ray Tracing.wmv

6

The Day Job That Makes It All Possible…

Leverage volume graphics market to serve HPC

HPC needs outstrip HPC market’s ability to fund the development

Computational graphics and compute are highly aligned

GeForce Quadro Tegra

R8 Ray Tracing.wmv

7

GPU Innovation Accelerating

0

100

200

300

400

500

600

700

800

900

2000 2001 2002 2003 2004 2005 2006 2007 2008

$
 M

il
li
o
n
s

NVIDIA R&D Budget

8

C for CUDA : C with a few keywords

void saxpy_serial(int n, float a, float *x, float *y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)

{

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

// Invoke parallel SAXPY kernel with 256 threads/block

int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Standard C Code

Parallel C Code

9

CUDA: C on the GPU

A simple, explicit programming language solution

Extend only where necessary
 __global__ void KernelFunc(...);

 __shared__ int SharedVar;

 KernelFunc<<< 500, 128 >>>(...);

Explicit GPU memory allocation

cudaMalloc(), cudaFree()

Memory copy from host to device, etc.

cudaMemcpy(), cudaMemcpy2D(), ...

10

void saxpy_serial(int n,

 float a,

 float *x,

 float *y)

{

for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_serial(4096*256, 2.0, x, y);

__global__

void saxpy_parallel(int n,

 float a,

 float *x,

 float *y)

{

 int start = threadIndex();

 int stride = threadCount();

 for (int i = start; i < n; i+= stride)

 y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_parallel(4096*256,2.0,x,y);

CUDA C with APK

Standard C Code Parallel C Code

http://developer.nvidia.com/cuda-toolkit

11

Process and Thread Model

Many threads required for performance

Thousands to ~100K typical

Hardware scheduler keeps up to 32K active (Kepler K20)

2K threads to cover memory latency

Program in threads, hardware executes in SIMT

Supports complete divergence

Hardware/architecture vectorizes dynamically

Implication: PE-per-thread (or even thread group) infeasible

… with PE-per-node too coarse-grained

12

Memory Space Model

Threads have multiple memory spaces

 Private local - each thread

 Shared - among threads in active thread block

 Within the lifetime of the thread block

 Read-only (visible to all threads, persistent across kernels)

 Constant

 Texture - additional addressing modes, data filtering

 Global (all threads, persistent across kernels)

Implication: Rich memory spaces vs OpenSHMEM memory spaces

13

Programming 100K nodes

Committed to legacy requirement: MPI + on-node parallelism

Hybrid Multicore

Directive or language solution

Explicit and implicit memory hierarchy management

Exascale system wide programming model

Exascale solution must support enabling technologies for PGAS and

GPUDirect

ATOMIC

Cluster wide addressing, paging

Active memory hierarchy

14

Kernel Acceleration (Offload) Model

Current programming model

CPU constructs work kernel

Submits to a queue

GPU interprets and executes the kernel

No concurrency guarantee

Spinwait within kernel == deadlock

Thread block has internal consistency

External or inter-kernel consistent only at exit sync

Work submission (launch) and exit (join) only points of consistency

15

GPUs Accelerate Computational Core

Application Code

+

GPU CPU Use GPU to Parallelize

Compute-Intensive Functions
Rest of Sequential

CPU Code

16

Kernel Acceleration (Offload) Model

Real life is a bit more sophisticated

Hardware thread scheduling and dispatch

Execution behavior introspection

Occupancy, effectiveness

Power and thermal

All influence behavior and performance

GPU kernels can create new kernels

Architectural improvement that moves longer chunks to GPU

17

Kernel Execution

• Each kernel is executed on

one device

• Multiple kernels can execute

on a device at one time

…
…

…

CUDA-capable GPU

CUDA thread • Each thread is executed by a

core

CUDA core

CUDA thread block

• Each block is executed by

one SM and does not migrate

• Several concurrent blocks can

reside on one SM depending

on the blocks’ memory

requirements and the SM’s

memory resources

…

CUDA Streaming

Multiprocessor

CUDA kernel grid

...

18

GPU Parallelism

Thread

per-thread
local memory

per-block
shared
memory

. . .

Kernel bar()
per-device

global
memory

Global barrier

Thread Block

Local barrier

Kernel foo()

.

19

SIMD versus MIMD versus SIMT?

SIMD: Single Instruction

Multiple Data

SIMT = MIMD Programming Model w/

 SIMD Implementation Efficiencies

VLD

VADD

VST

LD

ADD

ST

BR

ADD

ST

BR

LD

LD

ADD

ST

BR

LD

ADD

BR

ADD

LD

ADD

BR

ADD

LD

ADD

BR

SUB

MIMD: Multiple Instruction

Multiple Data

SIMT: Single Instruction

Multiple Thread

20

Divergence in Parallel Computing

Removing divergence pain from parallel programming

SIMD Pain

User or compiler required to SIMD-ify

User suffers when computation goes divergent

GPUs: Decouple execution width from programming model

Threads can diverge freely

Inefficiency only when granularity exceeds native machine width

Hardware managed

Managing divergence becomes performance optimization

Scalable

21

Illustration of Launch/Join Consistency

No (externally promised) consistency during offload execution

CPU

GPGPU

22

Undefined ordering implications

Execution and completion ordering undefined

Allows hardware thread scheduling

Key element of performance

Implication: GPU communication operations unordered

23

OpenSHMEM Integration Challenges

Simple model is simple -- CPU driven

Potentially eave data on GPU-controlled memory

Use only after GPU sync join

Performance and scalability limited

Differentiated memory

CPU (DDR) vs GPU (GDR) local memory

Internal operational memory

24

Unified Memory

Dramatically Lower Developer Effort

Developer View Today Developer View With
Unified Memory

Unified Memory System
Memory

GPU Memory

25

Multi-GPU: Unified Virtual Addressing
Single Partitioned Address Space

System

Memory

CPU GPU0

GPU0

Memory

GPU1

GPU1

Memory

PCI-e

0x0000

0xFFFF

26

Unified Memory Delivers

1. Simpler

Programming &

Memory Model

2. Performance

Through

Data Locality

 Migrate data to accessing processor

 Guarantee global coherency

 Still allows cudaMemcpyAsync() hand tuning

 Single pointer to data, accessible anywhere

 Tight language integration

 Greatly simplifies code porting

27

Super Simplified Memory Management Code

void sortfile(FILE *fp, int N) {
 char *data;
 data = (char *)malloc(N);

 fread(data, 1, N, fp);

 qsort(data, N, 1, compare);

 use_data(data);

 free(data);
}

void sortfile(FILE *fp, int N) {
 char *data;
 cudaMallocManaged(&data, N);

 fread(data, 1, N, fp);

 qsort<<<...>>>(data,N,1,compare);
 cudaDeviceSynchronize();

 use_data(data);

 cudaFree(data);
}

CPU Code CUDA 6 Code with Unified Memory

28

Impact of CUDA 5 and Kepler

Separate Compilation &

Linking

Dynamic Parallelism

CPU Kepler GPU

GPU can generate work for itself

Compiler does not have to ‘see’ all functions

Link and externally call device code

Create reusable libraries

+ Prog.exe main.cpp

a.c

u

b.c

u

a.o b.o

c.cu

c.o

29

Conclusion

Sketch of CUDA memory and threading

Concern about trading sideways with a communication model

 MPI worked well with clusters

Single core, strongly ordered TSO memory model

Single path to NIC

Rank == node, or rank == core

Easy to send, hard to receive

Need a improved community API that matches upcoming machines

Thousands of threads

Hierarchy of locality and memory spaces

