
Hybrid
Programming
with OpenSHMEM

Matthew Baker

What is hybrid programming?

• Using more than one programming model
– OpenSHMEM/OpenACC

• Different programming models to access different
hardware

Why hybrid programming?

• Clusters are increasingly complex
– Hardware limits demanded changes in computer organization

• From single computers to network connected clusters
• From single core per socket to multiple cores per socket
• Now adding accelerators too

– 4 of the top 10 Top500 super computers have accelerators
• Including #1 and #2
• HPL on titan used accelerators

Today’s HPC nodes
• Multicore NUMA architectures
• Titan has 1 socket with 16 cores

and attached GPU
• Three memory spaces

– CPU
– Accelerator
– Remote cores

• Three different programming
models
– OpenACC for accelerators
– OpenSHMEM for interconnect
– OpenMP for cores

Cores Cores

Cores Cores

Shared
Memory

Interconnect N
etw

ork

Cores Cores

Cores Cores

Cores Cores

Cores Cores

Shared
Memory

Accelerator 1

Local Memory

Scratch Pad M.

Accelerator N

Local Memory

NUMA

Acc N

Acc 1

Inter
Conn

Current technologies

• OpenSHMEM
– Efficient one sided communication library

• OpenACC
– Simplest way to start accelerator programming
– Emerging specification for accelerators

• It’s a step ahead of OpenMP and can work with PGAS languages

• Why these two?
– We are in the process of extending OpenSHMEM
– We have a strong presence in OpenACC.
– We have a strong presence in both at ORNL

Principal focus

• Models need to be orthogonal
– Different technologies addressing different problems
– Models should strives to not interfere with each other
– Must address sharing resources
– Each model has different types of optimizations

• How can we make them work together?

Hybrid Programming Bechmarks: NAS-
BT-MZ

• Multizone block tri-diagnal solver
– Selected because it is a hybrid benchmark

• Uses MPI/OpenMP hybrid model, OpenMP only
– Provides a nice split between communication and

computation
– Limited zone adjustability
– Uses master-only mode for communication

• Communication happens outside parallel region

NAS BT-MZ Benchmark

OpenMP

MPI calls

MPI
Processes

sequential

MPI/OpenMP

SHMEM
Put/Gets

SHMEM
Put/Gets

exchange
boundaries

sequential sequential Time step

OpenACC OpenMP intra-zones

SHMEM
PEs

SHMEM
PEs

inter-zones

OpenSHMEM/
OpenACC

OpenSHMEM/O
penMP

• Multi-zone versions of the NAS Parallel Benchmarks
LU,SP, and BT

• Two hybrid sample implementations
• Load balance heuristics part of sample codes
• www.nas.nasa.gov/Resources/Software/software.html

Porting BT-MZ to OpenSHMEM /
OpenACC

• Data allocation in accelerator:
 #pragma acc data create(forcing[0:size5],rho_i[0:size],u[0:size5]), &

#pragma acc create(us[0:size],vs[0:size],ws[0:size]), &
#pragma acc create(square[0:size],qs[0:size],rhs[0:size5])
{
 for (iz = 0; iz < proc_num_zones; iz++) {
 zone = proc_zone_id[iz];

 initialize(&u[start5[iz]],
 nx[zone], nxmax[zone], ny[zone], nz[zone]);
 exact_rhs(&forcing[start5[iz]],
 nx[zone], nxmax[zone], ny[zone], nz[zone]);
 }

Porting BT-MZ to OpenSHMEM /
OpenACC

#pragma acc data copy(rho_ip[0:size],up[0:size5],qsp[0:size],rhsp[0:size5]), &
#pragma acc copy(squarep[0:size]) pcreate(lhsX,fjacX,njacX)
{
 #pragma acc kernels loop independent private(tmp1, tmp2, tmp3)
 for (k = 1; k <= gp22; k++) {
 #pragma acc loop independent
 for (j = 1; j <= gp12; j++) {
 for (i = 0; i <= isize; i++) {
 tmp1 = rho_i(i,j,k);
 tmp2 = tmp1 * tmp1;
 tmp3 = tmp1 * tmp2;
 //---
 //
 //---
 fjacX[0][0][i][j][k] = 0.0;
 fjacX[0][1][i][j][k] = 1.0;
 fjacX[0][2][i][j][k] = 0.0;
 fjacX[0][3][i][j][k] = 0.0;
 fjacX[0][4][i][j][k] = 0.0;

• Accelerating x_solve, mirroring data between cpu/gpu

Porting BT-MZ to OpenSHMEM
/OpenACC

• Boundary exchange with OpenSHMEM
for (n = 0; n < num_msgs; n++) {
 if (nr >= MAX_REQS) {

 shmem_quiet();
 nr = 0;
 tag = MSG_TAG;
 }

 if (qoffset+m_size > qcomm_size[ip]) {
 m_size = qcomm_size[ip] - qoffset;
 }
 int iterator =0;
 // PE will have to send the data as well as the offset
 // sent so that the destination PE may calculate the new offset.
 shmem_putmem(&dest_qoffset,&qoffset,sizeof(idx_t), ip);
 shmem_fence();
 long x = 1;

 …..

 shmem_double_put(&qbc_in[dest_qoffset], &qbc_ou[qoffset], m_size, ip);
 shmem_quiet();
 nr = nr + 2;
 qoffset = qoffset + m_size;
 tag = tag + NUM_PROCS;
}

Conclusions

• Some gains in performance
– 1 zone 1 node with accelerator saw performance improvement

• Up to 4.3x faster
– OpenSHMEM with no OpenACC saw consistent performance

improvement
– OpenSHMEM with OpenACC saw 10% performance gain

• Large amounts of time spent transferring memory to and from
accelerators

• 256 nodes with OpenSHMEM without OpenACC
– Time spent exchanging boundaries was 3% of run time

• 256 nodes with OpenSHMEM and OpenACC
– Time spent exchanging boundaries was 46% of run time

Graphs

Communication vs compute

Conclusions

• Problems
– Lots of small transfers
– Irregular transfers
– 13x8x28 to 57x28x38 element zones (all under 500KB)

• Solutions
– APU

• Shared memory between accelerator and host would eliminate PCIe bus
transfers

– Network access for GPU
• Remove need to transfer memory to host

Conclusions

• None of the standards specified interactions
– Solved in this benchmark by having separate steps

• OpenSHMEM in boundary exchanges
• OpenACC in compute sections
• No threading

Interconnect N
etw

ork

Open questions
• Model works if OpenACC and

OpenSHMEM are in separate code
regions.

• OpenSHMEM threading support
– Currently: Nothing

• Cray has a proposal that is similar to MPI
spec with additional functions

• Is this sufficient?
– Can’t use with pthreads or OpenMP or

OpenACC with any guarantees

• OpenSHMEM and OpenACC
– OpenACC parallel regions with

OpenSHMEM symmetric heap
• What happens if there is a shmem_put() on

a variable in an OpenACC accelerated
region?

Cores Cores

Cores Cores

Shared
Memory

Cores Cores

Cores Cores

Cores Cores

Cores Cores

Shared
Memory

Accelerator 1

Local Memory

Scratch Pad M.

Accelerator N

Local Memory

NUMA

Acc N

Acc 1

Inter
Conn

Interconnect N
etw

ork

Open questions
• OpenACC threading

– Currently: Nothing
– What happens if a thread modifies

data in a data region marked copy?
• Could be explicitly undefined in spec,

with an expectation of being stomped

• OpenACC with multiple
accelerators
– Suppose you had two accelerators,

can a single thread use both?
– Must you spawn two threads to

use each one?
– Must you fork/exec to use each

one?

Cores Cores

Cores Cores

Shared
Memory

Cores Cores

Cores Cores

Cores Cores

Cores Cores

Shared
Memory

Accelerator 1

Local Memory

Scratch Pad M.

Accelerator N

Local Memory

NUMA

Acc N

Acc 1

Inter
Conn

Interconnect N
etw

ork

Open questions

• OpenMP is still relevant
– Multiple cores per node

• How do we integrate all three
into a triple hybrid?
– Multiple threads contending with

shmem puts/gets and accelerator’s
separate memory

– Chimera programming model?
Cores Cores

Cores Cores

Shared
Memory

Cores Cores

Cores Cores

Cores Cores

Cores Cores

Shared
Memory

Accelerator 1

Local Memory

Scratch Pad M.

Accelerator N

Local Memory

NUMA

Acc N

Acc 1

Inter
Conn

Additional Future Work

• All standards need to interact in well defined ways
– Needs some definition of memory consistency

• Possibilities of standards working together?
– Can we get OpenACC to call shmem functions?

• Like MPI on GPUs?
• Accelerators tapping straight into networking hardware

– GPUs with networking hardware?

– Can we do OpenSHMEM put/gets to accelerator memories?
• Extensions are needed to define different memory contexts
• Puts/Gets from GPU to GPU
• Puts/Gets from Host to remote GPU

Questions?

	Hybrid Programming�with OpenSHMEM
	What is hybrid programming?
	Why hybrid programming?
	Today’s HPC nodes
	Current technologies
	Principal focus
	Hybrid Programming Bechmarks: NAS-BT-MZ
	NAS BT-MZ Benchmark
	Porting BT-MZ to OpenSHMEM / OpenACC
	Porting BT-MZ to OpenSHMEM / OpenACC
	Porting BT-MZ to OpenSHMEM /OpenACC
	Conclusions
	Graphs
	Communication vs compute
	Conclusions
	Conclusions
	Open questions
	Open questions
	Open questions
	Additional Future Work
	Questions?

